Multicomponent Skyrmion lattices and theirexcitations

Benoit Douçot LPTHE Paris

Dima Kovrizhin Cambdridge and MPI-PKS Dresden

Roderich Moessner MPI-PKS Dresden

Quantum Hall effect

 R_{xy} = $(V(3))$ $-V(5)$) / I

Quantum nature of Hall resistance plateaus

Plateaus observed for (ν integer):

$$
\rho_{xy}=\frac{B}{ne}=\frac{h}{\nu e^2}
$$

 \rightarrow Quantized electronic densities:

$$
n = \nu \frac{eB}{h}
$$

In terms of $\Phi_0=\frac{h}{e}$ e $\frac{h}{e}$: "Flux quantum"

$$
N_{\text{electrons}} = \nu \frac{\text{Total magnetic flux}}{\Phi_0}
$$

Energy spectrum for ^a single electron

$$
H = \frac{1}{2m}(\mathbf{P} + e\mathbf{A})^2, \quad \mathbf{B} = \nabla \wedge \mathbf{A} \text{ spatially uniform.}
$$

Define gauge invariant ${\bf \Pi}={\bf P}+e{\bf A}=m{\bf v}$ ∂ \mathcal{L} $\{p_i,r_j\}=\delta_{ij},\ \ \ \ i,j\in\{x,y\},\ \ \ \ \{\Pi_x,\Pi_y\}=0$ \rightarrow Harmonic oscillator spectrum: $E_n=\hbar\omega(n+1/2)$, $\omega=$ = $\delta_{ij}, \quad i,j \in \{x,y\}, \quad \{\Pi_x, \Pi_y\}$ $= eB$ $= eB/m$

Conserved quantities (also generators of magnetic translations) $\mathbf{v}=\omega\boldsymbol{\hat{z}}\wedge(\mathbf{r}-\mathbf{R}),\quad \mathbf{R}$ \mathbf{H} $\mathbf{$ $= {\rm r}+$ $\boldsymbol{\hat{z}} \wedge$ Π $\frac{\wedge \mathbf{1} \mathbf{1}}{eB}, \quad \{R_x,R_y\}$ Heisenberg principle: $B \Delta R_x \Delta R_y \simeq \frac{h}{e} = \Phi_0$ =−1 $\frac{1}{eB},\quad \{R_i,\Pi_j\}=0\ .$ \boldsymbol{h} e $=\Phi_0$ \rightarrow Magnetic length l = $\sqrt{}$ \hbar eB

Intuitively, each state occupies the same area as ^a flux quantum Φ_0 , so that the number of states per Landau level =

> Total magnetic flux Φ_0

 ν is interpreted as the number of occupied Landau levels

Ferromagnetism at $\nu = 1$

Coulomb repulsion favoursc orbital anti-symmetricwavefunction

→ spin wavefunction:
svmmetric (ferromagr symmetric (ferromagnet)

 $(LL \sim \text{flat band})$

A class of trial states near $\nu = 1$

Take antisymmetrized products of single particle states (Slaterdeterminants or Hartree-Fock states): $|S_\psi\rangle$ where $\Phi_{\alpha,a}(r) = \chi_{\alpha}(r)\psi_a(r)$, $r = (x, y)$, $a \in \{1, ..., d\}$. = \bigwedge^N_{α} $\frac{dN}{d\alpha}|\Phi_{\alpha}\rangle$ **Contract Contract Contract Contract** \sim \sim \sim \sim \sim \sim $\chi_\alpha(r)\to$ electron position.
 $\chi_\alpha(r)\to$ slowly varying sn $\psi_a(r) \to$ slowly varying spin background. $(\langle \psi(r) | \psi(r) \rangle = 1)$. In the $d=2$ case, if σ_a Associated classical spin field: $n_a(r)=\langle\psi(r)|\sigma_a|\psi(r)\rangle$ $_{a}$ denote Pauli matrices: \sim \sim Topological charge: $N_{\rm top} = \frac{1}{4\pi}\int d^{(2)}r\, (\partial_x \vec{n}\wedge \partial_y \vec{n})\cdot\vec{n}$ $\frac{1}{4\pi}\int d^{(2)}r\,(\partial_x\vec{n}\wedge\partial_y\vec{n})\cdot\vec{n}$

Because of large magnetic field, we require that orbital wave-functions $\Phi_{\alpha,a}(r)$ minimize their kinetic energy.

Extra charges at ^ν ⁼ ¹ **induce Skyrmion textures**

Sondhi, Karlhede, Kivelson, Rezayi, PRB **⁴⁷**, 16419, (1993)

$$
\langle \Phi_{\alpha} | (P - eA)^2 | \Phi_{\alpha} \rangle = \langle \chi_{\alpha} | (P - eA_{\text{eff}})^2 + V_{\text{eff}} | \chi_{\alpha} \rangle
$$

$$
V_{\text{eff}} = \langle \nabla \psi | \nabla \psi \rangle - \langle \nabla \psi | \psi \rangle \langle \psi | \nabla \psi \rangle
$$

$$
A_{\text{eff}} = A - \Phi_0 \frac{1}{2\pi} \mathcal{A}
$$

Berry connection: $\mathcal{A} = \frac{1}{i}\langle \psi|\nabla\psi\rangle$

Generalized topological charge: $\oint \mathcal{A}.d\mathbf{r} = 2\pi N_{\text{top}}$ (This coincides with the previous notion when $d=2$).

Extra charges at ^ν ⁼ ¹ **induce Skyrmion textures**

Sondhi, Karlhede, Kivelson, Rezayi, PRB **⁴⁷**, 16419, (1993)

$$
\langle \Phi_{\alpha} | (P - eA)^2 | \Phi_{\alpha} \rangle = \langle \chi_{\alpha} | (P - eA_{\text{eff}})^2 + V_{\text{eff}} | \chi_{\alpha} \rangle
$$

Consequences:

The charge orbitals $\chi_{\alpha}(r)$ lie in the lowest Landau level of $A_{\textrm{eff}}$. There are $N_{\text{eff}}=\text{Effective flux}/\Phi_{0}$ states in this level. Condition to minimize Coulomb energy:

$$
N_{\text{electrons}} = N_{\text{eff}}
$$

Finally:

$$
N_{\text{electrons}} = N(\nu = 1) - N_{\text{top}}
$$

Picture of ^a Skyrmion crystal

Skyrmion crystals in electronic systems

Theoretical prediction: Brey, Fertig, Côté and MacDonald, PRL**⁷⁵**, 2562 (1995)

 Specific heat peak: Bayot et al. PRL **⁷⁶**, ⁴⁵⁸⁴ (1996) and PRL **⁷⁹**, 1718 (1997)

 Increase in NMR relaxation: Gervais et al. PRL **⁹⁴**, ¹⁹⁶⁸⁰³ (2005)

Raman spectroscopy: Gallais et al, PRL **¹⁰⁰**, ⁰⁸⁶⁸⁰⁶ (2008) Microwave spectroscopy: Han Zhu et al. PRL **¹⁰⁴**, ²²⁶⁸⁰¹ (2010)

Recent observation (neutron scattering) on the chiral itinerant

magnet MnSi: Mühlbauer et al, Science **³²³**, ⁹¹⁵ (2009)

Multi-Component Systems (Internal Degrees of Freedom)

The case for entangled textures (I)

Bourassa et al, Phys. Rev. B **⁷⁴**, ¹⁹⁵³²⁰ (2006)

The case for entangled textures (II)

Bilayer with charge imbalance

Ezawa, Tsitsishvili, Phys. Rev. B **⁷⁰**, 125304, (2004)

Collective mode spectrum

Côté et al., Phys. Rev. B **⁷⁶**, 125320, (2007)

Enforcing projection onto the lowest Landau level

Problem: in general, factorization of single particle orbitals is not compatible with lying in the L.L.L.

Important exception: holomorphic textures.

Solution: diagonalize an auxiliary Zeeman-like Hamiltonian:

 $\hat{H}_{Z} = -\mathcal{P}_{LLL} \frac{\psi}{\sum_{i=1}^d}$ $\frac{\psi_a(r)\bar{\psi}_b(r)}{\sum_{i=1}^d\bar{\psi}_b(r)\psi_b}$ $\stackrel{d}{i=1}\bar{\psi}_b(r)\psi_b(r)$ \mathcal{P}_{LLL} . In absence of \mathcal{P}_{LLL} , this operator

has two highly degenerate eigenvalues, 1 and 0.

Effects of \mathcal{P}_{LLL} (F. Faure and B. Zhilinskii, (2001)):

Lifts the degeneracy, turning the spectrum of \hat{H}_Z \overline{z} into two bands, separated by ^a gap.

The dimensions of eigenspaces associated to eigenvalues ¹and 0 are respectively $N-\!\!$ $N_{\rm top}$ and $(d -1)N + N_{\text{top}}$

The projector \hat{P} associated to the former band can be computed by a semi-classical expansion, the small parameter being the magnetic length l_\parallel

$\boldsymbol{\hat{\mathsf{S}}}$ **emi-classical expansion of** \hat{P}

- Start from $[\hat{P}, \hat{H}_Z] = 0$ and \hat{P}^2 $^{2}=\hat{P}$.
- Represent operators in the LLL, \hat{P} and \hat{H}_Z (anti-Wick) symbols, P and $P_0 = \frac{\psi_a}{\sum_{i=1}^d}$ $_Z$ by their $=$ $\frac{\psi}{\psi}$ $\frac{\psi_a(r)\bar{\psi}_b(r)}{\sum_{i=1}^d\bar{\psi}_b(r)\psi_b}$ $\frac{d}{i=1}\,\bar{\psi}_b(r)\psi_b(r) \,.$
- Expand $P=P_0+l^2$ products. First quantum correction: $P_1 = ({\bf 1} - 2 P_0) (P_0 \star_1 P_0) .$ $^2P_1+l^4$ P2+ ..., and like-wise for star
- Form Slater determinant $|\mathcal{S}_{\psi}\rangle$ from projector \hat{P} .
- Transform anti-Wick (contravariant) symbols into Wick(covariant) symbols to get local density matrix $P_{\rm cov}(r)$ in state $|\mathcal{S}_{\psi}\rangle$. $P_{\text{cov}}=P_0+2l^2\partial_{\bar{z}}\partial_{z}P_0+l^2P_1+\mathcal{O}(l)$ $^{2}\partial_{\bar{z}}\partial_{z}P_{0}+l^{2}$ $^2P_1+\mathcal{O}(l^4)$ $^{4})$
- Local particle density: $\rho(r) = \frac{1}{2\pi}$ $\overline{2\pi l^2}$ $Q_{\rm top}(r)$

d-component spinor field $|\psi(r)\rangle$ parametrizes a Slater determinant $|\mathcal{S}_{\psi}\rangle$. Consider two-body interactions (Coulomb) and look at first quantum correction in total energy:

$$
\mathcal{E}_{ex}=\langle \mathcal{S}_{\psi}|H_{\rm int}|\mathcal{S}_{\psi}\rangle=\int d^{(2)}r\left(\frac{\langle \nabla\psi|\nabla\psi\rangle}{\langle\psi|\psi\rangle}-\frac{\langle \nabla\psi|\psi\rangle\langle\psi|\nabla\psi\rangle}{\langle\psi|\psi\rangle^{2}}\right)
$$

Berry connection: $\mathcal{A} = \frac{1}{i} \langle \psi | \nabla \psi \rangle$ Topological charge: $\oint {\cal A}.d{\bf r}=2\pi N_{\rm top}$

 $\mathcal{E} \geq \pi |N_{\rm ton}|$

Lower bound is reached when $|\psi(r)\rangle$ is holomorphic $(N_{\rm top}>0)$ or anti-holomorphic: $(N_{\rm top} < 0)$, leading to a massive
desenseses: degeneracy.

Variational formulation of Schrödinger equation:

$$
\delta \int_{t_i}^{t_f} \left(i \langle \Psi | \frac{\partial \Psi}{\partial t} \rangle - \langle \Psi | H | \Psi \rangle \right) dt = 0
$$

 Time-dependent Hartree-Fock equations of motion: constraineddynamics within the manifold $|\Psi(t)\rangle=|\mathcal{S}_{\psi(t)}\rangle.$ To lowest order ir = $|{\mathcal S}_{\psi(t)}\rangle$. To lowest order in l^2 expansion:

$$
\langle \mathcal{S}_{\psi(t)} | \frac{\partial \mathcal{S}_{\psi(t)}}{\partial t} \rangle = \int \frac{d^2 r}{2\pi l^2} \langle \psi(r,t) | \frac{\partial \psi(r,t)}{\partial t} \rangle + \mathcal{O}(1) \equiv \alpha(\psi(t)) [\frac{\partial \psi(r,t)}{\partial t}]
$$

Considering $\omega=-id\alpha$ allows us to view the set of classical \sim \sim textures as an infinite dimensional symplectic manifold. Thesubset of holomorphic textures $\mathcal D$ is a submanifold of finite
dimension. Observation: the restriction of with $\mathcal D$ is dimension. Observation: the restriction of ω to ${\cal D}$ is
non-degenerate non-degenerate.

Hamiltonians with continuous degeneracies (I)

Normal form for positive Hamiltonians near ^a degenerateequilibrium point (Williamson):

$$
H = \frac{1}{2} \sum_{j=N_0+1}^{N_0+N_d} p_j^2 + \frac{1}{2} \sum_{j=N_0+N_d+1}^{N} \omega_j (p_j^2 + q_j^2)
$$

 $N_{0},\,N_{d},$ and $N_{m}=N-\,$ of <mark>drift modes</mark>, and of <mark>massive modes</mark> respectively. $N_{\rm 0}$ N_d are the numbers of zero modes, Relative Darboux theorem: if ^a classical Hamiltonian systemadmits a submanifold $\mathcal D$ of degenerate equilibria with a constant
Williamson type ($N-N-N$), there exists locally conspiced Williamson type (N_0,N_d,N_m) , there exists locally canonical coordinates, such that:

 $_N = 0$ and

- \bullet $\mathcal D$ is defined by: $p_{N_0+1}=...=p_{N_0+N_d}=p_{N_0+N_d+1}=...=p_N$ $q_{N_0+N_d+1}=...=q_N=0$ $N = 0.$
- Near D , the previous normal form for H is valid, with ω_j
functions of the claw coordinates functions of the slow coordinates $(p_s, q_s) \equiv (p_1,...,p_{N_0}, q_1,...,q_{N_0}, q_{N_0+1},...,q_{N_0+N_d}),$ and the kinetic term takes the form: $\frac{1}{2}\sum_{i=N_0+1}^{N_0+N_d}A_{ij}(p_s)$ $\frac{1}{2}\sum$ $N_{\rm 0}$ $\, + \,$ $N_{\boldsymbol d}$ $\sum\limits_{j=N_0+1}^{N_0+N_d}A_{ij}(p_s,q_s)p_ip_j.$

Useful special case: if the restriction of ω to ${\cal D}$ is
nen degenerate, then $N=0$ non-degenerate, then $N_d = 0.$

Quantum degeneracy among holomorphic textures

Question: how does the quantum ground-state energy of themassive modes depend on the slow variables (p_s,q_s) ? Toy model: Assume a single particle Hamiltonian ($z = p + iq$) such that $H(z,\bar{z})\equiv \langle\Phi_{\bar{z}}|\hat{H}|\Phi_{\bar{z}}\rangle$ is minimal at $z=0.$ Then: $H(z,\bar{z})=E_0+\frac{\omega_0}{2}\bar{z}z+\frac{\Delta}{4}z^2+$ 0 2 $\frac{\omega_0}{2}\bar{z}z+\frac{\Delta}{4}$ 4 $\mathcal Z$ 2 $^2+$ $\frac{\bar{\Delta}}{4}$ \bar{z}^2 $^2+$ $\mathbf{Quantum\text{-}mechanically:} \,\,\,\hat{H} = E_0 + \hbar \omega.$ $=E_0+\hbar\omega_0~b^+$ with $[b,b^+]=1.$ Its ground-state energy is: $+b+\frac{\hbar}{4}$ Δ $\frac{2\Delta}{2}(b^+$ $^{+})^2$ $^2+\frac{\hbar}{4}$ $\frac{\bar{\Delta}}{2}$ $b^2\,$ $^2+$
. $E_{gs}=E_{0}+{\hbar\over2}$ to all orders in \hbar if the Taylor expansion of the covariant symbol $\frac{\hbar}{2}(\sqrt{\omega}$ 2 $_0^2-\Delta^2$ $-\omega_0$). So $E_{gs}=E_0$ $_{0}^{\prime}$ if $\Delta=0.$ This holds $H(z,\bar{z})$ does not contain any term of the form z^n or \bar{z}^n $M \cap in$ Main remark: the ${\mathbb C} P(d-1)$ action, seen as a covar .has this property, z being replaced by $\{\delta \psi_a(r)\}_{a,r}$, and \bar{z} by (1) action, seen as a covariant symbol, $\{\delta \psi_a(r)\}_{a,r}.$

Consider small deviations $|\psi\rangle \rightarrow |\psi\rangle + \sqrt{\langle \psi | \psi \rangle} |\phi\rangle$ away from holomorphic spinor $|\psi\rangle.$

$$
\mathcal{E} = \pi |N_{\text{top}}| + 2\langle \phi | M^+ P M | \phi \rangle + \dots
$$

 $M|\phi\rangle$ = $= |\partial_{\bar{z}} \phi \rangle + \frac{1}{2}$ $P|\phi\rangle=|\phi\rangle-\frac{|\psi(z)|}{\langle y_0\rangle}$ 2 $\frac{\langle \partial_{\bar{z}} %Mathcal{I}(\bar{z})\rangle}{\langle\bar{z}(\bar{z})\rangle\langle\bar{z}\rangle} =\frac{\langle\bar{z}(\bar{z})\rangle\langle\bar{z}(\bar{z})\rangle}{\langle\bar{z}(\bar{z})\rangle\langle\bar{z}\rangle\langle\bar{z}\rangle} \label{eq:zeta}$ $\frac{\partial_{\bar{z}} \psi |\psi\rangle}{\langle \psi | \psi \rangle} |\phi\rangle$ = $=|\phi\rangle-\frac{|\psi(z)\rangle\langle\psi(z)|}{\langle\psi(z)|\psi(z)\rangle}|\phi\rangle$ Key property: $[M,M^+] =\frac{1}{2}$ 2 $\mathcal{B}(r)=\pi Q(r)$ If $\mathcal{B}(r)$ constant, the spectrum of M^+M is $\{\frac{\mathcal{B}}{2}, \mathcal{B}\}$ t large d we may expect that the At large d , we may expect that the effect of P is small. 2 $\frac{5}{2}n, n = 0, 1, 2, ...$ Most likely, Hessian of $\mathbb{C}P^{(d-1)}$ model is $\mathbf g$ apped, with an energy gap of order $\frac{e}{4\pi}$ 2 $\frac{e^2}{4\pi\epsilon l}nl^2 \qquad \qquad (l=$ $\sqrt{\hbar/eB},\,\overline{Q(r)}=n$).

Spectrum of the Hessian matrix (II)

Variational approach for lattice of textures

$$
\mathcal{E} = \mathcal{E}_{ex} + \mathcal{E}_{el}, \quad \mathcal{E}_{el} = \frac{1}{2} \int d^{(2)}r_1 \int d^{(2)}r_2 Q(r_1) u(r_1 - r_2) Q(r_2)
$$

$$
u(r) = \frac{e^2}{4\pi\epsilon|r|}
$$

Assume an average charge density $Q(r)=n,$ then $\mathcal{E}_{el}/\mathcal{E}_{ex}=ln^{1/2}$, where $l=\sqrt{\hbar/eB}$. In the *dilute lin* Main approximation: Minimize $\mathcal E$ among the configurations that 1 $\frac{1}{\sqrt{2}}$ 2 , where $l=$ $\sqrt{\hbar/eB}$. In the dilute limit, $\mathcal{E}_{ex} \gg \mathcal{E}_{el}$ minimize $\mathcal{E}_{ex}.$ That is, we look for holomorphic d -component spinor configurations $|\Psi(r)\rangle$ with given $Q(r)=n$, such that \mathcal{E}_{el} is minimum.

Physical intuition: One should make $Q(r)$ as homogeneous as \sim possible. In particular, it is natural to consider first periodicpatterns.

Periodic textures with lowest energy

Spontaneously broken $SU(d)$ symmetry : if $g\in SU(d)$, changing $|\Psi(z)\rangle$ into $g\ket{\Psi(z)}$ gives another physically inequivalent ground-state.

Periodic texture ^d ⁼ ²

Periodic texture ^d ⁼ ⁴

 $Q(r)$ is always γ_1/d and γ_2/d periodic.

At large d the modulation contains mostly the lowest harmonic, and its amplitude <mark>decays exponentially</mark> with $d.$

Large d behavior for a square lattice:

$$
Q(x, y) \simeq \frac{2}{\pi} - 4de^{-\pi d/2} [\cos(2\sqrt{d}x) - 2e^{-\pi d/2} \cos^2(4\sqrt{d}x) + (x \leftrightarrow y)] + \dots
$$

Only the triangular lattice seems to yield a true local energy minimum. This is most directly seen by computingeigenfrequencies of small deformation modes.

Zero-momentum sector: Hamiltonian system with $N=d^2$ degrees of freedom.

If $g\in U(d)$, the transformation $M\to gM$ preserves equations of
motion motion.

The $U(d)$ -orbit of the periodic ground-state has dimension d^2 . Furthermore, it is lagrangian.

Example of ^a system with ^a degenerate manifold of Williamsontype $(N_0, N_d, N_m) = (0, d^2, 0)$.

Analogy with spin-wave theory: $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

$$
\psi_a(r) = (\delta_{ab} + M_{ab}(r))\theta_b(r)
$$

 $M_{ab}(r)$ gives d^2 degrees of freedom for each *pseudo-momentum*, so there are d^2 branches (positive frequencies) in the excitation spectrum: the situation isreminiscent of ^a non-collinear antiferromagnet.

Get one *magnetophonon* with $\omega \simeq k^{1+\alpha/2}$ if $u(r) \simeq r^{-\alpha}$, and d^2-1 spin-waves with linear disr $^{2}-1$ *spin-waves* with linear dispersion.

Collective mode spectrum (II)

Numerical spectrum for $d=3$ and Coulomb interactions

D. Kovrizhin, B. D. and R. Moessner, Phys. Rev. Lett. **¹¹⁰**, 186802, (2013)

An ^U(d) ^σ**-model for collective dynamics? (I)**

Linear spin-waves
\n
$$
\begin{array}{c}\n\bigvee_{a} \uparrow \qquad \qquad \nearrow \qquad \qquad \nearrow \qquad \searrow \qquad \searrow \\
\psi_{a}(r) = (\delta_{ab} + M_{ab}(r))\theta_{b}(r) \\
M_{ab}(r) = \sum_{\vec{k}} e^{i\vec{k}\cdot\vec{r}} \widetilde{M}_{ab}(\vec{k})\n\end{array}
$$

Sigma model	(gradient expansion)		
\overline{y}	\overline{y}	\overline{y}	\overline{y}
$\psi_a(r) = g_{ab}(r)\theta_b(r), g_{ab}(r)$			
unitary S local functional of derivatives of g_{ab}			

$$
S = g \int dt \int d^{(2)}r \operatorname{Tr} \left[(\partial_t g)^2 - (\partial_x g)^2 - (\partial_y g)^2 \right]
$$

An ^U(d) ^σ**-model for collective dynamics ? (II)**

Projection on a space of holomorphic functions not compatible with unitarity condition $\sum_b g_{ba}(r)g_{bc}(r) = \delta_{ac}$. Our "spin-wave theory" has the following structure: $\psi_a(r) =$ $h=\left[(\delta_{ab} + \hat{M}_{ab})\theta_{b}\right](r)$ with $\hat{M}_{ab}(r) = \mathcal{P}_{hol}\left(\sum_{\vec{k}} M_{ab}(\vec{k})e^{i\vec{k}\cdot\vec{r}}\right)$

Suggests to construct gradient expansion using \mathcal{P}_{hol} : $\psi_{a}(r)=\mathcal{P}_{hol}\left(g_{ab}(r)\theta_{b}\right)\left(r\right)\,$ Noto: D \int_{0}^{r} Note: $\mathcal{P}_{hol}f\mathcal{P}_{hol}g\theta = \mathcal{P}_{hol}(f\star g)\theta$

But is there an optimal choice of \mathcal{P}_{hol} ? $\mathcal S$ non-local functional of derivatives of g_{ab} . Can we approximate it by a l<mark>ocal</mark> one in the long wave-length limit ?

Summary (I)

- Construction of Slater determinants in L.L.L associated tosmooth classical spin textures.
- Use of a semi-classical expansion in the $l \to 0$ limit.
- Heuristic picture: Slater determinants associated to smoothspin textures as coherent states in fermionic Fock space.
- $\mathbb{C}P(d-1)$ model emerges as principal symbol of low-energy
Hemiltonian H Hamiltonian $H_{\rm eff}.$
- Highly degenerate ground-state spanned by holomorphictextures.
- Degeneracy robust to the introduction of quantum fluctuations.

Summary (II)

- The anti-holomorphic degrees of freedom have ^a finite but small energy gap, of order nl^2 .
- Degeneracy among holomorphic textures is lifted by long-range tail of interaction potential (sub-principal symbol of $H_{\rm eff}$).
- $\bullet\,$ Yields ${\$ $Skyrmion crystals which spontaneously break $SU(d)$$ symmetry.
- Existence of collective (Goldstone) modes similar to those in non-collinear antiferromagnets.

Open questions

- Small Hessian gap $\mathcal{O}(nl^2)$ associated to anti-holomorphic modes \rightarrow can we justify projection onto the linear span of
holomorphic textures, when the sub-principal symbol of H holomorphic textures, when the sub-principal symbol of H_{eff} is introduced ?
- Are the collective degrees of freedom described by anemerging $U(d)$ σ -model ?
- Role of non-commutativity of physical plane ?
- Role of quantum fluctuations \rightarrow quantum melting of Skyrmion crystal? Skyrmion crystal?
- Connection to experiments (NMR relaxations in bilayers)?
- Extension to higher integer filling factors [→] $\rightarrow \mathbb{C}P^{(d-1)}$ replaced by Grassmanian manifolds.

Construction of periodic textures

Problem: construct periodic holomorphic maps from torus toprojective spaceAnswer: use Theta functions

$$
\gamma_1 = \pi \sqrt{d}
$$

$$
\gamma_2 = \pi \sqrt{d}\tau
$$

$$
\theta(z + \gamma) = e^{a_{\gamma}z + b_{\gamma}}\theta(z)
$$

$$
\gamma = n_1\gamma_1 + n_2\gamma_2
$$

$$
n_1 \text{ and } n_2 \text{ integers}
$$

Fixing the topological charged

$$
\frac{1}{i} \int_{\mathcal{C}(\gamma_1, \gamma_2)} \frac{\theta'(z)}{\theta(z)} = \frac{1}{i} (a_{\gamma_1} \gamma_2 - a_{\gamma_2} \gamma_1) = 2\pi d
$$

Theta functions of a fixed type carrying topological charge d on the elementary (γ_1,γ_2) parallelogram form a complex vector space of dimension d (Riemann Roch theorem on torus).

Lattice of allowed translations

Quantized translations:

 μ

$$
\mathcal{T}_{w}\theta(z) = e^{\mu(w)z}\theta(z-w)
$$

$$
\frac{\mathcal{T}_{w}\theta(z+\gamma)}{\mathcal{T}_{w}\theta(z)} = e^{a_{\gamma}z+b_{\gamma}}e^{\mu(w)\gamma-a_{\gamma}w}
$$

$$
w = \frac{1}{d}(m_1\gamma_1 + m_2\gamma_2)
$$

$$
(w) = \frac{1}{d}(m_1a_{\gamma_1} + m_2a_{\gamma_2})
$$

Type conservation:

 $\mu(w)\gamma-a_{\gamma}w\in 2\pi\mathbb{Z}$

for any lattice vector $\gamma.$

 $\mathcal{T}_w\mathcal{T}_{w'}=e$ i 2π $\frac{d\pi}{d}(m_1$ m^\prime_2 $-m_2$ m_1^{\prime} $\big) \mathcal{T}_{w'} \mathcal{T}_{w'}$

 $(m_1m_2^\prime-m_2m_1^\prime)/d$ nlogic: topological charge inside= parallelogram delimited by w and w' .

$$
\theta_p(z) = \sum_n e^{i\left(\pi \tau d(n - p/d)(n - 1 - p/d) + 2\sqrt{d}(n - p/d)z\right)}
$$

Pattern of zeros (d =4)

$$
\mathcal{T}_{\frac{\gamma_1}{d}} \theta_p = e^{i\frac{2\pi p}{d}} \theta_p
$$

$$
\mathcal{T}_{\frac{\gamma_2}{d}} \theta_p = \lambda \theta_{p+1}
$$

$$
\theta_p(z) = \sum_n e^{i\left(\pi \tau d(n - p/d)(n - 1 - p/d) + 2\sqrt{d}(n - p/d)z\right)}
$$

$$
\begin{array}{rcl}\n\mathcal{T}_{\frac{\gamma_{1}}{d}}\theta_{p} & = & e^{i\frac{2\pi p}{d}}\theta_{p} \\
\mathcal{T}_{\frac{\gamma_{2}}{d}}\theta_{p} & = & \lambda\theta_{p+1}\n\end{array}
$$

$$
\theta_p(z) = \sum_n e^{i\left(\pi \tau d(n - p/d)(n - 1 - p/d) + 2\sqrt{d}(n - p/d)z\right)}
$$

$$
\begin{array}{rcl}\n\mathcal{T}_{\frac{\gamma_{1}}{d}}\theta_{p} & = & e^{i\frac{2\pi p}{d}}\theta_{p} \\
\mathcal{T}_{\frac{\gamma_{2}}{d}}\theta_{p} & = & \lambda\theta_{p+1}\n\end{array}
$$

$$
\theta_p(z) = \sum_n e^{i\left(\pi \tau d(n - p/d)(n - 1 - p/d) + 2\sqrt{d}(n - p/d)z\right)}
$$

$$
\mathcal{T}_{\frac{\gamma_1}{d}} \theta_p = e^{i\frac{2\pi p}{d}} \theta_p
$$

$$
\mathcal{T}_{\frac{\gamma_2}{d}} \theta_p = \lambda \theta_{p+1}
$$

$$
\theta_p(z) = \sum_n e^{i\left(\pi \tau d(n - p/d)(n - 1 - p/d) + 2\sqrt{d}(n - p/d)z\right)}
$$

$$
\mathcal{T}_{\frac{\gamma_1}{d}} \theta_p = e^{i\frac{2\pi p}{d}} \theta_p
$$

$$
\mathcal{T}_{\frac{\gamma_2}{d}} \theta_p = \lambda \theta_{p+1}
$$

Applications of ^a flat topological charge profile

N. Cooper and J. Dalibard, PRL **¹¹⁰**, ¹⁸⁵³⁰¹ (2013); N. Cooper and R. Moessner, PRL **¹⁰⁹**, ²¹⁵³⁰² (2012)

Tight binding model in momentum space with ^a non-zero average flux (*à la* Hofstadter) corresponds, in the large *N* limit to
a periodio texture in real apaea » ... laked With very flot Perry. a periodic texture in real space $r \to |\psi(r)\rangle$ with very flat Berry
eurveture. After adding kinetie aperay of atoms, this generate curvature. After adding kinetic energy of atoms, this generates ^avery flat effective orbital magnetic field. For $N=3,$ $\Omega=3E_{\mathrm{R}}$, get Landau level with a bandwidth

 $W = 0.015 E_{\rm R}$.