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Motivation

Aim : Show a link between mean characteristics of the Voronoi cells and
local characteristics of the surface

image:R.Kunze
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Framework

S Riemannian surface, with its Riemannian metric d ,

dx area measure induced by the metric,

Φ Poisson point process of intensity λdx and x0 ∈ S added to Φ,

The Voronoi cell of x0 defined by

C (x0,Φ) = {y ∈ S , d(x0, y) ≤ d(x , y),∀x ∈ Φ}

N the number of vertices.
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Outline

1 Case of the sphere

2 Arbitrary surface

3 Ongoing work on the dimension ≥ 3
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Mean number of vertices

wlog, assume x0 to be the North pole on the sphere of constant
curvature K (of radius 1√

K
)

E[N(C)] = 6− 3K

πλ
+ e−

4πλ
K

(
3K

πλ
+ 6

)

Miles (1971) : n uniform points on the sphere
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Sketch of proof

Step 1: characterize vertices of C
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Sketch of proof

E[N(C)] = E

 ∑
x1,x2∈Φ

1{B1(x0,x1,x2)∩Φ=∅} + 1{B2(x0,x1,x2)∩Φ=∅}



Step 1: characterize vertices of C
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Sketch of proof

E[N(C)] =
λ2

2

∫∫
x1,x2∈S(K)

(
e−λ vol(B1(x0,x1,x2)) + e−λ vol(B2(x0,x1,x2))

)
dx1dx2

Step 2: apply Mecke-Slivnyak formula
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Sketch of proof

E[N(C)] =
λ2

2

∫
r1,ϕ1,r2,ϕ2

(
e−λ vol(B1(x0,x1,x2)) + e−λ vol(B2(x0,x1,x2))

)
× sin(

√
Kr1)√
K

sin(
√
Kr2)√
K

dr1dϕ1dr2dϕ2

Step 3: use spherical coordinates
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Sketch of proof

r1 =
2√
K

arcsin(sin

(
θ1

2

)
sin(
√
KR))

r2 =
2√
K

arcsin(sin

(
θ2

2

)
sin(
√
KR))

ϕ1 = ϕ+
π

2
− arctan(tan

(
θ1

2

)
cos(
√
KR))

ϕ2 = ϕ+
π

2
− arctan(tan

(
θ2

2

)
cos(
√
KR))

Step 4: make a Blaschke-Petkantschin type change of variables
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Sketch of proof

E[N(C)] = 4πλ2I

∫ π
2
√

K

0

(
e−λ

2π
K

(1−cos(
√
KR)) + e−λ

2π
K

(1+cos(
√
KR))

) sin3(
√
KR)√
K

dR

= 6− 3K

πλ
+ e−

4λπ
K

(
6 +

3K

λπ

)
where

I =

∫
θ1,θ2∈[0,2π]

sin

(
θ1

2

)
sin

(
θ2

2

) ∣∣∣∣sin

(
θ1 − θ2

2

)∣∣∣∣ dθ1dθ2

Step 4: Make a Blaschke-Petkantschin type change of variables
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Strategy

Find a way to adapt the method to a general surface

image:R.Kunze

Step 1: characterize vertices of C
Step 2: apply Mecke-Slivnyak formula

Step 3: use geodesic polar coordinates

Step 4: make a Blaschke-Petkantschin type
change of variables

Step 5: find the volume of a geodesic ball
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Sketch of proof

E[N(C)] = E

 ∑
x1,x2∈Φ

∑
circumscribed balls

1{B(x0,x1,x2)∩Φ=∅}



Step 1: characterize vertices of C
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Sketch of proof

E[N(C)] =
λ2

2

∫∫
x1,x2∈S

∑
circumscribed balls

e−λ vol(B(x0,x1,x2))dx1dx2

1 Points ”far” from x0 contribute negligibly.

2 For points around x0, we need similar changes of variables.

Step 2: apply Mecke Slivnyak formula
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Exponential map

Around x0, S can always be
parametrized by its geodesic polar
coordinates (r , ϕ), ie

x = expx0
(ruϕ)

Step 3: use geodesic polar coordinates
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Rauch theorem

dx = f (r , ϕ)drdϕ

Let K denote the Gaussian curvature.

Rauch theorem (1951)

Si 0 < δ ≤ K ≤ ∆

sin(
√

∆r)√
∆

≤ f (r , ϕ) ≤ sin(
√
δr)√
δ

Application: δ = K (x0)− ε, ∆ = K (x0) + ε

Step 3: use geodesic polar coordinates
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Sketch of proof

E [N(C)] =
λ2

2

∫
(r1,ϕ1)
(r2,ϕ2)

e−λ vol(B(x0,x1,x2))

×
(
r1 − K(x0)r3

1

6 + o(r3
1 )
)(

r2 − K(x0)r3
2

6 + o(r3
2 )
)
dr1dϕ1dr2dϕ2 + O(e−cλ)

Step 3: use geodesic polar coordinates
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Sketch of proof

r1 =?

r2 =?

ϕ1 =?

ϕ2 =?

Step 4: make a Blaschke-Petkantschin type change of variables

Aurélie Chapron Modal’X (Paris Ouest) and LMRS (Rouen)

Voronoi diagram on a Riemannian surface



Case of the sphere Arbitrary surface Ongoing work on the dimension ≥ 3 Conclusion

Toponogov theorem

If δ ≤ K ≤ ∆

Step 4: make a Blaschke-Petkantschin type change of variables
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Sketch of proof

r1 = 2 sin(θ1/2)R − K(x0)R3

3
sin(θ1/2) cos2(θ1/2) + o(R3)

r2 = 2 sin(θ2/2)R − K(x0)R3

3
sin(θ2/2) cos2(θ2/2) + o(R3)

ϕ1 = ϕ+
π

2
− θ1

2
+

K(x0)R2

4
sin(θ1) + o(R2)

ϕ2 = ϕ+
π

2
− θ2

2
+

K(x0)R2

4
sin(θ2) + o(R2)

Step 4: make a Blaschke-Petkantschin type change of variables
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Sketch of proof

E[N(C)] = 2λ2I

∫
ϕ

∫
R

e−λ vol(B(z,R))
(
R3 − K(x0)R5

2 + o(R5)
)
dRdϕ + O(e−cλ)

where

I =

∫
θ1,θ2

sin

(
θ1

2

)
sin

(
θ2

2

) ∣∣∣∣sin

(
θ1 − θ2

2

)∣∣∣∣ dθ1dθ2

Step 4: make a Blaschke-Petkantschin type change of variables
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Volume of small geodesic balls

Bertrand-Diquet-Puiseux theorem (1848)

When r → 0, x ∈ S

vol(B(z , r)) = πr2 − K (z)π

12
r4 + o(r4)

Step 5: find the volume of the circumscribed ball
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Result

E[N(C)] = 12π2λ2
∫ Rmax

0
e−λ(πR2−πK(x0)R4

12 +o(R4)) × [R3 − K(x0)R5

2 + o(R5)]dR + O(e−cλ)

When λ goes to infinity, Laplace’s method yields

Mean number of vertices

E[N(C)] = 6− 3K (x0)

πλ
+ o

(
1

λ

)
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The dimension n

The vertices of C
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The n-sphere of constant sectionnal curvature K

The Jacobian of the
Blaschke-Petkantschin type change
of variables (Miles 1971):

J = n!

(
sin(
√
KR)√
K

)n2−1

∆(x0, x1, . . . , xn)

The volume of a ball of radius R in Sn(K):

V (R) =
2π

1
2

Γ( n
2

)

∫ R

0

sinn−1(t)dt
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The n-sphere of constant sectionnal curvature K

Mean number of vertices

E[N(C)] = En −
Sc

λ
2
n

Cn + o(
1

λ
2
n

)

where

En is the mean number of vertices in Rn

Cn is a positive constant

Sc = n(n − 1)K is the scalar curvature of Sn(K )

En = 2π
n−1

2 nn−2
(

Γ( n
2 )

Γ( n+1
2 )

)n Γ( n2+1
2 )

Γ( n2

2 )

Cn = 21− 2
n

6n! π
n
2−

3
2

n3−2
(n−1)(n+2)n

n+ 2
n−2 Γ(n+ 2

n )Γ( n
2 )n+ 2

n Γ( n2+1
2 )

Γ( n2

2 )Γ( n+1
2 )n
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Generalization to a n-manifold M

The Blaschke Petkantschin type
change of variables is written as

xi = exp| expx0
(Ruϕ)(Rui )
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The Jacobian of this change of variables involves Jacobi fields:
Rauch Theorem

Jacobi fields

An expansion of the volume of a small geodesic ball on M is given by

vol(B(z ,R)) = κnR
n

(
1− Sc(z)

6(n + 2)
R2 + o(R2)

)
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Generalization to a n-manifold M

Conjecture for the mean number of vertices

E[N(C)] = En −
Sc(x0)

λ
2
n

Cn + o(
1

λ
2
n

)

with

En and Cn the same constants as for the sphere

Sc(x0) is the scalar curvature of M at x0

En = 2π
n−1

2 nn−2
(

Γ( n
2 )

Γ( n+1
2 )

)n Γ( n2+1
2 )

Γ( n2

2 )

Cn = 21− 2
n

6n! π
n
2−

3
2

n3−2
(n−1)(n+2)n

n+ 2
n−2 Γ(n+ 2

n )Γ( n
2 )n+ 2

n Γ( n2+1
2 )

Γ( n2

2 )Γ( n+1
2 )n
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Take Home Message

Dimension 2:

↪→ Link between mean number of vertices and Gaussian curvature
↪→ Result available for surface of negative curvature (Isokawa 2000)
↪→ Other mean characteristics: area, perimeter

Dimension n:

↪→ Link between mean number of vertices and scalar curvature
↪→ Perspective: other characteristics to get other curvatures
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Thank you for your attention!
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