Voronoi diagram on a Riemannian surface

Aurélie Chapron

Modal'X (Paris Ouest) and LMRS (Rouen)

8 April 2016

[Voronoi diagram on a Riemannian surface](#page-30-0)

Aim : Show a link between mean characteristics of the Voronoi cells and local characteristics of the surface

image:R.Kunze

Framework

- \bullet S Riemannian surface, with its Riemannian metric d ,
- \bullet dx area measure induced by the metric,
- \bullet Φ Poisson point process of intensity λdx and $x_0 \in S$ added to Φ.
- The Voronoi cell of x_0 defined by

$$
C(x_0,\Phi) = \{y \in S, d(x_0,y) \leq d(x,y), \forall x \in \Phi\}
$$

• N the number of vertices.

Outline

2 [Arbitrary surface](#page-11-0)

3 [Ongoing work on the dimension](#page-23-0) \geq 3

[Voronoi diagram on a Riemannian surface](#page-0-0)

Mean number of vertices

wlog, assume x_0 to be the North pole on the sphere of constant curvature K (of radius $\frac{1}{\sqrt{2}}$ $\frac{L}{K}$

$$
\mathbb{E}[N(\mathcal{C})] = 6 - \frac{3K}{\pi\lambda} + e^{-\frac{4\pi\lambda}{K}}\left(\frac{3K}{\pi\lambda} + 6\right)
$$

Miles (1971) : *n* uniform points on the sphere

Step 1: characterize vertices of C

$$
\mathbb{E}[N(\mathcal{C})] = \mathbb{E}\left[\sum_{x_1,x_2 \in \Phi} \mathbb{1}_{\{\mathcal{B}_1(x_0,x_1,x_2) \cap \Phi = \emptyset\}} + \mathbb{1}_{\{\mathcal{B}_2(x_0,x_1,x_2) \cap \Phi = \emptyset\}}\right]
$$

Step 1: characterize vertices of C

$$
\mathbb{E}[N(\mathcal{C})] = \frac{\lambda^2}{2} \iint_{x_1, x_2 \in \mathcal{S}(K)} \left(e^{-\lambda \text{ vol}(\mathcal{B}_1(x_0, x_1, x_2))} + e^{-\lambda \text{ vol}(\mathcal{B}_2(x_0, x_1, x_2))} \right) dx_1 dx_2
$$

Step 2: apply Mecke-Slivnyak formula

[Voronoi diagram on a Riemannian surface](#page-0-0)

$$
\mathbb{E}[N(\mathcal{C})] = \frac{\lambda^2}{2} \int_{r_1, \varphi_1, r_2, \varphi_2} \left(e^{-\lambda \operatorname{vol}(\mathcal{B}_1(x_0, x_1, x_2))} + e^{-\lambda \operatorname{vol}(\mathcal{B}_2(x_0, x_1, x_2))} \right)
$$

$$
\times \frac{\sin(\sqrt{K}r_1)}{\sqrt{K}} \frac{\sin(\sqrt{K}r_2)}{\sqrt{K}} dr_1 d\varphi_1 dr_2 d\varphi_2
$$

Step 3: use spherical coordinates

$$
\mathbb{E}[N(C)] = 4\pi\lambda^2 I \int_0^{\frac{\pi}{2\sqrt{K}}} \left(e^{-\lambda\frac{2\pi}{K}(1-\cos(\sqrt{K}R))} + e^{-\lambda\frac{2\pi}{K}(1+\cos(\sqrt{K}R))} \right) \frac{\sin^3(\sqrt{K}R)}{\sqrt{K}} dR
$$

= $6 - \frac{3K}{\pi\lambda} + e^{-\frac{4\lambda\pi}{K}} \left(6 + \frac{3K}{\lambda\pi} \right)$

where

$$
I = \int_{\theta_1, \theta_2 \in [0, 2\pi]} \sin\left(\frac{\theta_1}{2}\right) \sin\left(\frac{\theta_2}{2}\right) \left| \sin\left(\frac{\theta_1 - \theta_2}{2}\right) \right| d\theta_1 d\theta_2
$$

Strategy

Find a way to adapt the method to a general surface

image:R.Kunze

- \bullet Step 1: characterize vertices of $\mathcal C$
- **Step 2: apply Mecke-Slivnyak formula**
- Step 3: use geodesic polar coordinates
- **Step 4:** make a Blaschke-Petkantschin type change of variables
- Step 5: find the volume of a geodesic ball

$$
\mathbb{E}[\mathsf{N}(\mathcal{C})] = \mathbb{E}\left[\sum_{x_1,x_2 \in \Phi \text{ circumscribed balls}} \mathbb{1}_{\{\mathcal{B}(x_0,x_1,x_2) \cap \Phi = \emptyset\}}\right]
$$

Step 1: characterize vertices of C

[Voronoi diagram on a Riemannian surface](#page-0-0)

Aurélie Chapron **Modal'X (Paris Ouest) and LMRS (Rouen)** and LMRS (Rouen) and LMRS (Rouen) and LMRS (Rouen)

$$
\mathbb{E}[N(\mathcal{C})] = \frac{\lambda^2}{2} \iint_{x_1, x_2 \in S} \sum_{\text{circumscribed balls}} e^{-\lambda \text{ vol}(\mathcal{B}(x_0, x_1, x_2))} dx_1 dx_2
$$

- \bullet Points "far" from x_0 contribute negligibly.
- **2** For points around x_0 , we need similar changes of variables.

Step 2: apply Mecke Slivnyak formula

Exponential map

Around x_0 , S can always be parametrized by its geodesic polar coordinates (r, φ) , ie

$$
x=\exp_{x_0}(ru_\varphi)
$$

Step 3: use geodesic polar coordinates

Rauch theorem

$$
dx = f(r, \varphi) dr d\varphi
$$

Let K denote the Gaussian curvature.

Rauch theorem (1951)

Si $0 < \delta \leq K \leq \Delta$

$$
\frac{\sin(\sqrt{\Delta}r)}{\sqrt{\Delta}} \leq f(r,\varphi) \leq \frac{\sin(\sqrt{\delta}r)}{\sqrt{\delta}}
$$

Application: $\delta = K(x_0) - \varepsilon$, $\Delta = K(x_0) + \varepsilon$

Step 3: use geodesic polar coordinates

$$
E[N(C)] = \frac{\lambda^2}{2} \int_{\substack{(r_1, \varphi_1) \\ (r_2, \varphi_2)}} e^{-\lambda \text{ vol}(\mathcal{B}(x_0, x_1, x_2))} \times \left(r_1 - \frac{K(x_0)r_1^3}{6} + o(r_1^3)\right) \left(r_2 - \frac{K(x_0)r_2^3}{6} + o(r_2^3)\right) dr_1 d\varphi_1 dr_2 d\varphi_2 + O(e^{-c\lambda})
$$

Step 3: use geodesic polar coordinates

Toponogov theorem

If $\delta \leq K \leq \Delta$

$$
\mathbb{E}[N(\mathcal{C})]=2\lambda^2 I \int_{\varphi} \int_{R} e^{-\lambda \text{ vol}(\mathcal{B}(z,R))} \left(R^3-\tfrac{K(x_0)R^5}{2}+o(R^5)\right) dR d\varphi +O(e^{-c\lambda})
$$

where

$$
I = \int_{\theta_1, \theta_2} \sin\left(\frac{\theta_1}{2}\right) \sin\left(\frac{\theta_2}{2}\right) \left| \sin\left(\frac{\theta_1 - \theta_2}{2}\right) \right| d\theta_1 d\theta_2
$$

Volume of small geodesic balls

Bertrand-Diquet-Puiseux theorem (1848)

When $r \to 0$, $x \in S$

$$
vol(B(z,r)) = \pi r^2 - \frac{K(z)\pi}{12}r^4 + o(r^4)
$$

Step 5: find the volume of the circumscribed ball

$$
\mathbb{E}[N(\mathcal{C})]=12\pi^2\lambda^2\int_0^{R_{max}}e^{-\lambda(\pi R^2-\frac{\pi K(x_0)R^4}{12}+o(R^4))}\times[R^3-\frac{K(x_0)R^5}{2}+o(R^5)]dR+O(e^{-c\lambda})
$$

When λ goes to infinity, Laplace's method yields

Mean number of vertices

$$
\mathbb{E}[\mathsf{N}(\mathcal{C})] = 6 - \frac{3\mathsf{K}(x_0)}{\pi\lambda} + o\left(\frac{1}{\lambda}\right)
$$

[Voronoi diagram on a Riemannian surface](#page-0-0)

The dimension n

The vertices of C

The *n*-sphere of constant sectionnal curvature K

The Jacobian of the Blaschke-Petkantschin type change of variables (Miles 1971):

$$
J=n!\left(\frac{\sin(\sqrt{K}R)}{\sqrt{K}}\right)^{n^2-1}\Delta(x_0,x_1,\ldots,x_n)
$$

The volume of a ball of radius R in $Sⁿ(K)$:

$$
V(R) = \frac{2\pi^{\frac{1}{2}}}{\Gamma(\frac{n}{2})} \int_0^R \sin^{n-1}(t) dt
$$

The *n*-sphere of constant sectionnal curvature K

Mean number of vertices

$$
\mathbb{E}[N(\mathcal{C})]=E_n-\frac{\mathsf{Sc}}{\lambda^{\frac{2}{n}}}\mathsf{C}_n+o(\frac{1}{\lambda^{\frac{2}{n}}})
$$

where

- E_n is the mean number of vertices in \mathbb{R}^n
- \bullet C_n is a positive constant
- Sc = $n(n-1)K$ is the scalar curvature of $Sⁿ(K)$

$$
E_n = 2\pi^{\frac{n-1}{2}} n^{n-2} \left(\frac{\Gamma(\frac{n}{2})}{\Gamma(\frac{n+1}{2})}\right)^n \frac{\Gamma(\frac{n^2+1}{2})}{\Gamma(\frac{n^2}{2})}
$$

\n
$$
C_n = \frac{2^{1-\frac{2}{n}}}{6n!} \pi^{\frac{n}{2}-\frac{3}{2}} \frac{n^{3-2}}{(n-1)(n+2)} n^{n+\frac{2}{n}-2} \frac{\Gamma(n+\frac{2}{n})\Gamma(\frac{n}{2})^{n+\frac{2}{n}}\Gamma(\frac{n^2+1}{2})}{\Gamma(\frac{n^2}{2})\Gamma(\frac{n+1}{2})^n}
$$

Generalization to a n-manifold M

The Blaschke Petkantschin type change of variables is written as

$$
x_i = \exp_{|\exp_{x_0}(Ru_{\varphi})}(Ru_i)
$$

The Jacobian of this change of variables involves Jacobi fields: Rauch Theorem

Jacobi fields

\bullet An expansion of the volume of a small geodesic ball on M is given by

$$
vol(\mathcal{B}(z,R)) = \kappa_n R^n \left(1 - \frac{Sc(z)}{6(n+2)} R^2 + o(R^2) \right)
$$

Generalization to a n-manifold M

Conjecture for the mean number of vertices

$$
\mathbb{E}[N(\mathcal{C})]=E_n-\frac{\mathsf{Sc}(x_0)}{\lambda^{\frac{2}{n}}}\mathcal{C}_n+o(\frac{1}{\lambda^{\frac{2}{n}}})
$$

with

- \bullet E_n and C_n the same constants as for the sphere
- $Sc(x_0)$ is the scalar curvature of M at x_0

$$
E_n = 2\pi^{\frac{n-1}{2}} n^{n-2} \left(\frac{\Gamma(\frac{n}{2})}{\Gamma(\frac{n+1}{2})}\right)^n \frac{\Gamma(\frac{n^2+1}{2})}{\Gamma(\frac{n^2}{2})}
$$

\n
$$
C_n = \frac{2^{1-\frac{2}{n}}}{6n!} \pi^{\frac{n}{2}-\frac{3}{2}} \frac{n^3-2}{(n-1)(n+2)} n^{n+\frac{2}{n}-2} \frac{\Gamma(n+\frac{2}{n})\Gamma(\frac{n}{2})^{n+\frac{2}{n}}\Gamma(\frac{n^2+1}{2})}{\Gamma(\frac{n^2}{2})\Gamma(\frac{n+1}{2})^n}
$$

Take Home Message

• Dimension 2:

- \leftrightarrow Link between mean number of vertices and Gaussian curvature
- \rightarrow Result available for surface of negative curvature (Isokawa 2000)
- \hookrightarrow Other mean characteristics: area, perimeter

Q Dimension *n*:

- \leftrightarrow Link between mean number of vertices and scalar curvature
- \leftrightarrow Perspective: other characteristics to get other curvatures

Thank you for your attention!

[Voronoi diagram on a Riemannian surface](#page-0-0)