

• • = • • = •

A TEST OF GAUSSIANITY BASED ON THE EXCURSION SETS OF A RANDOM FIELD

Elena Di Bernardino & Anne Estrade & José R. León CNAM-Paris & Université Paris Descartes & Universidad Central de Venezuela

Anne Estrade - MAP5 GeoSto'16 in Nantes - Test of Gaussianity

What is the question?

- X : ℝ^d → ℝ is a stationary isotropic random field, smooth enough, with covariance that verifies a decreasing assumption,
- it is observed through some of its excursion sets

$$\{t \in T_i; X(t) \geq u_i\}, i = 1, \ldots, m$$

with T_1, \ldots, T_m cubes in \mathbb{R}^d s.t. $|T_i|$ and $dist(T_i, T_j)$ large, and u_1, \ldots, u_m various levels in \mathbb{R}

Question: Is X Gaussian or not? Main tool: Euler characteristic of the $\{t \in T_i; X(t) \ge u_i\}$'s

Euler characteristic(χ)?

Important fact: χ is an **additive** functional $\mathcal{C} \subset \mathcal{P}(\mathbb{R}^d) \to \mathbb{Z}$

Heuristic definition for compact $A \subset \mathbb{R}^d$

- d = 1: $\chi(A) =$ nber of disjoint intervals in A
- d = 2: $\chi(A) =$ nber of connected components nber of holes in A

Morse's theory when A=excursion set $\{t \in T ; X(t) \ge u\} \subset \mathbb{R}^d$

$$\chi(A) = \sum_{k=0}^{d} \sum_{face \ J \in \partial_k T} \sum_{\ell=0}^{k} (-1)^{\ell} \mu_{\ell}(J, u)$$

with $\mu_{\ell}(J, u) = \#\{t \in J ; X(t) \ge u, X'_{/J}(t) = 0, X'_{/J^c}(t) > 0,$ ind $(X''_{/J}(t)) = k - \ell\}$

Case d = 1, T = [a, b]

$$\chi(\{t \in T ; X(t) \ge u\}) = ?$$

Morse's theory

$$= \#\{\max. \text{ of } X \text{ above } u \text{ in } \overset{\circ}{T}\} - \#\{\min. \text{ of } X \text{ above } u \text{ in } \overset{\circ}{T}\} \\ + \mathbf{1}_{\{X(a) \ge u, X'(a) < 0\}} + \mathbf{1}_{\{X(b) \ge u, X'(b) > 0\}}$$

Crossings theory (up-crossings)

$$= \#\{t \in \overset{\,\,{}_\circ}{T} ; X(t) = u, X'(t) \ge 0\} + \mathbf{1}_{\{X(a) \ge u\}}$$

Case $d \geq 1$, T cube in \mathbb{R}^d

$$\chi(\{t \in T ; X(t) \ge u\}) = \sum_{k=0}^{d-1} \sum_{\text{face } J \in \partial_k T} \cdots + \varphi(X, \overset{\circ}{T}, u)$$

where

$$\varphi(X, \overset{\circ}{T}, u) = \sum_{\ell=0}^{d} (-1)^{\ell} \mu_{\ell}(\overset{\circ}{T}, u)$$

$$\mu_{\ell}(\overset{\circ}{T}, u) = \#\{t \in \overset{\circ}{T} : X(t) \ge u, X'(t) = 0, \text{ ind } (X''(t)) = d - \ell\}$$

Actually,
$$\sum_{k=0}^{d-1} \; \sum_{\textit{face } J \in \partial_k T} \cdots = o(|T|)$$
 as $|T| o \infty$

 \Rightarrow we focus on the "modified" Euler characteristic $\varphi(X, T, u)$

▶ ★ 문 ▶ ★ 문 ▶ ... 문.

Outline of the talk

signal: X stationary isotropic random field $\mathbb{R}^d
ightarrow \mathbb{R}$

observations:
$$Y_i = rac{arphi\left(\{t\in \mathcal{T}_i\,;\,X(t)\geq u_i\}
ight)}{|\mathcal{T}_i|}\,,\,\,i=1,\ldots,m$$

Outline

- Under H0: "X is Gaussian"
- 2 Alternative hypothesis H1: "X is chi-square" or "X is Poisson"

I Test

 \oplus One-dimensional Monte-Carlo illustrations

$$N=300,\;|\mathcal{T}|=200,\;X=\;$$
 stat. process with $\mathbb{E}X(0)=0,\;$ Var $X(0)=1$

同下 イヨト イヨト

Under H0 (X is Gaussian)

Let $X : \mathbb{R}^d \to \mathbb{R}$ be a Gaussian stationary isotropic random field with $\mathbb{E}X(0) = 0$ and $\operatorname{Var}X(0) = 1$, and let

$$\varphi(X, T, u) = \varphi(\{t \in T ; X(t) \ge u\})$$

Theorem [Rice'45, Adler'76] $\mathbb{E}\left(\frac{\varphi(X, T, u)}{|T|}\right) = (2\pi)^{-(d+1)/2} \lambda^{d/2} H_{d-1}(u) e^{-u^2/2} := C(u, \lambda)$

with H_k : Hermite polynomial of order k and λ : 2nd spectral moment of X

Note that $H_0(u) = 1, H_1(u) = u$ and $\operatorname{Cov} (X'(0)) = \lambda I_d$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● の Q @

Empirical / theoretical mean Euler characteristic

N = 300, |T| = 200, X Gaussian with $r(t) = e^{-t^2}$ ($\Rightarrow \lambda = 2$)

red dots and boxplots: full line: dashed line: empirical mean $\widehat{\mathbb{E}}\varphi(X, T, u_i) = \frac{1}{N} \sum_{n=1}^{N} \varphi(X_n, T, u_i)$ $u \mapsto \mathbb{E}\varphi(X, T, u) = |T| C(u, \lambda) \text{ with } \lambda = 2$ $u \mapsto |T| C(u, \widehat{\lambda}) \text{ with } \widehat{\lambda} \dots \text{ (see next slide)}$

Estimation of λ

X is still observed through $Y_i = \frac{\varphi(X, T_i, u_i)}{|T_i|}$, $i = 1, \dots, m$ with levels u_1, \dots, u_m that are assumed to be **different**

Theorem [Lindgren'74]

Assume d=1. A good estimator of $\lambda^{1/2}$ is given by

$$\widehat{\gamma} = \sum_{i=1}^{m} c_i \widehat{\gamma}_{u_i}$$
 where $\widehat{\gamma}_{u_i} = 2\pi e^{u_i^2/2} \frac{\varphi(X, T_i, u_i)}{|T_i|}$ and $\sum_{i=1}^{m} c_i = 1$

Rule of thumb:

$$m = 3$$
, $c_1 = c_2 = c_3 = \frac{1}{3}$, $(u_i) = (-u, 0, u)$ with $u = \frac{2}{3}\sigma(X(0))$

▶ ★@▶ ★注▶ ★注▶

Estimation of λ

Monte-carlo simulations: N = 300, X Gaussian with $r(t) = e^{-t^2}$, |T| = 200

Spectral moment estimation by means of level-crossings c i = 1/3, u = (-2/3, 0, 2/3)

Boxplot of the ratio between $\lambda^{1/2}$ and its estimation $\widehat{\gamma}$

< 同 > < 三 > < 三 >

æ

Second moment of the Euler characteristic

Theorem [DEL]

Under HO,

$$\mathbb{E}\left(\frac{\varphi(X, T, u)^{2}}{|T|}\right) = g(u) p_{X'(0)}(0) + \int_{\mathbb{R}^{d}} \frac{|T \cap (T - t)|}{|T|} G(u, t) p_{X'(0), X'(t)}(0, 0) dt$$

 $g(u) = \mathbb{E}[\mathbf{1}_{[u,\infty)}(X(0)) | \det(X''(0))|]$ $G(u,t) = \mathbb{E}[\mathbf{1}_{[u,\infty)^2}(X(0),X(t)) \det(X''(0)X''(t)) / X'(0) = X'(t) = 0]$

(ロ) (部) (E) (E) (E)

Alternative hypothesis H1: chi-square field

Choose a positive integer s as degrees of freedom

Chi-square field

Let $\{X_i(.)\}_{i=1}^s$ be an iid sample of stationary Gaussian fields on \mathbb{R}^d with $\mathbb{E}X_i(0) = 0$ and $\operatorname{Var}X_i(0) = 1$ and let

$$Z^{s}(.) = \frac{1}{\sqrt{2s}} (\sum_{i=1}^{s} X_{i}(\cdot)^{2} - s)$$

Then

• $\forall t \in \mathbb{R}^d$, $\sum_{i=1}^s X_i(t)^2$ is a χ^2_s random variable

• Z^s is a stationary random field with $\mathbb{E}Z^s(0)=0$ and $\operatorname{Var}Z^s(0)=1$

・ 同 ト ・ ヨ ト ・ ヨ ト

Chi-square field (2)

Again $\{X_i(.)\}_{i=1}^s$ iid stationary Gaussian fields and

$$Z^{s}(.) = \frac{1}{\sqrt{2s}} (\sum_{i=1}^{s} X_{i}(\cdot)^{2} - s)$$

- $\forall t \in \mathbb{R}^d$, $\mathbb{E}[Z^s(0)Z^s(t)] = \mathbb{E}[X_i(0)X_i(t)]^2$
- second spectral moment of $Z^s = 2 \times$ second spectral moment of X_i
- as $s \to \infty$, $Z^s \stackrel{distrib}{\to}$ stationary Gaussian field Z^{∞} with $\mathbb{E}Z^{\infty}(0) = 0$ and $\operatorname{Var}Z^{\infty}(0) = 1$

• • = • • = •

Mean Euler characteristic of a chi-square excursion set

Since
$$Z^{s}(.) = \frac{1}{\sqrt{2s}}(\chi_{s}^{2}(\cdot) - s)$$
,
 $\mathbb{E}\varphi(Z^{s}, T, u) = \mathbb{E}\varphi(\chi_{s}^{2}, T, s + u\sqrt{2s})$

Theorem [Worsley'94]

$$\mathbb{E}\left(\frac{\varphi(\chi_s^2, T, u)}{|T|}\right) = \frac{\lambda^{d/2} e^{-u/2}}{(2\pi)^{d/2} 2^{(s-2)/2} \Gamma(s/2)} u^{(s-d)/2} P_{d,s}(u) \mathbf{1}_{[0,\infty)}(u)$$

with $P_{d,s}$ a polynomial of degree d-1 with integer coefficients and λ second spectral moment of Z^s

Note that $P_{1,s}(u) = 1$ and $P_{2,s}(u) = u - s + 1$

イロト イポト イヨト イヨト

Empirical / theoretical mean Euler characteristic

$$N = 300, |T| = 200, X$$
 "normalised" i.e. $\mathbb{E}X(0) = 0, VarX(0) = 1$ and $\lambda_X = 2$

Boxplot using Chi–square and Gaussian Expectations, s=2 Boxplot using Chi–square and Gaussian Expectations, s=10

red dots:theoretical $\mathbb{E}\varphi(X, T, u)$ for $X = Z^s$ chi-square fieldbox plots:empirical mean $\widehat{\mathbb{E}}\varphi(X, T, u)$ for $X = Z^s$ chi-square fieldblue dots:theoretical $\mathbb{E}\varphi(X, T, u)$ for X Gaussian field

Another alternative: shot-noise process

Let Φ be a Poisson point process on $\mathbb R$ with intensity $\lambda>0$

Theorem [Biermé-Desolneux'12]

Let S be the shot-noise process based on Φ defined by

$$\mathcal{S}(t) = \sum_{\xi\in \Phi} \mathbf{1}_{[0,1]}(t-\xi) \;, \; t\in \mathbb{R}$$

Then, for any $u \in \mathbb{R}^+ \setminus \mathbb{N}$,

$$\mathbb{E}\left(\frac{\varphi(S,T,u)}{|T|}\right) = 2 e^{-\lambda} \sum_{k \ge 0} \frac{\lambda^{k+1}}{k!} \mathbf{1}_{k < u < k+1}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Test of Gaussianity

Null hypothesis H0: "X is Gaussian" Observations: X is observed through

$$Y_i = \frac{\varphi(X, T_i, u_i)}{|T_i|}, i = 1, \dots, m$$

with $|T_i|$ and dist $(T_i, T_j) > 0$ "large" and various levels u_1, \ldots, u_m Then, under H0,

$$Y_{i} = C(u_{i}, \lambda) + \epsilon_{i}, i = 1, ..., m$$

where $C(u, \lambda) = (2\pi)^{-(d+1)/2} \lambda^{d/2} H_{d-1}(u) e^{-u^{2}/2}$
and the $(\epsilon_{i})_{i=1,...,m}$ are {
• centered
• variance? • distribution? • independent?

Asymptotic variance

Observations on a large domain:

 $T^{(N)} = \{Nt : t \in T\}$ with T a cube in \mathbb{R}^d

Theorem [DEL]

Under HO,

with

$$\lim_{N \to +\infty} \operatorname{Var}\left(\frac{\varphi(X, T^{(N)}, u)}{|T^{(N)}|^{1/2}}\right) = V(u) \in (0, +\infty)$$

$$h \ V(u) = \int_{\mathbb{R}^d} (G(u, t) D(t)^{-1/2} - C(u, \lambda)^2) \, dt + (2\pi\lambda)^{-d/2} g(u)$$

Moreover, in dimension d = 1, explicit formula for V(u) in term of Gaussian integrals

Theoretical / empirical asymptotic variance

red dots:

Monte-Carlo simulations: N = 300, X Gaussian with $r(t) = e^{-t^2}$, |T| = 200

GeoSto'16 in Nantes - Test of Gaussianity Anne Estrade - MAP5

Asymptotic normality

Observations on a large domain:

$$T^{(N)} = \{Nt : t \in T\}$$
 with T a cube in \mathbb{R}^d

Theorem [EL'15]

Under HO,

$$\frac{\varphi(X, T^{(N)}, u) - \mathbb{E}\varphi(X, T^{(N)}, u)}{|T^{(N)}|^{1/2}} \stackrel{distrib}{\longrightarrow} \mathcal{N}(0, V(u))$$

$$\mathsf{Corollary:} \ \frac{\varphi(X, T^{(N)}, u)}{|T^{(N)}|} - C(u, \lambda) \ \sim \ \mathcal{N}(0, \frac{V(u)}{|T^{(N)}|})$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

Disjoint large domains and various levels

Let T_1 and T_2 be two cubes in \mathbb{R}^d s.t. $|T_1| = |T_2|$ and $dist(T_1, T_2) > 0$ and let u_1 and u_2 belong to \mathbb{R} $(u_1 \neq u_2 \text{ or } u_1 = u_2)$.

Proposition [DEL]

Let

$$Z_i^{(N)} = \frac{\varphi(X, T_i^{(N)}, u_i) - \mathbb{E}\varphi(X, T_i^{(N)}, u_i)}{|T_i^{(N)}|^{1/2}}, i = 1, 2.$$

Then, under **HO**,

$$\begin{pmatrix} Z_1^{(N)}, Z_2^{(N)} \end{pmatrix} \xrightarrow[N \to \infty]{\text{distrib}} \mathcal{N} \begin{pmatrix} 0, \begin{pmatrix} V(u_1) & 0 \\ 0 & V(u_2) \end{pmatrix} \end{pmatrix}$$

Note that $dist(T_1^{(N)},T_2^{(N)}) \xrightarrow[N \to \infty]{} \infty$

3

Statistical model

Observations:
$$Y_i = \frac{\varphi(X, T_i, u_i)}{|T_i|}$$
, $i = 1, ..., m$
with $|T_i|$ and $dist(T_i, T_j) > 0$ "large" and various levels $u_1, ..., u_m$

Under H0 ("X is Gaussian"),

$$Y_i = C(u_i, \lambda) + \epsilon_i, i = 1, \ldots, m$$

where $C(u, \lambda) = (2\pi)^{-(d+1)/2} \lambda^{d/2} H_{d-1}(u) e^{-u^2/2}$

and the $(\epsilon_i)_{i=1,...,m}$ are independent $\mathcal{N}(0, V(u_i)/|\mathcal{T}_i|)$

Note that $V(u_i)/|T_i|$ is "small"

- (日本) (日本) (日本) 日

Chi-square statistics

X is observed through $Y_i = \frac{\varphi(X, T_i, u_i)}{|T_i|}$, i = 1, ..., mwith $|T_i|$ and $dist(T_i, T_j) > 0$ "large" and various levels $u_1, ..., u_m$

Then, under **H0**,

$$F_3 = \sum_{i=1}^m \left(\frac{Y_i - C(u_i, \lambda)}{(V(u_i)/|T_i|)^{1/2}} \right)^2 \approx \chi_m^2 \text{ distributed}$$

and

$$F_4 = \sum_{i=1}^m \left(\frac{\varphi(X, T_i, u_i) - \widehat{\mathbb{E}}\varphi(X, T_i, u_i)}{(\widehat{\mathsf{Var}}\,\varphi(X, T_i, u_i))^{1/2}} \right)^2 \quad \mathsf{also}$$

・ロト ・四ト ・ヨト ・ヨト

æ

Monte-Carlo simulations

$$N = 300$$
, X Gaussian with $r(t) = e^{-t^2}$, $|T| = 200$

・ロト ・聞 ト ・ ヨト ・ ヨトー

臣

Still in progress...

- Monte-Carlo illustration with 2D simulations
- more examples of Poisson alternative hypothesis (continuous shot-noise, 2D spot-noise)
- real data (sea waves, signals in neurobiology,...)

And to go further

- ullet explicit formula for the asymptotic variance in dimension >1
- use of other Minkovski functionals (length, area of excursion sets)
- anisotropic fields and test of anisotropy

・ 同 ト ・ ヨ ト ・ ヨ ト …

Conclusion

Take home message

• shape of
$$u \mapsto \mathbb{E}\left(\frac{\varphi(X, \mathcal{T}, u)}{|\mathcal{T}|}\right)$$
 characterizes X-distribution

 it can be estimated through a single realization of X on a very large domain by only observing

$$Y_i = \frac{\varphi(X, T_i, u_i)}{|T_i|} , \ i = 1, \dots, m$$

with $|T_i|$ and $dist(T_i, T_j) > 0$ "large" and distinct levels u_1, \ldots, u_m

(周) (ヨ) (ヨ)

Main references

- Adler, Taylor, *Random Fields and Geometry*. Springer (2007)
- Biermé, Desolneux, *A Fourier approach for the level crossings of shot noise processes with jumps.* J. Appl. Probab. (2012)
- Estrade, León, A CLT for the Euler characteristic of a Gaussian excursion set. Ann. Probab. (2016)
- Lindgren, *Spectral Moment Estimation by Means of Level Crossings*. Biometrika (1974)
- Worsley, Local maxima and the expected Euler characteristic of excursion sets of χ^2 , F and t fields. Adv. Appl. Probab. (1994)

・ 同 ト ・ ヨ ト ・ ヨ ト …