
Efficient nonparametric inference for discretely
observed compound Poisson processes

Alberto Coca Cabrero*
CCA, University of Cambridge

Dynstoch Workshop 2016
University Rennes 2, France

9th June 2016

*Supported by Cambridge Philosophical Society, Lundgren Fund,

Fundación ”La Caixa”, EPSRC and Fundación Mutua Madrileña



Compound Poisson processes
Estimation of compound Poisson processes

References

Outline

1 Compound Poisson processes

2 Estimation of compound Poisson processes
Continuous observations
Discrete observations

3 References

Alberto J. Coca Cabrero, University of Cambridge Efficient nonparametric inference for discretely observed CPPs



Compound Poisson processes
Estimation of compound Poisson processes

References

Outline

1 Compound Poisson processes

2 Estimation of compound Poisson processes
Continuous observations
Discrete observations

3 References

Alberto J. Coca Cabrero, University of Cambridge Efficient nonparametric inference for discretely observed CPPs



Compound Poisson processes
Estimation of compound Poisson processes

References

Construction and properties

How does a trajectory of a compound Poisson process look?

Alberto J. Coca Cabrero, University of Cambridge Efficient nonparametric inference for discretely observed CPPs



Compound Poisson processes
Estimation of compound Poisson processes

References

Construction and properties

How does a trajectory of a compound Poisson process look?

Alberto J. Coca Cabrero, University of Cambridge Efficient nonparametric inference for discretely observed CPPs



Compound Poisson processes
Estimation of compound Poisson processes

References

Construction and properties

Let (Nt)t≥0 be a 1-dim. Poisson process with intensity λ > 0;

Let X1,X2,... be independent and identically distributed (i.i.d.)
real-valued random variables with common distribution F ;

Assume this sequence is independent of the Poisson process.

Then, a 1-dimensional (zero-drift) compound Poisson process with
intensity λ and jump size distribution F can be written as

Ct =
Nt∑

j=1

Xj , t ≥ 0,

 0∑
j=1

Xj = 0, so C0 = 0 a.s.

 .

CPPs are Markov and, in particular, Lévy processes (LPs,
more details later): Textbook example of pure jump LPs.
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Applications and literature

Compound Poisson processes (CPPs): Basic model for
systems with random shocks that come ‘out of the blue’.

Numerous applications: Seismology, storage theory (natural,
economic and social resources, ecosystems, etc.), queuing and
renewal theory.

Nonparametric inference on them (discretely observed) has
received much attention lately:
Buchmann and Grübel (2003, 2004), Coca (2015), Comte et
al. (2014, 2015), Duval (2013, 2014), Duval and Hoffmann
(2011), van Es et al. (2007), Gugushvili (2007), Gugushvili et
al. (2015a, 2015b), Nickl and Reiß (2012), Nickl et al.
(2016), Trabs (2014), etc.
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Buchmann and Grübel (2003, 2004), Coca (2015), Comte et
al. (2014, 2015), Duval (2013, 2014), Duval and Hoffmann
(2011),

van Es et al. (2007), Gugushvili (2007), Gugushvili et
al. (2015a, 2015b), Nickl and Reiß (2012), Nickl et al.
(2016), Trabs (2014), etc.

Alberto J. Coca Cabrero, University of Cambridge Efficient nonparametric inference for discretely observed CPPs



Compound Poisson processes
Estimation of compound Poisson processes

References

Applications and literature

Compound Poisson processes (CPPs): Basic model for
systems with random shocks that come ‘out of the blue’.

Numerous applications: Seismology, storage theory (natural,
economic and social resources, ecosystems, etc.), queuing and
renewal theory.

Nonparametric inference on them (discretely observed) has
received much attention lately:
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Continuous observations
Discrete observations

Setting and estimators

Assume throughout λ and F are unknown.

Idealised setting:

for some T > 0 we observe Ct =
∑Nt

j=1 Xj for t ∈ [0,T ].

Then, we have NT independent realisations of an exponential
distribution with parameter λ and of F .

How to make inference on λ and F ? Conditioned on NT = n,

λ can be estimated (parametrically) using the maximum
likelihood estimator (asymptotic normality), and

F can be estimated (nonparametrically) by the empirical
distribution function Fn(x) := 1

n

∑n
k=1 1(−∞,x](Xk), x ∈ R.
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Properties of Fn(x) := 1
n

∑n
k=1 1(−∞,x ](Xk)

Left figure:Black:F=N(0,1); Blue:Fn,n =5,10,...,250 and F±max|F̂n−F |

Right figure:
√

n(Fn−F ), n = 5, 10, ..., 150,
√

n-fluctuations of Fn about F

Donsker’s theorem:
√

n (Fn − F )→D GF in L∞(R) as n→∞,
where GF is the mean-zero Gaussian process on R with covariance
function E [GF (x)GF (y)]=F (x ∧ y)−F (x)F (y).
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Continuous observations
Discrete observations

Setting

In most practical situations C := (Ct)t≥0 is not observed
continuously.

Instead, we observe C∆, . . . ,Cn∆ for some ∆ > 0 and n ∈ N.

Figure: C∆, . . . ,Cn∆, ∆ = 2.5 and n = 4 (λ = 0.5,F = N(0, 1))

How can we infer λ and F with such incomplete information?
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CPPs as LPs and nonlinear inverse problem

(Ct)t∈R is a Lévy process. Therefore,

it has independent and stationary increments.

In particular, Yk := Ck∆ − C(k−1)∆, k = 1, . . . , n, are

independent copies of Y := Y1 := C∆ :=
∑N∆

j=1 Xj (C0 = 0).

This is a nonlinear inverse problem because

we are effectively observing a random variable X corrupted by
a sum of a random number of independent copies of itself.

Question: Is (nonparametric) 1/
√

n−consistent and
asymptotically efficient estimation of F even possible?
Answer: Yes! We resort to the spectral approach to find a
heuristic reason and to construct such an estimator.
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we are effectively observing a random variable X corrupted by
a sum of a random number of independent copies of itself.

Question: Is (nonparametric) 1/
√

n−consistent and
asymptotically efficient estimation of F even possible?
Answer: Yes! We resort to the spectral approach to find a
heuristic reason and to construct such an estimator.
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The spectral approach: No ill-posedness and estimators

Let N := λF be the Lévy distribution of C , denote the Fourier
transform operator by F and let P be the law Y .

Then, the characteristic function of each increment (∼ the noise) is

ϕ(u) := F [P](u) := E [e iuY ] = e∆(F [dN ](u)−λ ), u ∈ R .

Due to ‖F [dN ]‖L∞≤λ, inf
u∈R
|ϕ(u)|≥e−2∆λ>0 so no ill-posedness!

Furthermore, an estimator for N can be constructed from it:
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The spectral approach: No ill-posedness and estimators

Let N := λF be the Lévy distribution of C , denote the Fourier
transform operator by F and let P be the law Y .
Then, the characteristic function of each increment (∼ the noise) is

ϕ(u) := F [P](u) := E [e iuY ] = e∆(F [dN ](u)−λ ), u ∈ R .

Due to ‖F [dN ]‖L∞≤λ, inf
u∈R
|ϕ(u)|≥e−2∆λ>0 so no ill-posedness!

Furthermore, an estimator for N can be constructed from it:

ϕ(u) = exp (∆(F [dN ](u) − λF [δ0](u) ))
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The spectral approach: No ill-posedness and estimators

Let N := λF be the Lévy distribution of C , denote the Fourier
transform operator by F and let P be the law Y .
Then, the characteristic function of each increment (∼ the noise) is

ϕ(u) := F [P](u) := E [e iuY ] = e∆(F [dN ](u)−λ ), u ∈ R .

Due to ‖F [dN ]‖L∞≤λ, inf
u∈R
|ϕ(u)|≥e−2∆λ>0 so no ill-posedness!

Furthermore, an estimator for N can be constructed from it:

1

∆
Logϕ(u) = exp(∆(F [dN ](u) − λF [δ0](u) )),

where Log is the distinguished logarithm
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The spectral approach: No ill-posedness and estimators

Let N := λF be the Lévy distribution of C , denote the Fourier
transform operator by F and let P be the law Y .
Then, the characteristic function of each increment (∼ the noise) is

ϕ(u) := F [P](u) := E [e iuY ] = e∆(F [dN ](u)−λ ), u ∈ R .

Due to ‖F [dN ]‖L∞≤λ, inf
u∈R
|ϕ(u)|≥e−2∆λ>0 so no ill-posedness!

Furthermore, an estimator for N can be constructed from it:

1

∆
fx (y)F−1[Logϕ](dy) = fx (y)(N (dy) − λδ0(dy) ),

where Log is the distinguished logarithm, fx := 1(−∞,x] 1R \{0}
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transform operator by F and let P be the law Y .
Then, the characteristic function of each increment (∼ the noise) is

ϕ(u) := F [P](u) := E [e iuY ] = e∆(F [dN ](u)−λ ), u ∈ R .

Due to ‖F [dN ]‖L∞≤λ, inf
u∈R
|ϕ(u)|≥e−2∆λ>0 so no ill-posedness!

Furthermore, an estimator for N can be constructed from it:

1

∆

∫
R

fx (y)F−1[Logϕ](dy) =

∫
R

fx (y)(N (dy)−λδ0(dy) ) = N (x),

where Log is the distinguished logarithm, fx := 1(−∞,x] 1R \{0}
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The spectral approach: No ill-posedness and estimators

Let N := λF be the Lévy distribution of C , denote the Fourier
transform operator by F and let P be the law Y .
Then, the characteristic function of each increment (∼ the noise) is

ϕ(u) := F [P](u) := E [e iuY ] = e∆(F [dN ](u)−λ ), u ∈ R .

Due to ‖F [dN ]‖L∞≤λ, inf
u∈R
|ϕ(u)|≥e−2∆λ>0 so no ill-posedness!

Furthermore, an estimator for N can be constructed from it:

N (x) =
1

∆

∫
R

fx (y)F−1[Logϕ](dy),

where Log is the distinguished logarithm, fx := 1(−∞,x] 1R \{0}
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Let N := λF be the Lévy distribution of C , denote the Fourier
transform operator by F and let P be the law Y .
Then, the characteristic function of each increment (∼ the noise) is

ϕ(u) := F [P](u) := E [e iuY ] = e∆(F [dN ](u)−λ ), u ∈ R .

Due to ‖F [dN ]‖L∞≤λ, inf
u∈R
|ϕ(u)|≥e−2∆λ>0 so no ill-posedness!

Furthermore, an estimator for N can be constructed from it:

Nn(x) :=
1

∆

∫
R

fx (y)F−1[Logϕ](dy),

where Log is the distinguished logarithm, fx := 1(−∞,x] 1R \{0}
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Let N := λF be the Lévy distribution of C , denote the Fourier
transform operator by F and let P be the law Y .
Then, the characteristic function of each increment (∼ the noise) is

ϕ(u) := F [P](u) := E [e iuY ] = e∆(F [dN ](u)−λ ), u ∈ R .

Due to ‖F [dN ]‖L∞≤λ, inf
u∈R
|ϕ(u)|≥e−2∆λ>0 so no ill-posedness!

Furthermore, an estimator for N can be constructed from it:

Nn(x) :=
1

∆

∫
R

fx ,n(y)F−1[Logϕ](dy),

where fx ,n := 1(−∞,x] 1[−Hn,Hn]\(−εn,εn), εn,H
−1
n → 0 as n→∞
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The spectral approach: No ill-posedness and estimators

Let N := λF be the Lévy distribution of C , denote the Fourier
transform operator by F and let P be the law Y .
Then, the characteristic function of each increment (∼ the noise) is

ϕ(u) := F [P](u) := E [e iuY ] = e∆(F [dN ](u)−λ ), u ∈ R .

Due to ‖F [dN ]‖L∞≤λ, inf
u∈R
|ϕ(u)|≥e−2∆λ>0 so no ill-posedness!

Furthermore, an estimator for N can be constructed from it:

Nn(x) :=
1

∆

∫
R

fx ,n(y)F−1[Logϕn](dy),

where fx ,n := 1(−∞,x] 1[−Hn,Hn]\(−εn,εn), εn,H
−1
n → 0 as n→∞,

ϕn(u) := 1
n

∑n
k=1 e iuYk is the empirical characteristic function of

the increments
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The spectral approach: No ill-posedness and estimators

Let N := λF be the Lévy distribution of C , denote the Fourier
transform operator by F and let P be the law Y .
Then, the characteristic function of each increment (∼ the noise) is

ϕ(u) := F [P](u) := E [e iuY ] = e∆(F [dN ](u)−λ ), u ∈ R .

Due to ‖F [dN ]‖L∞≤λ, inf
u∈R
|ϕ(u)|≥e−2∆λ>0 so no ill-posedness!

Furthermore, an estimator for N can be constructed from it:

Nn(x) :=
1

∆

∫
R

fx ,n(y)F−1[LogϕnFKhn ](y)dy ,

where fx ,n := 1(−∞,x] 1[−Hn,Hn]\(−εn,εn), εn,H
−1
n → 0 as n→∞,

ϕn(u) := 1
n

∑n
k=1 e iuYk is the empirical characteristic function of

the increments and Khn := 1
hn

K
(
·

hn

)
, with K a band-limited

kernel function and hn → 0.
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The spectral approach: No ill-posedness and estimators

Let N := λF be the Lévy distribution of C , denote the Fourier
transform operator by F and let P be the law Y .
Then, the characteristic function of each increment (∼ the noise) is

ϕ(u) := F [P](u) := E [e iuY ] = e∆(F [dN ](u)−λ ), u ∈ R .

Due to ‖F [dN ]‖L∞≤λ, inf
u∈R
|ϕ(u)|≥e−2∆λ>0 so no ill-posedness!

Furthermore, an estimator for N can be constructed from it:

Nn(x) :=
1

∆

∫
R

fx ,n(y)F−1[LogϕnFKhn ](y)dy ,

where fx ,n := 1(−∞,x] 1[−Hn,Hn]\(−εn,εn), hn, εn,H
−1
n → 0 as

n→∞, ϕn(u) := 1
n

∑n
k=1 e iuYk and Kh := 1

h K
( ·

h

)
, with K a

band-limited kernel function.

Due to limx→∞N (x) = λ, λn := Nn(∞)
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The spectral approach: No ill-posedness and estimators

Let N := λF be the Lévy distribution of C , denote the Fourier
transform operator by F and let P be the law Y .
Then, the characteristic function of each increment (∼ the noise) is

ϕ(u) := F [P](u) := E [e iuY ] = e∆(F [dN ](u)−λ ), u ∈ R .

Due to ‖F [dN ]‖L∞≤λ, inf
u∈R
|ϕ(u)|≥e−2∆λ>0 so no ill-posedness!

Furthermore, an estimator for N can be constructed from it:

Nn(x) :=
1

∆

∫
R

fx ,n(y)F−1[LogϕnFKhn ](dy),

where fx ,n := 1(−∞,x] 1[−Hn,Hn]\(−εn,εn), hn, εn,H
−1
n → 0 as

n→∞, ϕn(u) := 1
n

∑n
k=1 e iuYk and Kh := 1

h K
( ·

h

)
, with K a

band-limited kernel function.

Due to limx→∞N (x) = λ, λn := Nn(∞) and F̂n := Nn/λn.
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The spectral approach: F̂n := Nn/λn

How does F̂n and its
√

n-fluctuations about F look?

Left figure:Black:F=N(0,1); Blue: F̂n,n =10,20,...,500 and F±max|F̂n−F |
Right figure:

√
n(F̂n−F ), n = 10, 20, . . . , 500 (λ = 3,∆ = 1)

Can we show an analogue of Donsker’s theorem for F̂n?
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A Donsker theorem for discrete observations

We make no assumptions on λ > 0 and on F we assume

it has a density,

|F (x)−F (y)|. |x−y |α for all x , y ∈R and some α∈(0, 1], and∫
R logβ

(
max{|x |, e}

)
F (dx) <∞ for some β > 2.

On K suppose∫
R K (x)dx = 1,

supp(FK ) ⊆ [−1, 1], and

|K (x)| . (1 + |x |)−η for some η > 2.
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A Donsker theorem for discrete observations

Theorem (Coca (2015))

Take hn∼exp(−nϑh ), εn∼exp(−nϑε) and Hn∼exp(nϑH ) with
0 < ϑε, ϑH < ϑh < 1/4.

Then, as n→∞,

√
n (λn − λ)→d N(0, σ2),

where σ2 := G (1R \{0},1R \{0}), and

√
n
(

F̂n − F
)
→D ĜN in L∞(R),

where ĜN is a zero-mean Gaussian process on R with covariance
function Σx ,y :=G (fx , fy ), with fx :=λ−1

(
1(−∞,x]−F (x)

)
1R \{0}.
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A Donsker theorem for discrete observations: Covariance

The covariances are defined through

G (g1,g2) :=
1

∆2

∫
R

(
g1∗F−1[1/ϕ(−·)](x)

)(
g2∗F−1[1/ϕ(−·)](x)

)
P(dx),

where ∗ denotes the convolution operation, F−1
[
ϕ−1(−·)

]
is a

finite signed measure on R satisfying

F−1
[
ϕ−1(−·)

]
= e∆λ

∞∑
k=0

ν̄∗k
(−∆)k

k!
,

with ν̄(A) := ν(−A) for all A ⊆ R Borel measurable, ν̄∗k is the
k-fold convolution of ν̄ and ν̄∗0 = δ0, and the probabillity measure
P has the well-known representation (see Remark 27.3 in Sato
(1999))

P = e−∆λ
∞∑

k=0

ν∗k
∆k

k!
.
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A Donsker theorem for discrete observations: Conclusions

Conclusions:

The covariance function attains the Cramér-Rao bound of the
model (F with regular density), as shown by Trabs (2014);

Therefore F̂n is 1/
√

n-consistent under the sup-norm and
asymptotically efficient; and

(Optimal) confidence bands and goodness-of-fit tests for F
can be constructed boostrap techniques such as substituting
f , F , ϕ and P by their empirical counterparts in G ;

∆λΣx ,y = F (x ∧ y)− F (x)F (y) + O(∆λ) so when ∆λ is
small classical Donsker’s theorem is recovered and these
procedures can be approximated by analogues independent of
F , ϕ and P.
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A Donsker theorem for discrete observations: Proof

Write
√

n
(
F̂n − F

)
= λ−1

n

√
n ((Nn −N ) + F (λ− λn)) .

Therefore we need joint convergence of λn and Nn and, in
particular, convergence of the latter:

Decompose
√

n (Nn −N ) into a stochastic and a bias term
and show uniform negligibility of the latter;

Split the stochastic term into its linear (in (Pn − P),
Pn := 1

n

∑n
k=1δYk

) and nonlinear part and show uniform
negligibility of the latter by controlling sup

|u|≤h−1
n

|ϕn(u)− ϕ(u)|;

The linear term is (Pn − P)ψx ,n, where Q ψ =
∫
R ψ dQ and

ψx ,n := fx ,n ∗ F−1[1/ϕ(−·)] ∗ Khn . This is an empirical
process indexed by a class of functions changing with n so, to
show it is P-Donsker, we use the following theorem.
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A Donsker theorem for discrete observations: Proof

Theorem (Theorem 2.11.23 in van der Vaart and Wellner (1996))

For each n, let Ψn := {ψx ,n : x ∈ R} be a class of measurable
functions indexed by a totally bounded semimetric space (R, ρ).

Given envelope functions Ψn assume P∗Ψ2
n = O(1) and

P∗Ψ2
n1{Ψn>κ

√
n} → 0 for every κ > 0, and, for every δn ↓ 0,∫ δn

0

√
log N[ ](ε‖Ψn‖L2(P), Ψn, L2(P)) dε, sup

ρ(x ,y)<δn

P(ψx ,n−ψy ,n)2 → 0

where ‖ψ‖L2(P) = (
∫
R |ψ|

2P)1/2. Then
(√

n (Pn − P)ψx ,n

)
x∈R is

asymptotically tight in L∞(R) and converges in distribution to a
tight Gaussian process provided the sequence of covariance
functions Pψx ,nψy ,n − Pψx ,nPψy ,n converges pointwise on R×R.
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A Donsker theorem for discrete observations: Extensions

In Coca (2015) we also show

a Donsker theorem for N . The limit process, of Brownian
motion-type, is different from that of F , of Brownian
bridge-type. The former provides optimal inference procedures
for the CPP as a whole and gives insight into efficiency issues;

Joint convergence of all the estimators;

F having a discrete component; and

non-zero drift γ, for which we find an estimator γ̂n such that√
nh−1

n (γ̂n − γ)→Pr 0.

Furthermore, the results can be extended to X being
multidimensional and to noisy (unknown but observed noise) and
nonequispaced discrete observations. Future manuscript?
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Anal. 263, 3306–3332.
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Sato, K.-I. (1999). Lévy processes and Infinitely Divisible Distributions.
Cambridge University Press, Cambridge.
Trabs, M. (2014). Information bounds for inverse problems with application to
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