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Report on joint work with Sheel Ganatra

Proof of a conjecture (C., Schwarz, Cielebak - Latchev, Eliashberg)
from 2003 relating two 2D topological field theories:

The string topology of a closed oriented manifold M,

The Floer - symplectic field theory of its cotangent bundle
T ∗M.

Ralph L. Cohen CY categories, string topology, and Floer field theory



What is a 2D (open-closed) Topological Field Theory (TFT)?

Axioms given by Atiyah, Segal, Witten additions by Moore-Segal,
Kontsevich, Lurie

Topologically, the objects of study in such a field theory F are
compact, oriented one-manifolds, c , together with a labeling of the
boundary endpoints by elements of a set, D (= “D-branes” in
physical examples). It also studies 2D cobordisms between them.
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An “open-closed” cobordism Σc1,c2 between two objects c1 and c2

is an oriented surface Σ, whose boundary is partitioned into three
parts: the incoming boundary, ∂inΣ which is identified with c1, the
outgoing boundary ∂outΣ which is identified with c2, and the
remaining part of the boundary, referred to as the “free part”,
∂freeΣ
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A TFT F assigns to an object c an algebraic object like a vector
space (Hilbert) or a chain complex F(c).

If Σc1,c2 is an open-closed cobordism between objects c1 and c2,
F(Σc1,c2) is a linear operator

F(Σc1,c2) : F(c1)→ F(c2).
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Such a field theory must monoidal and respect gluing of surfaces:

F(c1 t c2) ' F(c1)⊗F(c2).
Given a glued surface Σ1#Σ2, then

F(Σ1#Σ2) = F(Σ1) ◦ F(Σ2).

p circles
q circles

r circles
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Examples
1. The string topology of a closed, oriented manifold M, SM
(Chas-Sullivan, Cohen-Jones, Cohen-Godin, Godin, Kupers)

D = {N ⊂ M : N is closed, oriented, submanifold}
SM(S1) = H∗(LM).

SM(IN1
N2

) = H∗(PM(N1,N2)) where PM(N1,N2) = {γ :
[0, 1]→ M, such that γ(0) ∈ N1, γ(1) ∈ N2}.
For a general one-manifold with labels,
SM(c) = H∗(Map(c ,M; ∂)).

For a cobordism Σ from c1 to c2, consider the restrictions
Map(Σ,M; ∂) to the incoming and outgoing boundaries,

Map(c1,M; ∂)
ρin←− Map(Σ,M; ∂)

ρout−−→ Map(c2,M; ∂).
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SM(Σ) : H∗(Map(c1,M; ∂))
ρ!
in−→ H∗(Map(Σ,M; ∂))

(ρout)∗−−−−→ H∗(Map(c2,M; ∂)).

Defining ρ!
in rigorously involves intersection theory on spaces of

paths and loops in M.
When c1 = p circles, c2 = q circles, and Σ is a cobordism.

p circles
q circles
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Yields operations

SM(Σ) : H∗(LM)⊗p → H∗(LM)⊗q

More generally,

SM(Σ) : H∗(M(Σ))⊗ H∗(LM)⊗p → H∗(LM)⊗q

M(Σ) = moduli space of curves diffeo to Σ ' BDiff (Σ; ∂).
When Σ is the “pair of pants”

one gets the Chas-Sullivan closed string product,

Hq(LM)⊗ Hr (LM)→ Hq+r−n(LM).
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Example 2. The Floer field theory of the cotangent bundle. T ∗M.
Let p : T ∗M → M be the cotangent bundle. Recall that T ∗M has
a canonical symplectic structure.
For x ∈ M, u : TxM → R, define

α(x , u) : T(x ,u)(T ∗M)
Dp−−→ TxM

u−→ R

α ∈ Ω1(T ∗M) is the “Liouville 1-form”.

dα = ω ∈ Ω2(T ∗M) is symplectic.

If N ⊂ M is a submanifold, then its conormal bundle
cn(N) ⊂ T ∗M is a Lagrangian submanifold. (A Lagrangian
submanifold L of a symplectic manifold Q is defined by the
property that ω(u, v) = 0 for all u, v ∈ TxL.)
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Given an exact symplectic manifold (N2n, ω) with ω = dη, the
Symplectic Floer homology, SH∗(N, ω). is defined by doing a type
of infinite dimensional Morse theory on the free loop space, LN,
using the symplectic action

A : LN → R

γ →
∫
S1

γ∗(η)

(Note if (N, ω) is not exact one can define A on the universal
cover of LN.)
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After perturbing if necessary, using a periodic time-dependent
Hamiltonian, and choosing a compatible almost complex structure
J, (which, together with the symplectic form defines a Riemannian
metric) one gets a Morse-type chain complex (the “Floer
complex”)

· · ·
∂q+1−−−→ Cq

∂q−→ Cq−1 → · · ·

The boundary maps are defined by counting “J-pseudoholomorphic
cylinders”

The resulting homology is SH∗(N, ω).
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Now restrict to the case (N, ω) = (T ∗M, ω).

Theorem

(Viterbo, Abbondandolo-Schwarz, Salamon-Weber) If M is Spin,
then

SH∗(T ∗M, ω) ∼= H∗(LM).

(If M is not spin, one must use twisted coefficients.)

Ralph L. Cohen CY categories, string topology, and Floer field theory



       2).  Floer symplectic field theory of T*M.   
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                  Defined by counting J-holomorphic curves
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Theorem

(C., Ganatra) Given any field k, there are 2D open-closed, positive
boundary, topological field theories, SM and SympT∗M taking
values in Chain Complexes over k, such that

1 When one passes to homology they realize the above theories

2 There is a natural equivalence of chain complex valued field
theories, Φ : SympT∗M

'−→ SM .

Idea:
Use recent methods of classifying TFT’s:

Cobordism hypothesis of Lurie

Costello, Kontsevich-Vlassopolous
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Roughly: 2D “positive boundary” oriented open-closed TFT’s are
classified by “Calabi-Yau (A)-∞ categories.”

So we show: The string topology category SM defined by
Blumberg, C., Teleman is Calabi-Yau as is the “Wrapped Fukaya
category” W(T ∗M) defined by Seidel, Fukaya (this part was
proved by Ganatra in his thesis) and that

SM ' W(T ∗M)

as CY A∞-categories.
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The notion of a Calabi-Yau category encodes the properties
possessed by the category of coherent sheaves Coh(X ) on a
Calabi-Yau variety X . In this case the corresponding field theory is
the “B-model”.

These categories are all enriched over chain complexes. Such a
category with only one object is an DGA, so we describe these
notions in this setting.
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Let A be an (A∞) algebra over a field k . Consider its Hochschild
chains CH∗(A) ' A⊗L

A⊗Aop A. It is an (A∞) module over
E (∆) ' C∗(S1). The cyclic chains can be viewed as the homotopy
orbits CC∗(A) ' CH∗(A)⊗L

E(∆) k .

Definition

(Kontsevich and coauthors, Costello, Lurie) Suppose that A is
compact (perfect as a k-module). A compact Calabi-Yau (cCY)
structure is a map

τ̄ : CC∗(A)→ k

such that the composition

τ : A⊗L
A⊗Aop A ' CH∗(A)→ CC∗(A)

τ̄−→ k induces a pairing

A⊗ A→ k

that is homotopy nondegenerate in the sense that the adjoint
A→ A∗ is an equivalence of A-bimodules. “self duality”
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There is a related notion called a smooth Calabi category or sCY -
category.
Given an A∞-algebra or category A, let CC−∗ (A) be the “negative
cyclic chains”. These chains can be viewed as the homotopy fixed
points:

CC−∗ (A) ' RhomE(∆)(k,CH∗(A))

An A∞ algebra A is said to be “smooth” if is perfect as an
A-bimodule. That is, it is perfect as a left module over
A⊗ Aop.

Let A! be the “bimodule dual” of A:

A! = RhomA⊗Aop(A,A⊗ Aop)
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Definition

A sCY -structure (“smooth Calabi-Yau”) on a smooth A∞-algebra
A is an element

σ̄ ∈ CC−∗ (A)

So that if σ ∈ CH∗(A) is the image under the natural map
CC−∗ (A)→ CH∗(A), then

∩σ : A! → A

RhomA⊗Aop(A,A⊗ Aop)→ A⊗L
A⊗Aop A⊗ Aop ' A (1)

is an equivalence of A-bimodules. “self duality as A-bimodules”
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Theorem

(Kontsevich-Soibelman, Costello, Lurie) If C is a category with
either a cCY category or a sCY structure, C gives rise to a positive
boundary open-closed field theory FC with FC(S1) ' CH∗(C). The
boundary values (“D-branes”) of the field theory are D = Ob C.
The value of FC on the interval with endpoints labeled by λ1,
λ2 ∈ Ob C is given by MorC(λ1, λ2). The value of FC on the open
closed cobordism below is given by the higher composition laws in
C.
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Theorem

(C. - Ganatra) The string topology category SM and the wrapped
Fukaya category W(T ∗M) both have naturally occurring
sCY -structures whose associated chain complex-valued field
theories yield String topology and the Floer-symplectic field
theories respectively (on the level of homology). Furthermore there

is a natural equivalence W(T ∗M)
'−→ SM that preserves these

sCY -structures.
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Note:

SM is, roughly speaking, the category whose objects are closed,
oriented, connected submanifolds N ⊂ M, and whose morphisms
from N1 to N2 is equivalent to C∗(PM(N1,N2)). Composition is
equivalent to the open string product (Sullivan).

To make this rigorous, Blumberg, C., and Teleman constructed SM
as a full subcategory of the category of perfect modules over
C∗(ΩM), generated by C∗(PM(pt,N)). They proved that

RhomC∗(ΩM)(C∗(PM(pt,N1)),C∗(PM(pt,N2)))

' C∗(PM(N1, pt))⊗L
C∗(ΩM) C∗(PM(pt,N2))

' C∗(PM(N1,N2))

and that composition in these derived homomorphism spaces
corresponds to the string product, defined using the
Pontrjagin-Thom construction.
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Since the endomorphisms of a point
EndSM (pt) = RhomC∗(ΩM)(C∗(ΩM),C∗(ΩM)) ' C∗(ΩM), then
clearly C∗(ΩM) generates SM .

Abouzaid (2011) proved there is an equivalence of A∞-algebras
EndW(T∗M)(T ∗x M) ' C∗(ΩM) and that T ∗x M generates W(T ∗M)
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Idea of proof Why is there a sCY structure on SM?

Lemma

If C1 ⊂ C2 generates (i.e the thick subcategory generated by C1 is
C2), and if both C1 and C2 are smooth, then C1 is sCY if and only
if C2 is sCY .
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Theorem

If M is a closed, oriented n-manifold, the C∗(ΩM) is sCY .

Note: C∗(ΩM) = EndSM (point). So by the lemma, this would
prove that SM is sCY .

Sketch of proof. Recall Goodwillie proved that

CH∗(C∗(ΩM)) ' C∗(LM).

Also observe

LMhS1
= MapS1(ES1, LM) = MapS1(ES1 × S1,M) ' M.
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So therefore there is a chain map

C∗(M) ' C∗(LMhS1
)→ RhomC∗(S1)(k,CH∗(C∗(ΩM)) (2)

= CC−∗ (C∗(ΩM)). (3)

Definition

We say that class σ̄ ∈ CC−∗ (C∗(ΩM)) is of fundamental type if its
homology class [σ̄] ∈ HC−(C∗(ΩM)) is the image of the
fundamental class

H∗(M)→ HC−∗ (C∗(ΩM)) (4)

[M]→ [σ̄]. (5)
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Claim. Any class σ̄ ∈ CC−∗ (C∗(ΩM)) of fundamental type defines
a sCY structure on C∗(ΩM).

Proof. Let A = C∗(ΩM). We need to show that if σ ∈ CH∗(A) is
the image of σ̄ ∈ CC−∗ (A), then

∩σ : RhomA⊗Aop(A,A⊗ Aop)→ A

is an equivalence.

That is, we need to show

∩[σ] : ExtA⊗Aop(A,P)→ TorA⊗Aop(A,P)

is an isomorphism, where P = A⊗ Aop.
Now since A = C∗(ΩM) is a connective Hopf algebra,
ExtA⊗Aop(A,P) ∼= ExtA(k ,Pad). (Similarly for Tor).
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Since A = C∗(ΩM) this becomes

∩[σ] : H∗(M; Pad) = ExtC∗(ΩM)(k,Pad)→ TorC∗(ΩM)(k ,Pad)

= H∗(M,Pad)

(coefficients are twisted by modules over C∗(ΩM).)

Since σ̄ is of fundamental type, the fact that this is an
isomorphism is Poincaré duality with these twisted coefficients
(Dwyer-Greenlees-Iyengar).
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Ganatra proved that W(T ∗M) is sCY in his thesis. Moreover we
have a functor defined by a variant of a construction of
Abbondandolo and Schwarz,

AS :W(T ∗M)→ SM

which is seen to be an equivalence of categories by an argument of
Abouzaid. Now must check that the sCY -structures are preserved.
(Technically the most complicated.)
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There are two other features.

1 We say that an augmented DGA A is “strongly smooth” if A
is smooth and k is a perfect module over A (so in particular
TorA(k , k) is finite.) C∗(ΩM) is strongly smooth if M is
closed.

Theorem

Let A be a strongly smooth DGA over k. Suppose B is a DGA
that is Koszul dual to A. That is,

B ' RhomA(k , k) A ' RhomB(k , k).

They A is sCY if and only if B is cCY . Furthermore, their
associated field theories FA and FB are dual.

Note: Since A and B are Koszul dual, HH∗(A) ∼= HH∗(B)∗

(Jones-McCleary) (For THH this is due to J. Campbell.)

Example A = C∗(ΩM), B = C ∗M, M simply connected.
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Lurie’s cobordism hypothesis says that an extended TFT with
values in C (a symmetric monoidal (∞, 2)-category) are classified
by “Calabi-Yau objects” in C.

Conjecture 1. A is a cCY category in the sense of Kontsevich if
and only if A is a CY object in the sense of Lurie in the
(∞, 2)-category CAT = Categories, Functors, and Natural
Transformations.

2. A is a sCY category in the sense of Kontsevich if and only if A
is a CY object in the sense of Lurie in CAT op.

Caution: Need finiteness conditions!

This is a joint project with Ganatra and A. Blumberg.
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