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Advantages of multiple layers

• Localization
• Approximation of polynomials with deep neural networks
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Localization

Chui et al. (1994) define localized approximation as the ability to approximate [−1, 1]d
hypercubes by a neural networks with fixed number of neurons

Local approximation property: There exists a sequence of neural networks (fr )r with
activation function σ, K neurons und L hidden layers, such that for any A > 0

lim
r→∞

∫
[−A,A]

|1[−1,1]d (x)− fr (x)|dx→ 0

↪→ Property does not hold for shallow networks with Heaviside activation function
(Theorem 2.2 in Chui et al. (1994))
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Localization with shallow networks

• Shallow ReLU networks localize in one dimension:

fr (x) = σ(rx + r)− σ(rx + r − 1)− σ(rx + 1− r) + σ(rx − r)

↪→ It seems that for higher dimension, one can only localize in one direction
• Conjecture: Shallow networks with some activation function σ do not provide

local approximation
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Localization with multilayer networks

• Taking two hidden layers allows us to localize in arbitrary dimensions
• For Heaviside activation function σ0 = 1{·≥0}:

1[−1,1]d (x) = σ0

( d∑
i=1

σ0(xi + 1) + σ0(−xi + 1)− 2d + 1
2

)

↪→ Outer neurons are only activated iff all inner neurons output one. This is the case
iff i ∈ {1, . . . , d}, −1 ≤ xi ≤ 1
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Localization with multilayer networks

For Sigmoid activation function σ(x) = 1/(1 + exp(−x)):

σ(αx) ≈ σ0(x) for large α.

For ReLU activation function σ(x) = max{x , 0}

σ(αx)− σ(αx − 1) ≈ σ0(x), for large α

 Approximation quality depends on α

6



Approximation of x2k with shallow and deep networks

• The function x → x2k lies in the closure of a shallow network with 2k + 1 neurons
• For multilayer networks we only need k layers with 3 neurons resp.
• Rescaled finite second order differences

σ(t + 2xh)− 2σ(t + xh) + σ(t)
σ′′(t)h2 ≈ x2

7



Shallow vs. deep

For the approximation with deep networks, we only need a three times differentiable
activation function
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What do we learn from the example?

• x2k can be written as

x2 ◦ x2 ◦ · · · ◦ x2︸ ︷︷ ︸
k−times

• Thus: Functions of the form

f = gq ◦ · · · ◦ g0

can be better approximated by deep networks
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Analysis of deep ReLU networks

F(L, r) := Fσ(L, r) with σ(x) = max{x , 0}

We talk about

• Properties of deep ReLU networks
• Approximating different functions by ReLU networks
• Convergence results based on ReLU networks
• Comparison to another statistical method
• Image classification with convolutional neural networks
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Properties of deep ReLU networks

1. Identity network: Identities can be passed through the network without an error

fid : R→ R, fid (z) = σ(z)− σ(−z) = z , z ∈ R

and

fid : Rd → R, fid (x) = (fid (x1), . . . , fid (xd )) = (x1, . . . , xd ), x ∈ Rd

Passing on identities via several hidden layers:

f 0
id (x) = x, x ∈ Rd

f t+1
id (x) = fid (f t

id (x)) = x, t ∈ N0, x ∈ Rd
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Properties of deep ReLU networks

2. Combined network: Two networks can be combined by making the output of one
network the input of the other network:

For f ∈ F(Lf , rf ) and g ∈ F(Lg , rg ) with Lf , Lg , rf , rg ∈ N is

(f ◦ g) ∈ F(Lf + Lg ,max{rf , rg})

the combined network.

x f (x)
Network

f

αf βf x g(x)
Network

g

βgαg

x (f ◦ g)(x)
Network

f ◦ g

αg βg · αf βf
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Properties for deep ReLU networks

3. Parallelized network: Two networks with the same number of layers can be
computed in a joint network:

For f ∈ F(L, rf ) and g ∈ F(L, rg ) is

(f , g)

the parallelised network with L hidden layers and rf + rg neurons per layer.
4. Enlarged network: We have F(L, r) ⊆ F(L, r ′) with r ≤ r ′.
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ReLU approximation of the square function

We start with approximating the square function. Here we use the following result.
Let g : [0, 1]→ [0, 1] with

g(x) =

2x , x ≤ 1
2

2 · (1− x) , x > 1
2

and

gs = g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
s

.

Lemma: For x ∈ [0, 1] we have∣∣∣∣∣x(1− x)−
R∑

s=1

gs(x)
22s

∣∣∣∣∣ ≤ 2−2R−2.
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ReLU approximation of the square function

Approximating the square function by deep ReLU networks:
Lemma: For each R ∈ N and each a ≥ 1 there exists a network

fsq ∈ F(R, 9)

with

|fsq(x)− x2| ≤ a2 · 4−R

for x ∈ [−a, a].
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Multiplication with ReLU networks

We use

xy = 1
4 · ((x + y)2 − (x − y)2)

and can show:

Lemma: For each R ∈ N and each a ≥ 1 there exist a network

fmult ∈ F(R, 18)

with

|fmult(x , y)− xy | ≤ 2 · a2 · 4−R

for x , y ∈ [−a, a].
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Approximating a product of d components with ReLU networks

Lemma: For each R ∈ N and each a ≥ 1 there exists a network

fmult,d ∈ F(R · dlog2(d)e, 18d)

with ∣∣∣∣∣fmult,d (x)−
d∏

i=1
xi

∣∣∣∣∣ ≤ 44d+1 · a4d · d · 4−R

for x ∈ [−a, a]d .

17



Approximating polynomials with ReLU networks

Let PN be the linear span of all monomials of the form

d∏
k=1

(xk)rk

for r1, . . . , rd ∈ N0 and r1 + · · ·+ rd ≤ N. Then PN is a linear vector space with

dim PN =
∣∣∣{(r0, . . . , rd ) ∈ Nd+1

0 : r0 + · · ·+ rd = N
}∣∣∣ =

(
d + N

d

)
.
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Approximating polynomials with ReLU networks

Lemma: Let m1, . . . ,m(d+N
d ) be all monomials of the space PN for N ∈ N. For

r1, . . . , r(d+N
d ) ∈ R let

p
(

x, y1, . . . , y(d+N
d )
)

=
(d+N

d )∑
i=1

ri · yi ·mi (x), x ∈ [−a, a]d , yi ∈ [−a, a]

and let r̄(p) = maxi∈{1,...,(d+N
d )} |ri |.
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Approximating polynomials with ReLU networks

Then for every a ≥ 1 and every R ∈ N the network

fp ∈ F
(

R · dlog2(N + 1)e, 18 · (N + 1) ·
(

d + N
d

))

satsifes∣∣∣∣fp(x, y1, . . . , y(d+N
d ))− p(x, y1, . . . , y(d+N

d ))
∣∣∣∣ ≤ c(d ,N) · r̄(p) · a4(N+1) · 4−R

for all x ∈ [−a, a]d , y1, . . . , y(d+N
d ) ∈ [−a, a] and a constant c(d ,N) > 0, only

depending on d and N.
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Approximating (p, C)-smooth functions by ReLU networks

In the following we approximate smooth functions with ReLU networks. In particular,
we consider functions of the following definition:

Definition: Let p = q + s for q ∈ N0 and 0 < s ≤ 1. Let C > 0. A function
f : Rd → R is (p,C)-smooth, if for every α ∈ Nd

0 with ∑d
j=1 αj = q the partial

derivative ∂qf /(∂xα1
1 . . . ∂xαd

d ) exists and satisfies∣∣∣∣∣ ∂qf
∂xα1

1 . . . ∂xαd
d

(x)− ∂qf
∂xα1

1 . . . ∂xαd
d

(z)
∣∣∣∣∣ ≤ C · ‖x− z‖s

for all x, z ∈ Rd .
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Approximating (p, C)-smooth functions by ReLU networks

The following result shows a Taylor approximation of (p,C)-smooth functions.

Lemma: Let p = q + s for q ∈ N0 and s ∈ (0, 1]. Let C > 0. Let f : Rd → R a
(p,C)-smooth function, let x0 ∈ Rd and Tf ,q,x0 a Taylor polynomial of order q around
x0 defined by

Tf ,q,x0(x) =
∑

j∈N0:‖j‖1≤q
(∂jf )(x0) · (x− x0)j

j! .

Then we have

|f (x)− Tf ,q,x0(x)| ≤ c(q, d) · C · ‖x− x0‖p

for x ∈ Rd and with c(q, d) > 0 only depending on q and d .
Proof: Lemma 1 in Kohler (2014).
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Approximating (p, C)-smooth functions with ReLU networks

Idea of the proof:

• We partition [−a, a)d (a ≥ 1 ) in Md and M2d half-open equivolume cubes

[α,β) = [α1, β1)× · · · × [αd , βd ), α,β ∈ Rd .

• And denote the corresponding partition by

P1 = {Ck,1}k∈{1,...,Md} und P2 = {Cj,2}j∈{1,...,M2d}

• For each i ∈ {1, . . . ,Md} we denote with C̃1,i , . . . , C̃Md ,i the cubes of P2

contained in Ci ,1

• We order the cubes in such a way that for k, i ∈ {1, . . . ,Md}

(C̃k,i )left = (Ci ,1)left + vk ,

where vk ∈ {0, 2a/M2, . . . , (M − 1) · 2a/M2}d .
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Approximating (p, C)-smooth functions with ReLU networks

(C̃k,i )left = (Ci ,1)left + vk

• vk denotes the position of (C̃k,i )left relatively to (Ci ,1)left and we order the cubes
such that this position is independent of i

• Then we have

P2 = {C̃k,i}k,i∈{1,...,Md}

• The Taylor expansion Tf ,q,(CP2 (x))left (x) can then be computed by the piecewise
Taylor polynomial defined on P2:

Tf ,q,(CP2 (x))left (x) =
∑

k,i∈{1,...,Md}
Tf ,q,(C̃k,i )left

(x) · 1C̃k,i
(x)
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Approximating (p, C)-smooth functions with ReLU networks

Using the Lemma from above leads to∥∥∥f (x)− Tf ,q,(CP2 (x))left (x)
∥∥∥
∞,[−a,a)d

≤ c(q, d) · (2 · a · d)p · C · 1
M2p .

Theorem: Let

• f : Rd → R be a (p,C)-smooth function
• a ≥ 1, M ≥ 2
• L & log4(M)
• r & Md

Then there exists a network f̂wide ∈ F(L, r), such that

‖f − f̂wide‖∞,[−a,a]d . M−2p
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Approximating (p, C)-smooth functions with deep ReLU networks

A similar result holds for very deep ReLU networks:
Theorem: Let

• f : Rd → R be a (p,C)-smooth function
• a ≥ 1, M ≥ 2
• L & Md

• r = const.

Then there exists a network f̂deep ∈ F(L, r) with

‖f − f̂deep‖∞,[−a,a]d . M−2p.

Proof: See Theorem 2 in Kohler und Langer (2021).
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Mathematical problem

X = {Images}

f : X → Y Y = {Muffin,Chiwawa}

The data are used to fit a network, i.e. estimate the weights in the network

How fast does the estimated network converge to the truth function f as
sample size increases?

27



Nonparametric regression

Prediction problem

• Given a Rd × R-valued random vector (X,Y ) with E{Y 2} <∞
Functional relation between X and Y ?

• Choose f ∗ : Rd → R such that

E
{
|f ∗(X)− Y |2

}
= min

f :Rd→R
E
{
|f (X)− Y |2

}
.

• One can show that f ∗(x) = m(x) = E{Y |X = x} holds.
• m : Rd → R is the so-called regression function
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Nonparametric regression

• Problem: Distribution of (X,Y ) is unknown
• But: We have given n copies of (X,Y )
 Dn = {(X1,Y1), . . . , (Xn,Yn)} (i.i.d.)

• Aim: Construct an estimator

mn(·) = mn(·,Dn) : Rd → R,

such that the L2 risk ∫
|mn(x)−m(x)|2dx

is small.
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Regression estimator

Neural network estimator:

m̃n(·) = argminf ∈F(Ln,rn)
1
n

n∑
i=1
|f (Xi )− Yi |2

and set mn(x) = Tc·log(n)m̃n(x) = max{−c · log(n),min{x, c · log(n)}}

Analyse the expected L2 error

E
∫
|mn(x)−m(x)|2 PX(dx)

↪→ Study the dependence of n (convergence rate)
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The choice of the function class

• Classical approach: Regression function is (p,C)-smooth
• Optimal rate: n−

2p
2p+d (Stone (1982))

↪→ suffers from the curse of dimensionality
• For a better understanding of deep learning, this setting is useless
• Aim: Find a proper structural assumption on m, such that neural network

estimators can achieve good convergence results even in high dimensions
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The choice of the function class

Additive models

• m(x) = ∑K
k=1 gk(xk) with gk : R→ R (p,C)-smooth

Optimal rate n−
2p

2p+1 (Stone (1985))

• Interactionmodels

m(x) =
∑

I⊂{1,...,d},|I|≤d∗
gI(xI)

with gI(xI) : R|I| → R (p,C)-smooth
Optimal rate n−

2p
2p+d∗ (Stone (1995))

 For both models the rate does not depend on d anymore
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The choice of the function class

Single index model

m(x) = g(aT x), x ∈ Rd

with g : R→ R univariate and a ∈ Rd being a d-dimensional vector.

Projection pursuit model

m(x) =
K∑

k=1
gk(aT

k x), x ∈ Rd

for K ∈ N, gk : R→ R and ak ∈ Rd

↪→ Optimal rate n−
2p

2p+1 (Györfi et al. (2002))
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The choice of the function class

• With all models one can circumvent the curse of dimensionality
• But: Rates can only be obtained in practice if the true (then unknown) regression

function corresponds to this structure
↪→ Goal: Low assumptions on the regression function that allow good rate of

convergence results
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The choice of the function class

Im many applications the corresponding functions show some sort of a hierarchical
structure:

• Image processing: Pixel → Edges → Local patterns → object
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The choice of the function class

Hierarchical composition model:
a) We say that m satisfies a hierarchical composition model of level 0, if there exists a
K ∈ {1, . . . , d} such that

m(x) = xK for all x ∈ Rd .

b) We say that m satisfies a hierarchical composition model of level l + 1, if there exist
a K ∈ N, g : RK → R and f1, . . . , fK : Rd → R such that f1, . . . , fK satisfy a
hierarchical composition model of level l and

m(x) = g(f1(x), . . . , fK (x)) for all x ∈ Rd .
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Hierarchical composition model - Example

g (2)
1

g (1)
1

xπ(1) xπ(2)

g (1)
2

xπ(3) xπ(4) xπ(5)

g (1)
3

xπ(6) xπ(7)

Illustration of a hierarchical composition model of level 2
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Hierarchical composition models

The hierarchical composition model satisfies the smoothness and order constraint P, if

• P ⊆ [1,∞)× N

• all functions g satisfy g : RK → R and g is (p,C)-smooth for some (p,K ) ∈ P

Further assumptions

• all functions g are Lipschitz continuous
• E(exp(c · Y 2)) <∞ and supp(X) is bounded
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Results for sparse neural network estimators

Theorem(Schmidt-Hieber (2020)): If

• L � log(n)
• r � nC , with C ≥ 1
• network sparsity � max(p,K)∈P n

K
2p+K · log(n).

the neural network estimator with ReLU activation function achieves the rate of
convergence

max
(p,K)∈P

n−
2p

2p+K .
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Results for sparse neural network estimators

Result of Bauer and Kohler (2019): For a generalized hierarchical interaction model a
sparse neural network estimator with sigmoidal activation function achieves a rate of
convergence

n−
2p

2p+d∗ .
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Is sparsity really necessary?

Remark
Sparse neural network estimators are able circumvent the curse of dimensionality

Conjecture
In order to achieve good rate of convergence results, one should use neural networks,
which are not fully connected.  This is not true!
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Result for fully connected neural network estimators

Theorem: If

• number of hidden layer Ln � max(p,K)∈P n
K

2·(2p+K)

• number of neurons rn = dc̃e

or

• number of hidden layer Ln � log(n)
• number of neurons rn � max(p,K)∈P n

K
2·(2p+K) .

Then

E
∫
|mn(x)−m(x)|2PX(dx) ≤ c · (log(n))6 · max

(p,K)∈P
n−

2p
2p+K .
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Advantage of full connectivity

Topology of the network is much easier in view of an implementation of a
corresponding estimator:

Listing 1: Python code for fitting of fully connected neural networks to data xlearn and ylearn

model = S e q u e n t i a l ( )
model . add ( Dense ( d , a c t i v a t i o n=” r e l u ” , i n p u t s h a p e =(d , ) ) )
f o r i i n np . a r an ge ( L ) :

model . add ( Dense (K, a c t i v a t i o n=” r e l u ” ) )
model . add ( Dense ( 1 ) )
model . compile ( o p t i m i z e r=”adam” ,

l o s s=” m e a n s q u a r e d e r r o r ” )
model . f i t ( x=x l e a r n , y=y l e a r n )
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Excursion

Let

• ε > 0
• G a set of functions f : Rd → R

• zn
1 = (z1, . . . , zn) n fixed points in Rd .

Then we denote by

(a) N1(ε,G, zn
1) the minimal N ∈ N such that there exist functions g1, . . . , gN : Rd → R with

the property that for every g ∈ G there is a j = j(g) ∈ {1, . . . ,N} such that

1
n

n∑
i=1
|g(zi )− gj(zi )| < ε.
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Excursion

(b) M1(ε,G, zn
1) the maximal M ∈ N such that there exist function g1, . . . , gM ∈ G

with
1
n

n∑
i=1
|gj(zi )− gk(zi )| ≥ ε

for all 1 ≤ j < k ≤ M.

Source: Györfi et al. (2002) 45



Excursion

Let A be a class of subsets of Rd with A 6= ∅ and n ∈ N. Then

• s(A, {z1, . . . , zn}) = |{A ∩ {z1, . . . , zn} : A ∈ A}| denotes the number of different
subsets of {z1, . . . , zn} of the form {A ∩ {z1, . . . , zn}, A ∈ A}

• S(A, n) = max{z1,...,zn}⊂Rd s(A, {z1, . . . , zn}) denotes the maximal number of
different subsets of n points that can be picked out by sets from A

• VA = sup{n ∈ N : S(A, n) = 2n} is the VC dimension, that denotes the largest
integer n such that there exists a set of n points in Rd such that each of its
subsets can be represented in the form A ∩ {z1, . . . , zn} for some A ∈ A.

For some function class G we denote by

G+ :=
{{

(z , t) ∈ Rd × R : t ≤ g(z)
}

; g ∈ G
}

the set of all subgraphs of functions of G.
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• S(A, n) = max{z1,...,zn}⊂Rd s(A, {z1, . . . , zn}) denotes the maximal number of
different subsets of n points that can be picked out by sets from A

• VA = sup{n ∈ N : S(A, n) = 2n} is the VC dimension, that denotes the largest
integer n such that there exists a set of n points in Rd such that each of its
subsets can be represented in the form A ∩ {z1, . . . , zn} for some A ∈ A.

For some function class G we denote by

G+ :=
{{

(z , t) ∈ Rd × R : t ≤ g(z)
}

; g ∈ G
}

the set of all subgraphs of functions of G.
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On the proof

Lemma: Let

• E{exp(c · Y 2)} <∞ for a constant c > 0
• |m| <∞
• m̃n be a least squares estimator on the function space Fn

• mn(·) = Tc̃·log(n)m̃n for a constant c̃ > 0.

Then we have for n > 1 and a constant c > 0 (independent of n and the parameters of
the estimator)

E
∫
|mn(x)−m(x)|2PX(dx)

≤
c · (log n)2 · supxn

1∈(Rd )n

(
log
(
N1
(

1
n·c̃ log(n) ,Tc̃ log(n)Fn, xn

1

))
+ 1

)
n

+ 2 · inf
f ∈Fn

∫
|f (x)−m(x)|2PX(dx).
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On the proof

Lemma: Let

• 1/nc ≤ ε < c̃ · log(n)/8
• L, r ∈ N.

Then we have for sufficiently large n, x1, . . . , xn ∈ Rd and a constant c independent of
n, L und r

log
(
N1

( 1
n · c̃ log(n) ,Tc̃ log(n)Fn, xn

1

))
≤ c · log(n) · log(L · r 2) · L2 · r 2.
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On the proof

To proof this we need the following results:
Lemma 1: Let G a class of functions on Rd and ε > 0. Then we have

N1(ε,G, zn
1) ≤M1(ε,G, zn

1)

für all z1, . . . , zn ∈ Rd .
Proof: See Lemma 9.2 in Györfi et al. (2002).

Lemma 2: Let G be a class of functions g : Rd → [−B,B] with VG+ ≥ 2 and let
0 < ε < B/8. Then we have

M1(ε,G, zn
1) ≤ 3

(4eB
ε

log
(6eB

ε

))VG+

for all z1, . . . , zn ∈ Rd .
Proof: See Theorem 9.4 in Györfi et al. (2002).
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On the proof

Lemma 3: Let L, r ∈ N und F(L, r) be the corresponding class of neural networks.
Then we have

VF(L,r)+ ≤ c · L2 · r 2 · log(L2 · r 2)

for a constant c > 0 sufficiently large.

Proof: Follows from Theorem 6 in Bartlett et al. (2017) and the fact, that a fully
connected network with L hidden layers and r neurons per layer has

W = (d + 1) · r + (L− 1) · (r − 1) · r + r + 1
= (d + 1) · r + L · (r 2 + r)− r 2 + 1

weights.
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Summary

• Deep neural networks ars able to circumvent the curse of dimensionality
under structural assumptions on the regression function

• Sparsety is not necessary to derive good rate of convergence
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Regression functions with low local dimensionality

Observation
Highdimensional data follow locally a low dimensional distribution

Example
Bike sharing data

Assumption
Regressionfunction is locally low dimensional
 m depends locally only on a small number of input components
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Regression functions with low local dimensionality

A mathematical formulation
Let A1, . . . ,AK ⊂ Rd , f1, . . . , fK : Rd → R and J1, . . . , JK ⊂ {1, . . . , d} be index sets
with maximal cardinality d∗. Then the function m is of the form

m(x) =
K∑

k=1
fk(xJk ) · 1Ak (x).

Problem: Function is globally neither (p,C)-smooth nor continuous ↪→ unrealistic!
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Regression functions with low local dimensionality

Let A1, . . . ,AK be d-dimensional polytopes. Let ai ,k ∈ Rd with ‖ai ,k‖ ≤ 1, bi ,k ∈ R
δi ,k > ε > 0, K1 ∈ N

(Pk)δk =
{

x ∈ Rd : aT
i ,kx ≤ bi ,k − δi ,k for i ∈ {1, . . . ,K1}

}
and

(Pk)δk =
{

x ∈ Rd : aT
i ,kx ≤ bi ,k + δi ,k for i ∈ {1, . . . ,K1}

}
with δk = (δ1,k , . . . , δK ,k).
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Regression functions with low local dimensionality

Definition (Kohler, Krzyżak and L. (2022))
A function f : Rd → R has local dimensionality d∗ ∈ {1, . . . , d} on [−A,A]d for A > 0
with order (K1,K2), PX-border ε > 0 and borders δi ,k > 0 for i = 1, . . . ,K1,
k = 1, . . . ,K2, if there exist functions

fk : Rd∗ → R

and δk = (δ1,k , . . . , δK1,k) such that
K2∑

k=1
fk(xJk ) · 1(Pk )δk

(x) ≤ f (x) ≤
K2∑

k=1
fk(xJk ) · 1(Pk )δk (x) (x ∈ A)

and

PX

 K2⋃
k=1

(Pk)δk \ (Pk)δk

 ∩ A

 ≤ ε
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A corresponding neural network regression estimator

Let F (sparse)
M∗,L,r ,α be the class of stacked neural networks, i.e., functions of the form

f (x) =
M∗∑
i=1

µi · fi (x) (x ∈ Rd )

with |µi | ≤ α and fi ∈ F(L, r , α).

x2

x1

Output
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A corresponding neural network regression estimator

Stacked neural network estimator:

m̃n ∈ arg min
f ∈F (sparse)

M∗,Ln,rn,αn

1
n

n∑
i=1
|Yi − f (Xi )|2

Choose Parameter M∗ with the splitting of the sample procedure

• learning sample of size nl = dn/2e
• test sample of size nt = n − nl = bn/2c
• M∗ ∈ Pn = {2l : l ∈ {1, . . . , dlog(n)e}}

Truncated estimator: mn(x) = Tβn m̃n(x) (x ∈ Rd )
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Rate of convergence of the estimator

Assumptions
• Regression function m has local dimensionality d∗ with order (K1,K2), PX -border

1/n and δi ,k ≥ c1/nc2 for c1, c2 > 0
• All functions fk in the definition are bounded and (p,C)-smooth
• E(exp(c3 · Y 2)) <∞ and supp(X) is bounded
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Rate of convergence of the estimator

Theorem: If

• number of hidden layers Ln � log(n)
• number of neurons rn = dc1e
• bound on the weights αn = c2 · nc3 .

Then

E
∫
|mn(x)−m(x)|2PX(dx) ≤ c4 · (log(n))5 · n−

2p
2p+d∗ .
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Remarks

• With stacked neural network estimators we are able to circumvent the curse of
dimensionality for regression functions with low local dimensionality

• The rate is optimal up to some logarithmic factor
• The proof is based on a result that analyzes the connection between neural

networks and MARS
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Deep Learning and MARS: A connection

MARS

• Adaptive procedure for regression estimation based on splines
• Model uses product of piecewise linear functions of the form

BJ,t(x1, . . . , xd ) =
∏
j∈J

(±(xj − tj))+

• MARS (Multivariate Adaptive Regression Splines) fits linear combination of such
functions to data

• Adaptive construction of the functions Bk by forward/backward selection
 Greedy algorithm
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Deep Learning and MARS: A connection

MARS

• As soon as a subbasis B1, . . . ,BK is chosen, the principle of least squares is used
to construct an estimator

mn(x) =
K∑

k=1
âk · Bk(x),

where

(âk)k=1,...,K = arg min
(ak )k=1,...,K∈RK

1
n

n∑
i=1

∣∣∣∣∣Yi −
K∑

k=1
ak · Bk(Xi )

∣∣∣∣∣
2

.
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Deep Learning and MARS: A connection

MARS

• If we have an oracle which produces the optimal subset of basis functions, the
expected L2-error of the estimator would satisfy

inf
K∈N,B1,...,BK∈B

K
n + min

(ak )k∈{1,...,K}

∫ ∣∣∣∣∣
K∑

k=1
ak · Bk(x)−m(x)

∣∣∣∣∣
2

PX(dx)


↪→ Does not hold for MARS, as there is no guarantee that the optimal basis can be

found with a hierarchical forward/backward stepwise subset selection procedure
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Deep Learning and MARS: A connection

Theorem: If

• number of hidden layers Ln � log(n)
• number of neurons rn = 2d + 38
• bound on the weights αn = c1 · nc2

• learning sample size nl = dn/2e

we have for n > 7

E
∫
|mn(x)−m(x)|2PX(dx) ≤ (log(n))5 · inf

I∈N, B1,...,BI∈B

(
c3 ·

I
n

+ min
(ai )i∈{1,...,I}∈[−c4·n,c4·n]I

∫
|

I∑
i=1

ai · Bi (x)−m(x)|2PX(dx)
)
.
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Intrinsic dimensionality

• Results mainly focus on the structure of the underlying regression function
• Less results explore the geometric properties of the data

Are estimators based on networks able to exploit the structure of the input
data?

• Assumption: X is concentrated on some d∗-dimensional Lipschitz-manifold
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d∗-dimensional Lipschitz-manifold

Formal definition: Let M⊆ Rd be compact and let d∗ ∈ {1, . . . , d}.

a) We say that U1, . . . ,Ur is an open covering of M, if U1, . . . ,Ur ⊂ Rd are open
(with respect to the Euclidean topology on Rd ) and satisfy

M⊆
r⋃

l=1
Ul .

b) We say that
ψ1, . . . , ψr : [0, 1]d∗ → Rd

are bi-Lipschitz functions, if there exists 0 < Cψ,1 ≤ Cψ,2 <∞ such that

Cψ,1 · ‖x1 − x2‖ ≤ ‖ψl (x1)− ψl (x2)‖ ≤ Cψ,2 · ‖x1 − x2‖ (1)

holds for any x1, x2 ∈ [0, 1]d∗ and any l ∈ {1, . . . , r}.
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d∗-dimensional Lipschitz-manifold

c) We say that M is a d∗-dimensional Lipschitz-manifold if there exist bi-Lipschitz
functions ψi : [0, 1]d∗ → Rd (i ∈ {1, . . . , r}), and an open covering U1, . . . ,Ur of M
such that

ψl ((0, 1)d∗) =M∩ Ul

holds for all l ∈ {1, . . . , r}. Here we call ψ1, . . . , ψr the parametrizations of the
manifold.
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Main result

Theorem: If

• X is concentrated on a d∗-dimensional Lipschitz manifold M
• Ln � log(n)
• rn � nd∗/(2(2p+d∗))

Then

E
∫
|mn(x)−m(x)|2 PX(dx) ≤ c1 · (log n)6 · n−

2p
2p+d∗ .
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Summary

• Under structural assumptions on the regression function, neural networks are able
to circumvent the curse of dimensionality

• Networks are also able to exploit the structure of the input data
• Sparsity is not the answer
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What we have learned

Expressivity

Generalization Optimization

Fundamental research topics of Deep
Learning

• Approximation properties of DNNs
• Generalization results of DNNs
• But: Results did not take into

account the optimization, i.e., the
training of the networks

 Cannot be used to improve estimators
in practice

Should it not be the aim of statistical theory to not only understand but also
improve estimators in practice?
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Barron’s result

Define

Fn =


d
√

ne∑
k=1

αk · σ(βk · x + γk) : αk , γk ∈ R, βk ∈ Rd ,
Kn∑

k=0
|αk | ≤ Ln

 ,
where σ(u) = 1/(1 + exp(−u)) (u ∈ R) and let

mn(·) = argminf ∈Fn

1
n

n∑
i=1
|Yi − f (Xi )|2

be the corresponding least squares estimator.

Then

E
∫
|mn(x)−m(x)|2 PX(dx) ≤ c1 · (log n)5 · 1√

n
holds whenever the Fourier transform of the regression function has a finite first
moment.
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An estimator learned by gradient descent

We study the rate of convergence of a neural network estimators learned by gradient
descent

We need the following definitions:

σ(u) = 1/(1 + exp(−u)) (u ∈ R),

fnet,w(x) = α0 +
Kn∑
j=1

αj · σ(βT
j · x + γj)

where
w = (α0, α1, . . . , αKn , β1, . . . , βKn , γ1, . . . , γKn ),

and

F (w) = 1
n

n∑
i=1
|Yi − fnet,w(Xi )|2 + c2

Kn
·

Kn∑
k=0

α2
k .
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An estimator learned by gradient descent

• Initial weights:

w(0) = (α0(0), . . . , αKn (0), β1(0), . . . , βKn (0), γ1(0), . . . , γKn (0))

such that
α0(0) = α1(0) = · · · = αKn (0) = 0

and β1(0), . . . , βKn (0), γ1(0), . . . , γKn (0) independently randomly chosen such that
• βk(0) are uniformly distributed on a sphere with radius BN

• γj(0) are uniformly distributed on [−Bn ·
√

d ,Bn ·
√

d ].

• tn gradient descent steps:

w(t + 1) = w(t)− λn · ∇wF (w(t)) (t = 0, . . . , tn − 1).
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An estimator learned by gradient descent

• The estimator:

m̃n(·) = fnet,w(tn)(·) and mn(x) = Tc1·log nm̃n(x)

where TLz = max{min{z , L},−L} for z ∈ R and L ≥ 0.

• Main assumption: Fourier transform

Fm(ω) = 1
(2π)d/2 ·

∫
Rd

e−i ·ωT x ·m(x) dx

of the regression function satisfies

|Fm(ω)| ≤ c2
‖ω‖d+1+ε (ω ∈ Rd \ {0}) (2)

for some ε ∈ (0, 1] and some c2 > 0.
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An estimator learned by gradient descent

Theorem: If

• Fourier transform Fm satisfies (2)
• number of neurons Kn ≈

√
n

• Bn ≈ n5/2

• learning rate λn ≈ n−1.25

• gradient descent steps tn ≈ n1.75

Then
E
∫
|mn(x)−m(x)|2PX (dx) ≤ c2 · (log n)4 · 1√

n .
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On the proof

Set K̃n = dKn/(log n)4e. In the proof we show that with high probability

w(0) = (α0(0), . . . , αKn (0), β1(0), . . . , βKn (0), γ1(0), . . . , γKn (0))

is chosen such that
∫ ∣∣∣∣∣∣

K̃n∑
k=1

ᾱik · σ(βik (0)T · x + γik (0))−m(x)

∣∣∣∣∣∣
2

PX(dx)

is small for some (random) 1 ≤ i1 < · · · < iK̃n
and some (random) ᾱi1 , . . . , ᾱiK̃n

∈ R,

and that during the gradient descent the inner weights

βi1(0), γi1(0), . . . , βiK̃n
(0), γiK̃n

(0)

change only slightly.
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A lower bound

Under the above assumption a much better rate of convergence than 1/√n is not
possible:

Theorem: Let D be the class of all distributions of (X,Y ) which satisfy the
assumptions of the above Theorem. Then

inf
m̂n

sup
(X ,Y )∈D

E
∫
|m̂n(x)−m(x)|2PX(dx) ≥ c1 · n−

1
2−

1
d+1 ,

where the infimum is taken with respect to all estimates m̂n, i.e., all measurable
functions of the data.
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A simplified estimator

Insights in our statistical analysis help us simplify our estimate as follows:

Choose

• β1, . . . , βKn , γ1, . . . , γKn i.i.d.
• β1, . . . , βKn uniformly distributed on {x ∈ Rd : ‖x‖ = Bn}
• γ1, . . . , γKn uniformly distributed on [−Bn ·

√
d ,Bn ·

√
d ]

Denote the linear function space by

Fn =
{

f : Rd → R : f (x) = α0 +
Kn∑
j=1

αj · σ
(
βT

j · x + γj
)

for some α0, . . . , αKn ∈ R
}
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A simplified estimator

Choose the estimate according to the principle of least squares

m̃n = arg min
f ∈Fn

1
n

n∑
i=1
|Yi − f (Xi )|2.

Truncate it on some level βn = c1 · log n

mn = Tβn m̃n,

where TLz = max{min{z , L},−L} for z ∈ R and L ≥ 0.
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A simplified estimator

Theorem: If

• the Fourier transform Fm satisfies (2)
• number of summands Kn ≈

√
n

• Bn = 1√
d · (log n)2 · Kn · n2.

Then

E
∫
|mn(x)−m(x)|2PX(dx) ≤ c1 · (log n)4 · 1√

n .
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A simplified estimator

• Same rate as for the neural network estimate learned by gradient descent, but
much faster in computation

• Ability to learn a good hierarchical representation of the data is considered as a
key factor of Deep Learning
 So-called representation learning (see Goodfellow et al. (2016))
Suprisingly: In our estimate it is much more a representation guessing
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Summary

• In the analysis all three aspects of Deep
Learning, namely approximation, generalization
and optimization, were considered
simultaneously

• Statistical insights helped us to construct a
simplified estimate, which can be much faster
computed in applications

 Much faster in applications

Approximation

Generalization Optimization
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Generalization to multiple layers

Three competing aspects – or maybe not?

 Not covered by classical statistical learning theory

Why do overparametrized networks learn?
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Photos everywhere
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Videos on Youtube

https://everysecond.io/youtube

Every second of clock time > 8 hours of videos are uploaded
on Youtube⇔ 720.000 hours (≈ 82.2 years) of videos every
day
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Deep Learning in image classification

Enable machines to view the world as humans do

• Majority of bits flying around the internet are visual data

• Human beings have no chance to filter/understand/watch
this

• Important: Find algorithms that utilize and understand this
data

• Deep convolutional neural networks (CNNs) have achieved a
huge breakthrough in image recognition

• Facebook’s photo tagging
• Self-driving cars
• . . .

• Famous networks based on CNNs: LeNet, AlexNet,
GoogLeNet, . . . 86



A challenging image for computers to recognize

Source: Mumford (1996)
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Why CNNs over feedforward networks?

• Image ⇔ Matrix of pixels
• Why not just flatten the image and

feed it into a feedforward network?
↪→ Not able to capture spatial and

temporal dependencies
↪→ Solution: Application of

filters/convolutional layers to detect
features, reduce parameters and reuse
the weight matrix https://rubikscode.net/2018/02/26/

introduction-to-convolutional-neural-networks/
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Convolutional layer

• Convolution: Slide over the image spatially, computing dot products
• Objective: Extract high-level features
• Each convolutional layer contains a series of filters
• Finally an activation function is applied to these filters

Source:https://towardsdatascience.com/

an-introduction-to-convolutional-neural-networks-eb0b60b58fd7

Source:http://cs231n.stanford.edu/slides/2017/

cs231n_2017_lecture6.pdf
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Convolutional layer

More mathematically:

• Convolutional layer ` ∈ {1, . . . , L}
consists of k` ∈ N feature maps

• Convolution in layer ` is performed by
using a window of values of layer `− 1
of size M` ∈ {1, . . . , d}

• Each neuron of a feature map is
connected to a region of neighboring
neurons in the previous layer

Illustration of a convolutional layer

The s-th feature map (s ∈ {1, . . . , k`}) of the `-th hidden layer (` ∈ {1, . . . , L}) can be
described by

o`s = σ(w`
s ? o`−1

s ) with o0
s = x.
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Pooling layers

• Here: Only in the last step a max-pooling layer is applied

fw(x) = (|oL
1|∞, . . . , |oL

kL |∞).

↪→ class of convolutional neural network is defined by FCNN
σ,L,k,M
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Convolutional neural networks (CNNs)

Final network class:
Combination of convolutional and fully-connected network:

Fn =
{

g ◦ f : f ∈ FCNN
σ,L(1),k(1),M, g ∈ Fσ(L(2), k(2)),

}
with parameters

L = (L(1), L(2)), k(1) =
(

k(1)
1 , . . . , k(1)

L(1)

)
,

k(2) =
(

k(2)
1 , . . . , k(2)

L(2)

)
, M = (M1, . . . ,ML(1))

.
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Convolutional neural networks in image classification

Why is Deep Learning so successful in image classification?

Source: Krizhevsky et al. (2012)
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Image classification

• Task of categorizing images into one of several predefined classes
• Let

Dn = {(X,Y ), (X1,Y1), . . . , (Xn,Yn)}

i.i.d. with values in [0, 1]d×d × {−1, 1}
• X is image from class Y , which contains at position (i , j) the grey scale value of

the pixel of the image at the corresponding position
• Aim: Predict Y given X
• Classifier: Function f : [0, 1]d×d → R, where we predict +1 for f (x) ≥ 0 and −1

when f (x) < 0
• P is distribution of (X,Y ) and

η(x) = P{Y = 1|X = x} (x ∈ [0, 1]d×d )

the so-called aposteriori probability 94



Image classification

• Prediction error: P(Yf (X) ≤ 0)
• Bayes’ rule

f ∗(x) =

1, if η(x) > 1
2

−1, elsewhere

minimizes the prediction error
• But: Distribution of (X,Y ) is unknown
• Estimate a classifier Ĉn such that its misclassification risk

P{Ĉn(X) 6= Y |Dn}

is small

95



The CNN-classifier

• Let

Fn =
{

g ◦ f : f ∈ FCNN
L(1)

n ,r (1),M
, g ∈ F(L(2)

n , r (2)), ‖g ◦ f ‖∞ ≤ βn

}
• Use Ĉn(x) = sgn(f̂n(x)) with

f̂n = arg min
f ∈Fn

1
n

n∑
i=1

log(1 + exp(−Yi · f (Xi ))

as classifier
• Analyze its performance by

E
{

P{Ĉn(X) 6= Y |Dn} − min
f :[0,1]d×d→{−1,1}

P{f (X) 6= Y }
}

= P{Ĉn(X) 6= Y } − P{f ∗(X) 6= Y }
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Assumption on the aposteriori probability

• For nontrivial results: Restrict the class of distributions
• Here: Assume that η(x) = P{Y = 1|X = x} satisfies a (p,C)-smooth hierarchical

max-pooling model
• Based on the following observation:

• Human beings decide if an object is on an image by scanning subparts of the image
• For each subpart human estimates a probability, that the searched object is on it
• Probability that the object is on the image ⇔ Maximum of probabilities for each

subpart of the image
↪→ Max-pooling model
• Probability that a subpart contains object ⇔ Parts of the object are identifiable
↪→ Hierarchical structure
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Main result

Theorem: If

• η satisfies a (p,C)-smooth hierarchical max-pooling model of level l
• number of hidden layers L(1)

n � n2/(2p+4) and L(2)
n � n1/4

• size of the filters Ms = 2π(s) with π(s) = ∑l
i=1 1{s≥i+

∑l−1
r=l−i+1 4r ·dc1·n2p/(2p+4)e}

• number of neurons/feature maps is constant.

We have

P{Y 6= Ĉn(X)} − P{Y 6= f ∗(X)} ≤ c2 · (log n) · n−min{p/(4p+8),1/8}.
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Main result

Theorem: If, in addition,

P
{

X :
∣∣∣∣log η(X)

1− η(X)

∣∣∣∣ > 1
2 · log n

}
≥ 1− 1√

n

holds, the rate improves to

P{Y 6= Ĉn(X)} − P{Y 6= f ∗(X)} ≤ c3 · (log n)2 · n−min{p/(2p+4),1/4}.
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Remarks

• The rates does not depend on the input dimension d of the image and CNNs are
able to circumvent the curse of dimensionality under proper assumptions on the
aposteriori probabilities

• The second assumption requires that with high probability the aposteriori
probability is very close to zero or one
↪→ Realistic as human beings have often not much doubt about the class of
objects
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Another perspective on image classification

In our setting: Each pixel is considered as a variable and we learn a d-dimensional
function  Problem is considerably harder if d increases

Another perspective: View image as a two-dimensional object
 Increasing the number of pixels leads to higher image resolution and therefore a
better performance

 Stay tuned: New article to follow shortly (joint work with Johannes Schmidt-Hieber)
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Outlook

Many open problems remain...

• Multi-class classification
• Properties of energy landscapes ↪→ Relation between local and global minima,

saddlepoints...
• Complex network structures: CNNs, RNNs,...
• Analysis of approximation, generalization and optimization, simultaneously for all

kind of network structures

Thank you for your attention!
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