Introduction to random fields and scale invariance:
Lecture IV

Hermine Biermé

Université

dePoitiers Mathématiaues

5th april 2016, Stochastic Geometry conference, Nantes



Outlines

Random fields and scale invariance
Sample paths properties
Simulation and estimation

Geometric construction and applications



Lecture 4 :

Geometric construction

Random measures
Chentsov's representation : Lévy and Takenaka constructions
Fractional Poisson field

Application in medical imaging analysis

Osteoporosis and bone radiographs
Mammograms and density analysis



Random Measures

Let (2, .A,P) be a probability space. Let i be a o-finite nonnegative
measure on (R*, B(R¥)) with k > 1 and set

£, ={A € B(R") s.t. u(A) < +oo}.
A random measure M is a stochastic process M = {M(A); A€ E,}
satisfying
m Forall Ae &, M(A) is a real random variable ;

m For Ay,..., A, € £, disjoint sets the r.v. M(A1),..., M(A,) are
independant ;

m For (A,)nen disjoint sets s.t. UNA,, €&
ne

M( U A,) =Y M(A,) as.

neN
neN



Poisson random measures

A Poisson random mesure with intensty p is a r.m. N such that

N(A) ~ P(u(A)).

N=Y o,

where ® = (T;);c; is a countable family of random variables with values
in R¥ called Poisson point process on R¥ with intensity .

In this case

Exple : k =1, ;1 = ALebesgue, (N([0, t])),~o Poisson process of intensity
A and @ corresponds to the jumps of the Poisson process.



Gaussian random measures

A Gaussian random measure with intensity p is a r.m. W such that

W(A) ~ N(0, u(A))-
In this case, for all A,B € &,,

Cov (W(A), W(B)) W(AN B)

1

5 (1(A) + u(B) — n(AAB))

Rk : true as soon as M is of second order st Var(M(A)) = n(A) and so
for N Poisson r.m. of intensity u.

Exple : k =1, u = ALebesgue, B = (W([0, t])),~, is a Brownian motion
with diffusion \. B

Conversely one can define W(A) = [."> 14(t)dB;.



Central limit theorem in high intensity

If NO ... N are independant Poisson r.m. with the same intenity s
n

Z N is a Poisson random measure with intensity np.

i=1
By CLT, we deduce that if N, is a Poisson r.m. with intensity Ay and W
is a Gaussian r.m. with intensity p,

<,\—1/2 (NA(A) — Au(A))>A€£M A_%OO (W(A)4ee, -



Donsker invariance principle

Let (Xj);ez« be an iid sequence E(X;) =0 and Var(X;) = 1.
Let A C B(R¥) and define the set-indexed process for A € A,

S(A) =X =>_ X5(A).

By CLT, for W a Gaussian r.m. with intensity Leb, we get

(m*2s(na)) 5 (W(ADaea

AeA n—+oo

Alexander and Pyke [86] obtained invariance principle considering the
smoothed version

k
S(A) =Y Leb(AN R)X; with R; = [ Lji.Ji + 11.

jezk i=1

and A C {B € B(R¥); Leb(9B) = 0}.



Self-similar measures

Let 11 be a o-finite nonnegative measure on (R, B(R)).
Ass. 1: 33 > 0 s.t. VA with p(A) < +oo,n € N*, u(nA) = n®u(A)
We define

k
S(A) = >~ (AN R)M2X; with Ry = T ljr.ji + 11

JEZK i=1

Assuming X; ~ N(0,1), n=7/25(nA) ~ N(0, 1(A)), since by Ass. 1,

k
w(A) =n=" Z u(nAN R;) with R = HUi,ji +1].
JEZK i=1

Ass 2 : ;i << Leb and A C {A € B(R¥); u(A) < oo and Leb(9A) = 0}
Then, for W a Gaussian r.m. with intensity

(n_ﬁ/zs(nA)) Ac A n—%oo (W(A))AGA ’



Extension to the iid case- Lindeberg's type condition

Ass 3 : Let 7(j) = miny<;<x([ji|), we assume that

(a) limsup p(R;) < +oo;
w(j)—+oo
(b) Ve € Z* with le] = 1, ju(Rive) = u(R) + 0 (u(R)),
m(j)—+oo
Under Ass 1-3, Lindeberg's type condition (CLT without id) is satisfied,
for (X;)jez« iid with E(X;) = 0 and Var(X;) = 1,

(n7725(0A)) 0 (W(AD s

Extension under a weak dependence assumption (2-stability Wu [05]) to

the case where (X;);cz« is stationary sequence.

[HB, O. Durieu, Trans. AMS (2014)]



Chentsov's type representation [Samorodnitsky, Tagqu, (1994)]

Let M be a r.m. associated with 2 on R¥ and V = {V,; x € R9} for
d > 1, with p(V,) < co. The random field

X = M(V,), x € R?
is called Chentsov random field associated with M and V. If M is of
second order s.t. Var(M(A)) = u(A) then
Var(X, — X)) = p(VkAV,).
X has stationary increments = p(ViAV,) = p(ViyAVp);

X is isotropic = p(Vr«) = p(Vx), V vectorial rotation R;
X is H-self-similar = p(Ve) = 2" pu(Vy), Ve > 0.



Chentsov's type representation

If X is H self-similar with stationary increments then H € [0,1/2]. If
moreover X is isotropic

= w(ViAVy) = Cllx — y|*", t,s e RY

Lévy Chentsov's construction (1948 & 1957) for H =1/2 :
= xRt V=B (3 ) < {zer -5 < B,
m p(dz) = ||z||~9tdz, 2H = 1-self-similar on R¥.

In polar coordinates V;, = {(r,#) e Ry x S971 : 0 <r<6-x}



Lévy Chentsov's construction for H = 1/2

Then,
1 Cd
Vi) = l,cpndrdd = = 0-x|df = — .
w0 = [ [ tocoaran =3 [ 10510 =5 1x)
Moreover,
w(VanVy) = / / 1{g.y<r<g.xydrdt
sd-1 Jr,

= / 0'(Xfy)d0+/ 0 - xdéb.
0<0-y<0-x 0-y<0<6-x

Similarly, by change of variable,

V0V = [ eyl [ (6-y)ds
0-y<6-x<0 0-y<0<6-x
so that

1

C,
WVAK) =5 [ 18- p)ldo = Flx -yl
Sd*l



Takenaka's construction (1987) for H € (0,1/2)

B Vx eRYCo={(z,r) eRIxR: |z—x| < r} and Vi = CAC,.
m upy(dz, dr) = r?"=9711,_odzdr 2H-self-similar on R x R.

1
Cx nes — _ 2H—d __ 2H—d d
mlCn1C) = g [ () e

Ch,dlIx[1*" = pr(Co N C5).

Rk : VLAV, = C.ACy, pn(CxAC,) = pr(Cx—yACo) but pp(Cy) = +oo.



Invariance principle

If (Xj)jeza+ is a centered stationary sequence 2-stable, then

ST w(nVin R)Y2X; (o Wr(Vi))epe

jezdtt xERd
with
m o= ZjeZd“ COV(XQ,XJ‘)
m W)y is a Gaussian r.m. on RY x R of intensity sy

B (WhH(Vi))tere = (\/ Chi,a Br( X))xeRd

where By is the Levy Fractional Brownian field characterized by

Cov(Br(x), Bu(y)) = (||X||2H + Iy IPH = llx = yI27),



Poisson case

When N, 4 is a Poisson r.m. on RY x R with intensity Ay for A > 0,
Ny #(CxACy) = Ny 1(C NC§) + Ny 1(CE N Co)
We define the centered fractional Poisson field on R? by :
Fxu(x) = Nyu(CenCg) — Ny u(Cs NCo)

- / (Logen (%) — La(e)(0)) Nos(dz, dr).
RIxR

Then (Fx H(X))xere is centered, with stationary increments, isotropic
with covariance

AChda
Cov(Fan(x), Fanly)) = —== (P + 1y 177 = llx = [P -

This field is not self-similar but

(Fai(e))xers = (Faean 1(x))xeres Ve > 0.



Properties

m Finite-dimensional distributions of (Fy y(x)).cre are characterized
by (d + 1)-dimensional ones [Sato,1991].

| CLT ( 1/2F>\ H(X) XeRd fdd \/ CH dBH )XERd

m For H vector subspace of dimension k < d
fdd , — H k
(F)\,H(XO + t) F)\ H(XO))tEHk (FCH,dC,.ziNH(t))teRk’ with F¥ a

fractional Poisson field defined on R,



The case of dimension 1

Sample paths Poisson (top) vs Gaussian (bottom)
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Quadratic Variations

For u € N*, quadratic variations of Fy y with step v :

Vo) = 3 (Funk + 0) — Frn(k))
k=0

and Vf,n(u) quadratic variations of By y with step u for By y a fBm with
same covariance as Fy y.

m E(V) ,(u)) = Var(Fau(u)) = A Cuao?H = E(Vy ,(u));
m [HB, Demichel, Estrade, ECP 2013] 3 v; ,(H) > 0 and v» ,(H) > 0 tq

Var (V;n(u)) o ((H) 20w (H))

m [Breuer, Major, 1983]

Var(V;n(u)> ~  2X2v, (H)n Y,



Estimation on a fixed interval

For u € N*, we replace V/\F’n(u) by :

n—1 2
1 k+u k
W;,n(u) = Z <F>\,H < = ) — Fxn (F)) )
k=0

F

Then E(W, (1)) = n 2HE(V, (1)) = A Cuau?Pn=2H = E(W,, ,(u)).

L] W/\Fm(u) g V;n*ZH,n(u) and

.
Var (}EWA,H(U) ) Vl,U(H) n—(1—2H)

(W, (W) ) noe X Gy
] W)in(u) 4 p2H V;n(u) and

WB
Var (E () ) 2v,u(H) 1

(WS () ) ntoe CFyuP



Estimation on a fixed interval

.
Al (u,v) = Liog [ Y2al) ) /1og (8) for u # v
n 2 w. v

-~

F . . 1
H,(u,v) s H as. if v > (1 —2H)

Gaussian case [Istas, Lang, 1997] for all H € (0,1), ﬁ:(u, v) — Has,

n—+o00o
with asymptotic normality if H € (0,3/4).
e /ﬂ\
o ¢ /. \»\é
AN /
/ \» - //9/*‘
/ wf .
C e S Y .
Bias H — Ha(u, v) standard deviation

Figure: fPp (=) and fBm (--) with n =2 A =1, (u,v) = (1,2) (o),
(u,v) = (1,4) (*) on 100 realizations.



Application : fractal analysis in medical imaging

Goal : use fractal analysis to characterized self-similarity with a fractal

index H € (0,1) and extract some helpfull informations for diagnosis
Numerous methods and studies! [Lopes and Betrouni, 2009]

Quadratic variations method : image (/(k1, k2))o<k;, ka<n—1

m Extract a line from the image (Lg(k))o<k<n,—1 for 6 a direction.

ng—l1—u

Y (Lolk+u) = Lo(K))*.

k=0

1
ng — u

m Compute vy(uv) =

m Average along several lines of the same direction v5(u) and
compute Hy(u,v) = Llog (gg;;) /log (4).




Example : Bone Trabecular Micro-architecture

Data set : 211 numeric radiographs high-resolution of calcaneum (bone
heel) standardized acquisition ROl 400 x 400 [Lespessailles et al., 2007] :

m Validation of self-similarity using power spectrum and variograms
methods for calcaneous bone [Benhamou et al, 94], and cancellous
bone [Caldwell et al, 94]

m Discrimination of osteoporotic cases [Benhamou et al, 2001]

Hmean = 0.679 £ 0.053  Hpean = 0.696 £ 0.030
(osteoporotic) (control)



Example : Bone Trabecular Micro-architecture

Implementation issues

Black = out of lattice.
Precision of
red = 1, green = /2

m Estimation on oriented lines without interpolation.
m Precision is not the same in all directions.

m Accuracy of orientation analysis <+ Precision of the image.



Example : Bone Trabecular Micro-architecture

Bone radiographs (211 cases) : log-log plot of mean quadratic variations

[Benhamou, HB, Richard, 2009]



Example : Bone Trabecular Micro-architecture

Comparison of the index in different directions

H@ 'S H91

a4

ng V; H91 H x Hg
1:6; =(1,0) (horizontal), 2 : 6, = ( 1) (vertical),
3:63=(1,1)/v/2 (diagonal), 4 : 94_( 1,1)/v/2 (diagonal).




Example : Mammograms

dense breast tissue  fatty breast tissue

m Validation of self-similarity using a power spectrum method [Heine et
al, 2002]
H € [0.33,0.42].

m [HB, Richard, 2010] using variogram method on 58 cases with 2
mammograms ROI 512 x 512

H =0.314+0.05

m Discrimination of dense and fatty breast tissue using a wavelet
method (WTMM) [Kestener et al, 2001]

H € [0.55,0.75] H € [0.2,0.35]
(dense tissues )  (fatty tissues)



Spot detection on mammograms

Simulated spot with identical contrast on a mammogram [Grosjean, Moisan, 2009]

Link between size and contrast for spot detection
Burgess’ law [Burgess et al, 2001]

1t
! ,._-f;""’ N

mammography
backgrounds,
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"~.._white noise

Amplitude (d'=2)

e
H
S

e
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&

05 1 2 s 10 20
Lesion size (mm)



Simulated spot with identical contrast on simulated fields 512 x 512

White noise
H=0.3
H=0.7

radius 5 radius 10 radius 50
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