Kernel Methods for Persistence Diagrams

Mathieu Carrière¹, Steve Oudot¹, Maks Ovsjanikov²

Stochastic Geometry and its Applications, Nantes

April 6, 2016

1: DataShape, Inria Saclay, mathieu.carriere@inria.fr, steve.oudot@inria.fr

2: LIX, Ecole Polytechnique, maks@lix.polytechnique.fr

Statistical Learning

- ▶ Characterize shape points $x \in S$ with **signature vectors** $X \in \mathbb{R}^d$
- ▶ Assume $(X, Y) \sim P$
- ▶ Find a classifier $f: X \mapsto Y = f(X)$

Statistical Learning

- lacktriangle Assume shape S has two labels (segments) Y=-1/+1
- Select classifier that minimizes the following loss:

$$\mathbb{E}_{P}[\phi(Yf(X))] + ||f||$$

- Support Vector Machine (SVM) use the *hinge* loss: $\phi(u) = \max(0, 1 u)$
- Linear SVM: $f(X) = a^T X + b$
- ► Kernel SVM: $f(X) = a^T \Psi(X) + b$ where Ψ is a mapping to a RKHS
- When more than 2 labels: multi-class SVM

- Shape = triangle mesh
- "Good" signatures are necessary for a good model
- Can be very different by nature:
 - local/global
 - intrinsic/extrinsic
 - volumetric/defined on the surface
 - type of information (geometry, topology...)
- Satisfy the following properties:
 - be invariant to deformation classes (rotation, scaling...)
 - ▶ be stable
 - ▶ be informative
 - bring complementary information to common signatures
 - be representable as vectors in \mathbb{R}^d

Examples:

- curvature (mean, gaussian)
- PCA features
- spin image
- shape context
- shape diameter function
- kernel signatures (heat kernel, wave kernel)
- geodesic features (eccentricity)

- General context: use persistent homology to build topological signatures
- Issues with existing techniques:
 - global
 - costly to compute
 - not well suited for learning
- ▶ Contribution: local topological efficient and provably stable signature in \mathbb{R}^d

Kernels

Applications Shape Segmentation Shape Matching

- Persistence Diagrams (PDs) are the building blocks of the topological signature
- ightharpoonup PDs are sets of points in $\bar{\mathbb{R}}^2$

Pick a point x

- ► Record topological changes (i.e. *homology*) of growing geodesic ball centered on *x*
- ightharpoonup Record appearance and filling of every hole in the ball
- For every hole, create point (x, y) in PD with
 - ightharpoonup x = radius of appearance
 - y = radius of filling

- ► Stability?
- Distance between PDs?
- ► Distance between shapes?

Distance between PDs

Let
$$\mathsf{PD} = \{p_1 \dots p_n\}$$
 and $\mathsf{PD}' = \{q_1 \dots q_m\}$ be two PDs .
Let $S = \mathsf{PD} \cup P_\Delta(\mathsf{PD}')$ and $S' = \mathsf{PD}' \cup P_\Delta(\mathsf{PD})$ $(|S| = |S'|)$.
Then:
$$d_b^\infty(\mathsf{PD}, \mathsf{PD}') = \inf_{\phi: S \to S'} \sup_{i=1 \dots n} c(p_i, \phi(p_i))$$
where $c(p_i, \phi(p_i)) = \|p_i - \phi(p_i)\|_{\infty}$

Distance between shapes

- A correspondence between metric spaces X and Y is a subset C of X x Y such that:
 - $\forall x \in X, \exists y \in Y \text{ s.t. } (x, y) \in C$
 - $\forall y \in Y, \exists x \in X \text{ s.t. } (x,y) \in C$
- ▶ The *metric distortion* $\epsilon_m(C)$ of C is:

$$\epsilon_m(C) = \sup_{(x,y) \in C, (x',y') \in C} |d_X(x,x') - d_Y(y,y')|$$

Stability

Theorem: Corresponding points in nearly-isometric shapes have similar PDs:

$$d_b^{\infty}(D_x, D_y) \leq 20 \inf_{C:(x,y)\in C} \epsilon_m(C)$$

Kernels

Kernel

- $lackbox{m{b}} d_b^\infty = \mathrm{cost}$ of optimal matching o costly to compute in practice
- ► Kernel SVM? $K(D, D') = \exp\left(-\frac{d_b^{\infty}(D, D')^2}{2\sigma^2}\right)$
- ▶ d_b^∞ is not conditionally negative definite $\to K$ is not a valid kernel
- ▶ Idea: see PDs as metric spaces to turn them into vectors

Stability

$$\Phi = \phi_4 \circ \phi_3 \circ \phi_2 \circ \phi_1$$

Stability

$$\Phi = \phi_4 \circ \phi_3 \circ \phi_2 \circ \phi_1$$

Adding the diagonal

Adding the diagonal

Adding the diagonal $\Phi = \phi_4 \circ \phi_3 \circ \phi_2 \circ \phi_1$

Stability

$$\begin{split} K_1(D_x,D_y) = &< \Phi(D_x), \Phi(D_y) > \\ K_2(D_x,D_y) = &\exp\left(-\frac{\|\Phi(D_x) - \Phi(D_y)\|_2^2}{2\sigma^2}\right) \\ C(N) \|\Phi(D_x) - \Phi(D_y)\|_2 \leq \|\Phi(D_x) - \Phi(D_y)\|_{\infty} \leq 2d_b^{\infty}(D_x,D_y) \end{split}$$

- $ightharpoonup C(N) = \sqrt{\frac{2}{N(N-1)}}$ where N is the dimension
- Stability preserved whatever the number of components kept!

Stability

Computation

- Symmetry: count connected components instead of holes
- ► CCs are computed with triangulation + Dijkstra's algorithm
- ► Can be extended to point clouds with neighborhood graph

Computation

- Use Union Find data structure
- ► Timing:
 - ▶ 3-5 min for shape with 10k-15k nodes
 - ▶ 15 min for shape with 30k nodes
 - ▶ Computation of distance matrix $\simeq 66\%$
 - ▶ Computation of PDs $\simeq 33\%$
- Complexity:
 - ▶ Distance Matrix: $O(n^2 \log(n))$
 - ▶ PDs: $O(n^2 \log(n))$
 - ▶ Mapping: $O(n^3)$ in practice O(n)
- Code available at http://geometrica.saclay.inria.fr/team/Mathieu.Carriere/

Continuity

► Kernel PCA with K₁

Values vary smoothly over the shape

Not the only way to derive kernels...

- ▶ Heat diffusion map $L^2(\mathbb{R}^2)$, stability with Wasserstein distance
- ▶ Landscapes $L^2(\mathbb{R}^2)$
- ▶ Roots of complex polynomials \mathbb{R}^d

Application 1: Shape Segmentation

Shape Segmentation

- Learning on training set with/without topological signatures
- Smoothing of produced segmentation (graphcut algorithm)
- ► Evaluate segmentation with Rand Index

	SB5	SB5+PDs
Human	21.3	11.3
Cup	10.6	10.1
Airplane	18.7	9.3
Ant	9.7	1.5
Chair	15.1	7.3
Octopus	5.5	3.4
Table	7.4	2.5
Teddy	6.0	3.5
Hand	21.1	12.0
Plier	12.3	9.2
Fish	20.9	7.7
Bird	24.8	13.5

ナナナキャ

XXXXX

40 / 47

米米冬米

Application 2: Shape Matching

Shape Matching

- ▶ Compute optimal map $S_1 \rightarrow S_2$ that best preserves a set of signatures (with/without topological signature)
- ▶ Derive correspondence from this map
- Evaluate quality of correspondence

Percentage y of points that are mapped at distance at most x from their ground truth images (equivalent of Precision-Recall curve)

Flat regions are improved

Conclusion

- We introduced provably stable topological multiscale signature and kernel for points in shapes that gives complementary information to the other classical signatures
- Drawbacks: not well suited for all shapes, mapping loses information

Thank you!