Calabi-Yau categories, string topology, and Floer field theory

Ralph L. Cohen

Stanford University

Loop spaces in Geometry and Topology Nantes, France September, 2014

Report on joint work with Sheel Ganatra

Proof of a conjecture (C., Schwarz, Cielebak - Latchev, Eliashberg) from 2003 relating two 2D topological field theories:

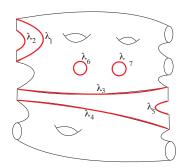
- The string topology of a closed oriented manifold M,
- The Floer symplectic field theory of its cotangent bundle T*M.

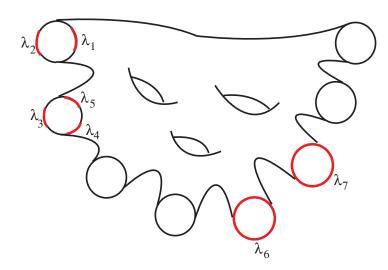
What is a 2D (open-closed) Topological Field Theory (TFT)?

Axioms given by Atiyah, Segal, Witten additions by Moore-Segal, Kontsevich, Lurie

Topologically, the objects of study in such a field theory \mathcal{F} are compact, oriented one-manifolds, c, together with a labeling of the boundary endpoints by elements of a set, \mathcal{D} (= "D-branes" in physical examples). It also studies 2D cobordisms between them.

An "open-closed" cobordism Σ_{c_1,c_2} between two objects c_1 and c_2 is an oriented surface Σ , whose boundary is partitioned into three parts: the incoming boundary, $\partial_{in}\Sigma$ which is identified with c_1 , the outgoing boundary $\partial_{out}\Sigma$ which is identified with c_2 , and the remaining part of the boundary, referred to as the "free part", $\partial_{free}\Sigma$





A TFT \mathcal{F} assigns to an object c an algebraic object like a vector space (Hilbert) or a chain complex $\mathcal{F}(c)$.

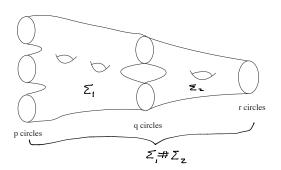
If Σ_{c_1,c_2} is an open-closed cobordism between objects c_1 and c_2 , $\mathcal{F}(\Sigma_{c_1,c_2})$ is a linear operator

$$\mathcal{F}(\Sigma_{c_1,c_2}):\mathcal{F}(c_1) o\mathcal{F}(c_2).$$

Such a field theory must monoidal and respect gluing of surfaces:

- $\bullet \ \mathcal{F}(c_1 \sqcup c_2) \simeq \mathcal{F}(c_1) \otimes \mathcal{F}(c_2).$
- Given a glued surface $\Sigma_1 \# \Sigma_2$, then

$$\mathcal{F}(\Sigma_1 \# \Sigma_2) = \mathcal{F}(\Sigma_1) \circ \mathcal{F}(\Sigma_2).$$



Examples

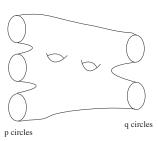
- 1. The string topology of a closed, oriented manifold M, S_M (Chas-Sullivan, Cohen-Jones, Cohen-Godin, Godin, Kupers)
 - $\mathcal{D} = \{ N \subset M : N \text{ is closed, oriented, submanifold} \}$
 - $S_M(S^1) = H_*(LM)$.
 - $S_M(I_{N_2}^{N_1}) = H_*(P_M(N_1, N_2))$ where $P_M(N_1, N_2) = \{\gamma : [0, 1] \to M$, such that $\gamma(0) \in N_1, \ \gamma(1) \in N_2\}$.
 - For a general one-manifold with labels, $S_M(c) = H_*(Map(c, M; \partial)).$
 - For a cobordism Σ from c_1 to c_2 , consider the restrictions $Map(\Sigma, M; \partial)$ to the incoming and outgoing boundaries,

$$Map(c_1, M; \partial) \stackrel{\rho_{in}}{\longleftarrow} Map(\Sigma, M; \partial) \stackrel{\rho_{out}}{\longrightarrow} Map(c_2, M; \partial).$$

$$\mathcal{S}_{M}(\Sigma): H_{*}(\mathit{Map}(c_{1},M;\partial)) \xrightarrow{\rho_{\mathit{in}}^{!}} H_{*}(\mathit{Map}(\Sigma,M;\partial)) \ \xrightarrow{(\rho_{\mathit{out}})_{*}} H_{*}(\mathit{Map}(c_{2},M;\partial)).$$

Defining $\rho_{in}^{!}$ rigorously involves intersection theory on spaces of paths and loops in M.

When $c_1 = p$ circles, $c_2 = q$ circles, and Σ is a cobordism.



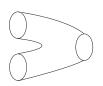
Yields operations

$$S_M(\Sigma): H_*(LM)^{\otimes p} \to H_*(LM)^{\otimes q}$$

More generally,

$$S_M(\Sigma): H_*(\mathcal{M}(\Sigma)) \otimes H_*(LM)^{\otimes p} \to H_*(LM)^{\otimes q}$$

 $\mathcal{M}(\Sigma)=$ moduli space of curves diffeo to $\Sigma\simeq BDiff(\Sigma;\partial).$ When Σ is the "pair of pants"



one gets the Chas-Sullivan closed string product,

$$H_q(LM) \otimes H_r(LM) \to H_{q+r-n}(LM).$$

Example 2. The Floer field theory of the cotangent bundle. T^*M .

Let $p: T^*M \to M$ be the cotangent bundle. Recall that T^*M has a canonical symplectic structure.

For $x \in M$, $u : T_xM \to \mathbb{R}$, define

$$\alpha(x, u): T_{(x, u)}(T^*M) \xrightarrow{Dp} T_x M \xrightarrow{u} \mathbb{R}$$

 $\alpha \in \Omega^1(T^*M)$ is the "Liouville 1-form".

 $d\alpha = \omega \in \Omega^2(T^*M)$ is symplectic.

If $N \subset M$ is a submanifold, then its conormal bundle $cn(N) \subset T^*M$ is a Lagrangian submanifold. (A Lagrangian submanifold L of a symplectic manifold Q is defined by the property that $\omega(u,v)=0$ for all $u,v\in T_xL$.)

Given an exact symplectic manifold (N^{2n},ω) with $\omega=d\eta$, the Symplectic Floer homology, $SH_*(N,\omega)$. is defined by doing a type of infinite dimensional Morse theory on the free loop space, LN, using the symplectic action

$$\mathcal{A}: \mathit{LN}
ightarrow \mathbb{R}$$
 $\gamma
ightarrow \int_{\mathcal{S}^1} \gamma^*(\eta)$

(Note if (N, ω) is not exact one can define \mathcal{A} on the universal cover of LN.)

After perturbing if necessary, using a periodic time-dependent Hamiltonian, and choosing a compatible almost complex structure J, (which, together with the symplectic form defines a Riemannian metric) one gets a Morse-type chain complex (the "Floer complex")

$$\cdots \xrightarrow{\partial_{q+1}} C_q \xrightarrow{\partial_q} C_{q-1} \rightarrow \cdots$$

The boundary maps are defined by counting "*J*-pseudoholomorphic cylinders"

The resulting homology is $SH_*(N, \omega)$.

Now restrict to the case $(N, \omega) = (T^*M, \omega)$.

Theorem

(Viterbo, Abbondandolo-Schwarz, Salamon-Weber) If M is Spin, then

$$SH_*(T^*M,\omega)\cong H_*(LM).$$

(If M is not spin, one must use twisted coefficients.)

2). Floer symplectic field theory of T*M. Symplectic

a. Symp,
$$(S') = SH_*(TM, \omega) \cong Voterbo} H_*LM$$

= "Lagrangian intersection Floer homology" defined by a chain complex generated by intersection points, $cn(N_1) \sim cn(N_2)$ (if transverse) boundary homomorphisms defined by counting J-holomorphic disks.

Defined by counting |-holomorphic curves

Theorem

(C., Ganatra) Given any field k, there are 2D open-closed, positive boundary, topological field theories, \mathcal{S}_M and $Symp_{T^*M}$ taking values in Chain Complexes over k, such that

- When one passes to homology they realize the above theories
- ② There is a natural equivalence of chain complex valued field theories, $\Phi: Symp_{T^*M} \xrightarrow{\cong} S_M$.

Idea:

Use recent methods of classifying TFT's:

- Cobordism hypothesis of Lurie
- Costello, Kontsevich-Vlassopolous

Roughly: 2D "positive boundary" oriented open-closed TFT's are classified by "Calabi-Yau (A)- ∞ categories."

So we show: The string topology category \mathcal{S}_M defined by Blumberg, C., Teleman is Calabi-Yau as is the "Wrapped Fukaya category" $\mathcal{W}(T^*M)$ defined by Seidel, Fukaya (this part was proved by Ganatra in his thesis) and that

$$S_M \simeq W(T^*M)$$

as CY A_{∞} -categories.

The notion of a Calabi-Yau category encodes the properties possessed by the category of coherent sheaves Coh(X) on a Calabi-Yau variety X. In this case the corresponding field theory is the "B-model".

These categories are all enriched over chain complexes. Such a category with only one object is an DGA, so we describe these notions in this setting.

Let A be an (A_{∞}) algebra over a field k. Consider its Hochschild chains $CH_*(A) \simeq A \otimes_{A \otimes A^{op}}^{L} A$. It is an (A_{∞}) module over $E(\Delta) \simeq C_*(S^1)$. The cyclic chains can be viewed as the homotopy orbits $CC_*(A) \simeq CH_*(A) \otimes_{F(A)}^L k$.

Definition

(Kontsevich and coauthors, Costello, Lurie) Suppose that A is compact (perfect as a k-module). A compact Calabi-Yau (cCY) structure is a map

$$\bar{\tau}: CC_*(A) \to k$$

such that the composition

$$\tau: A \otimes_{A \otimes A^{op}}^{L} A \simeq CH_*(A) \to CC_*(A) \xrightarrow{\bar{\tau}} k$$
 induces a pairing

$$A \otimes A \rightarrow k$$

that is homotopy nondegenerate in the sense that the adjoint $A \rightarrow A^*$ is an equivalence of A-bimodules. "self duality"

There is a related notion called a smooth Calabi category or sCY-category.

Given an A_{∞} -algebra or category A, let $CC_*^-(A)$ be the "negative cyclic chains". These chains can be viewed as the homotopy fixed points:

$$CC_*^-(A) \simeq Rhom_{E(\Delta)}(k, CH_*(A))$$

- An A_{∞} algebra A is said to be "smooth" if is perfect as an A-bimodule. That is, it is perfect as a left module over $A \otimes A^{op}$.
- Let A! be the "bimodule dual" of A:

$$A^! = Rhom_{A \otimes A^{op}}(A, A \otimes A^{op})$$

Definition

A sCY-structure ("smooth Calabi-Yau") on a smooth A_{∞} -algebra A is an element

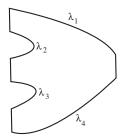
$$\bar{\sigma} \in \mathit{CC}^-_*(A)$$

So that if $\sigma \in CH_*(A)$ is the image under the natural map $CC_*^-(A) \to CH_*(A)$, then

is an equivalence of A-bimodules. "self duality as A-bimodules"

Theorem

(Kontsevich-Soibelman, Costello, Lurie) If $\mathcal C$ is a category with either a cCY category or a sCY structure, $\mathcal C$ gives rise to a positive boundary open-closed field theory $\mathcal F_{\mathcal C}$ with $\mathcal F_{\mathcal C}(S^1) \simeq CH_*(\mathcal C)$. The boundary values ("D-branes") of the field theory are $\mathcal D = Ob\,\mathcal C$. The value of $\mathcal F_{\mathcal C}$ on the interval with endpoints labeled by λ_1 , $\lambda_2 \in Ob\,\mathcal C$ is given by $Mor_{\mathcal C}(\lambda_1,\lambda_2)$. The value of $\mathcal F_{\mathcal C}$ on the open closed cobordism below is given by the higher composition laws in $\mathcal C$.



Theorem

(C. - Ganatra) The string topology category \mathcal{S}_M and the wrapped Fukaya category $\mathcal{W}(T^*M)$ both have naturally occurring sCY-structures whose associated chain complex-valued field theories yield String topology and the Floer-symplectic field theories respectively (on the level of homology). Furthermore there is a natural equivalence $\mathcal{W}(T^*M) \xrightarrow{\simeq} \mathcal{S}_M$ that preserves these sCY-structures.

Note:

 \mathcal{S}_M is, roughly speaking, the category whose objects are closed, oriented, connected submanifolds $N \subset M$, and whose morphisms from N_1 to N_2 is equivalent to $C_*(P_M(N_1, N_2))$. Composition is equivalent to the open string product (Sullivan).

To make this rigorous, Blumberg, C., and Teleman constructed S_M as a full subcategory of the category of perfect modules over $C_*(\Omega M)$, generated by $C_*(P_M(pt,N))$. They proved that

$$Rhom_{C_{*}(\Omega M)}(C_{*}(P_{M}(pt, N_{1})), C_{*}(P_{M}(pt, N_{2})))$$

$$\simeq C_{*}(P_{M}(N_{1}, pt)) \otimes_{C_{*}(\Omega M)}^{L} C_{*}(P_{M}(pt, N_{2}))$$

$$\simeq C_{*}(P_{M}(N_{1}, N_{2}))$$

and that composition in these derived homomorphism spaces corresponds to the string product, defined using the Pontrjagin-Thom construction.

Since the endomorphisms of a point $End_{\mathcal{S}_M}(pt) = Rhom_{C_*(\Omega M)}(C_*(\Omega M), C_*(\Omega M)) \simeq C_*(\Omega M)$, then clearly $C_*(\Omega M)$ generates \mathcal{S}_M .

Abouzaid (2011) proved there is an equivalence of A_{∞} -algebras $End_{\mathcal{W}(T^*M)}(T_x^*M) \simeq C_*(\Omega M)$ and that T_x^*M generates $\mathcal{W}(T^*M)$

Idea of proof Why is there a sCY structure on S_M ?

Lemma

If $C_1 \subset C_2$ generates (i.e the thick subcategory generated by C_1 is C_2), and if both C_1 and C_2 are smooth, then C_1 is sCY if and only if C_2 is sCY.

$\mathsf{Theorem}$

If M is a closed, oriented n-manifold, the $C_*(\Omega M)$ is sCY.

Note: $C_*(\Omega M) = End_{\mathcal{S}_M}(point)$. So by the lemma, this would prove that \mathcal{S}_M is sCY.

Sketch of proof. Recall Goodwillie proved that

$$CH_*(C_*(\Omega M)) \simeq C_*(LM).$$

Also observe

$$LM^{hS^1} = Map_{S^1}(ES^1, LM) = Map_{S^1}(ES^1 \times S^1, M) \simeq M.$$

So therefore there is a chain map

$$C_*(M) \simeq C_*(LM^{hS^1}) \to Rhom_{C_*(S^1)}(k, CH_*(C_*(\Omega M))$$
 (2)

$$= CC_*^-(C_*(\Omega M)). \tag{3}$$

Definition

We say that class $\bar{\sigma} \in CC_*^-(C_*(\Omega M))$ is of fundamental type if its homology class $[\bar{\sigma}] \in HC^-(C_*(\Omega M))$ is the image of the fundamental class

$$H_*(M) \to HC_*^-(C_*(\Omega M))$$
 (4)

$$[M] \rightarrow [\bar{\sigma}].$$
 (5)

Claim. Any class $\bar{\sigma} \in CC_*^-(C_*(\Omega M))$ of fundamental type defines a sCY structure on $C_*(\Omega M)$.

Proof. Let $A = C_*(\Omega M)$. We need to show that if $\sigma \in CH_*(A)$ is the image of $\bar{\sigma} \in CC_*^-(A)$, then

$$\cap \sigma: Rhom_{A \otimes A^{op}}(A, A \otimes A^{op}) \rightarrow A$$

is an equivalence.

That is, we need to show

$$\cap [\sigma] : Ext_{A \otimes A^{op}}(A, P) \to Tor_{A \otimes A^{op}}(A, P)$$

is an isomorphism, where $P = A \otimes A^{op}$.

Now since $A = C_*(\Omega M)$ is a connective Hopf algebra,

$$Ext_{A\otimes A^{op}}(A,P)\cong Ext_A(k,P^{ad})$$
. (Similarly for Tor).

Since $A = C_*(\Omega M)$ this becomes

$$\cap [\sigma]: H^*(M; P^{ad}) = Ext_{C_*(\Omega M)}(k, P^{ad}) \rightarrow Tor_{C_*(\Omega M)}(k, P^{ad})$$

$$= H_*(M, P^{ad})$$

(coefficients are twisted by modules over $C_*(\Omega M)$.)

Since $\bar{\sigma}$ is of fundamental type, the fact that this is an isomorphism is Poincaré duality with these twisted coefficients (Dwyer-Greenlees-Iyengar).

Ganatra proved that $W(T^*M)$ is sCY in his thesis. Moreover we have a functor defined by a variant of a construction of Abbondandolo and Schwarz,

$$AS: \mathcal{W}(T^*M) \to \mathcal{S}_M$$

which is seen to be an equivalence of categories by an argument of Abouzaid. Now must check that the sCY-structures are preserved. (Technically the most complicated.)

There are two other features.

• We say that an augmented DGA A is "strongly smooth" if A is smooth and k is a perfect module over A (so in particular $Tor_A(k,k)$ is finite.) $C_*(\Omega M)$ is strongly smooth if M is closed.

Theorem

Let A be a strongly smooth DGA over k. Suppose B is a DGA that is Koszul dual to A. That is,

$$B \simeq Rhom_A(k, k)$$
 $A \simeq Rhom_B(k, k)$.

They A is sCY if and only if B is cCY. Furthermore, their associated field theories \mathcal{F}_A and \mathcal{F}_B are dual.

Note: Since A and B are Koszul dual, $HH_*(A) \cong HH_*(B)^*$ (Jones-McCleary) (For THH this is due to J. Campbell.)

Example $A = C_*(\Omega M)$, $B = C^*M$, M simply connected.

Lurie's cobordism hypothesis says that an extended TFT with values in $\mathcal C$ (a symmetric monoidal $(\infty,2)$ -category) are classified by "Calabi-Yau objects" in $\mathcal C$.

Conjecture 1. A is a cCY category in the sense of Kontsevich if and only if A is a CY object in the sense of Lurie in the $(\infty,2)$ -category $\mathcal{CAT}=$ Categories, Functors, and Natural Transformations.

2. A is a sCY category in the sense of Kontsevich if and only if A is a CY object in the sense of Lurie in CAT^{op} .

Caution: Need finiteness conditions!

This is a joint project with Ganatra and A. Blumberg.