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Statistical Learning

» Characterize shape points x € S with signature vectors
X c R

» Assume (X,Y) ~ P

» Find a classifier f : X — Y = f(X)
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Statistical Learning

» Assume shape S has two labels (segments) Y = -1/ +1
» Select classifier that minimizes the following loss:
Ep[o(YF (X)) + [If]]

» Support Vector Machine (SVM) use the hinge loss:
¢(u) = max(0,1 — u)

» Linear SVM: f(X) =aT X + b

» Kernel SVM: £(X) = a" W(X) + b where V is a mapping to a
RKHS

» When more than 2 labels: multi-class SVM
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Introduction
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Shape = triangle mesh

“Good" signatures are necessary for a good model

Can be very different by nature:

vV vy vy

local/global

intrinsic/extrinsic

volumetric/defined on the surface

type of information (geometry, topology...)

Satisfy the following properties:

>

vV vy vy

be invariant to deformation classes (rotation, scaling...)
be stable

be informative

bring complementary information to common signatures
be representable as vectors in RY
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Introduction

Examples:
» curvature (mean, gaussian)
» PCA features
> spin image
» shape context
» shape diameter function
» kernel signatures (heat kernel, wave kernel)

» geodesic features (eccentricity)

= ¥
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Introduction

» General context: use persistent homology to build
topological signatures

> Issues with existing techniques:

» global
» costly to compute

» not well suited for learning

» Contribution: local topological efficient and provably stable
signature in RY
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Persistence Diagrams

Kernels

Applications
Shape Segmentation
Shape Matching
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Persistence Diagrams
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Persistence Diagrams

» Persistence Diagrams (PDs) are the building blocks of the
topological signature

» PDs are sets of points in R?

“+00
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Persistence Diagrams

Pick a point x
» Record topological changes (i.e. homology) of growing
geodesic ball centered on x

» — Record appearance and filling of every hole in the ball

» For every hole, create point (x,y) in PD with
» x = radius of appearance
» y = radius of filling
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> Stability?
» Distance between PDs?

» Distance between shapes?
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Distance between PDs

Let PD = {p; ... pn} and PD’ = {q; ... gm} be two PDs.
Let S — PD U Pa(PD') and ' = PD’ U Pa(PD) (|S| = |S]).
Then:

d;°(PD,PD’) = inf_ sup c(pj, ¢(pi))

¢:5—=S" i=1..n

where c(pi, ¢(pi)) = llpi — ¢(pi)llo
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di*(PD1,PDs) «_|

20/47



Distance between shapes

» A correspondence between metric spaces X and Y is a subset
C of X x Y such that:

» Vxe X,IyeYst (x,y)eC
» VyeY,Ixe Xst (x,y)eC

» The metric distortion €,(C) of C is:

6f'ﬂ(C) = SUP(x,y)eC,(x",y")eC |dX(X7X/) - dy(y,y')I

3
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Stability

Theorem: Corresponding points in nearly-isometric shapes have

similar PDs:

dgo(DX, Dy) S 20 infC;(ny)eC Em(C)
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Kernels
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Kernel

» dp° = cost of optimal matching — costly to compute in

practice

> Kernel SYM? K(D, D') = exp (-%ﬁ)

» dp° is not conditionally negative definite — K is not a valid
kernel

» ldea: see PDs as metric spaces to turn them into vectors
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Feature Map

finite metric space
c
3
5 b
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Feature Map

finite metric space
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Feature Map

finite metric space

c distance matrix
3 b 1 a b ¢
5 al 0 4 5
4 bl 4 0 3
cf® 3 O
P2
2
1
0

1 2 3 4 5

distribution of distances
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Feature Map

finite metric space

c distance matrix
3 P1 a b ¢
5 b alo 4 5
i b 4 0 3
5 3 0
P2
2
(57473707()?"')
1
03 1T 2 3 4 5
sorted sequence .
with finite support distribution of distances

(shape context)
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Feature Map &= g1063062 06

finite metric space
c distance matrix

3 P1 b

4
0
3

(5,4,3,0,---,0)

finite-dimensional vector b2

2
(57473707()?"')
1
03 1T 2 3 4 5
sorted sequence .
with finite support distribution of distances

(shape context)
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Stablllty @ =¢py0p30¢20¢1

finite metric space € P (R?)

c distance matrix
3 P1 a b ¢
5 b a0 4 5
fl bl 4 0 3
cf® 3 O

(5,4,3,0,--+,0) € (RP,£>)

finite-dimensional vector D2

2
(5,4,3,0,0,---) € (>
1

®3 12 3 1 5

sorted sequence
distribution of distances € P (R)

with finite support

(shape context)
3
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Stablllty @ =¢py0p30¢20¢1

finite metric space € P (IR?)
distance matrix

01

a b ¢
al 0 4 5 o b ae
? bl 4 0 3 + [f@ cbb ?{‘j]
P k5 3 0 e Teb mee
(5+2¢,44+2,34+2¢,0---,0) oy € [—2¢, +2¢]

(5,4,3,0,--+,0) € (RP,£>)

finite-dimensional vector

(57473707()?"') € £
(5+£2e,4+2,3+2¢,0,0,---)

.~ 7 0
b
sorted sequence 78 12 3 4 5
with finite support distribution of distances € P (RR)

(shape context)
3
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Adding the diagonal
e diagonal has infinite multiplicity

e useful for when point clouds have different
cardinalities
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Adding the diagonal

0

e diagonal has infinite multiplicity

e useful for when point clouds have different
cardinalities

e some points may prefer the diagonal to other points
to reduce the cost of the matching
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Adding the diagonal ¢—s0050000

.
< distance matrix
01
Dij =min{ ||z; — 2|,
llzi — Zilloo,
llzj — Z;ll0}

(7.2,7.2,5.6,4)
(7.2,7.2,5.6,4,4,4,0,--- ,0)

finite-dimensional vector b2

2
(7.2,7.2,5.6,4,4,4,0,---)
1
0
sorted sequence -
(finite support) distribution of distances
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Stability

Ki(Dx, Dy) =< ®(Dy), ®(Dy) >

_ 2
Ka(Dx, Dy) = exp <_ "“’(Dx)zgj(Dy)Hz)

C(N)[[®(Dx) = ®(Dy)ll2 < [|®(Dx) = ®(Dy)llo0 < 2d5°(Dx; Dy)

» C(N) = ,/m where N is the dimension

» Stability preserved whatever the number of components
kept!
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Stability
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Computation

» Symmetry: count connected components instead of holes
» CCs are computed with triangulation + Dijkstra’s algorithm

» Can be extended to point clouds with neighborhood graph

444447
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Computation

Use Union Find data structure

v

v

Timing:

» 3-5 min for shape with 10k-15k nodes
15 min for shape with 30k nodes
Computation of distance matrix ~ 66%
Computation of PDs ~ 33%

v vyy

v

Complexity:
» Distance Matrix: O(n?log(n))
» PDs: O(n?log(n))
» Mapping: O(n®) - in practice O(n)

Code available at
http://geometrica.saclay.inria.fr/team/Mathieu.Carriere/

v
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Continuity

» Kernel PCA with K3

s _r-
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» Values vary smoothly over the shape
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Not the only way to derive kernels...
» Heat diffusion map L2(R?), stability with Wasserstein distance

» Landscapes L?(RR?)

» Roots of complex polynomials RY
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Application 1: Shape Segmentation
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Shape Segmentation

» Learning on training set with/without topological signatures
» Smoothing of produced segmentation (graphcut algorithm)

» Evaluate segmentation with Rand Index
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Results

SB5 | SB5+PDs
Human | 21.3 11.3
Cup 10.6 10.1
Airplane | 18.7 9.3
Ant 9.7 1.5
Chair 15.1 7.3
Octopus | 5.5 34
Table 7.4 2.5
Teddy 6.0 3.5
Hand | 21.1 12.0
Plier 12.3 9.2
Fish 20.9 7.7
Bird 24.8 13.5
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Results
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Results
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Application 2: Shape Matching
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Shape Matching

» Compute optimal map S; — S, that best preserves a set of
signatures (with/without topological signature)

» Derive correspondence from this map

» Evaluate quality of correspondence
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Results

Percentage y of points that are mapped at distance at most x from
their ground truth images (equivalent of Precision-Recall curve)
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Results

Flat regions are improved
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Conclusion

» We introduced provably stable topological multiscale signature
and kernel for points in shapes that gives complementary
information to the other classical signatures

» Drawbacks: not well suited for all shapes, mapping loses
information
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Thank you!
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