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[Faraut, Koranyi, Analysis on Symmetric Cones, Oxford

Press, 1994], Chapter VII ”The Gamma function of a

symmetric cone”:

”Here begins the serious study of analysis on symmetric

cones”

Ω ∈ V = Rn: proper (Ω̄ ∩ (−Ω̄) = {0}) open convex

cone

Ω∗: open dual cone ={y ∈ V | (x, y) > 0 ∀x ∈ Ω̄ \ {0}}
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Characteristic function of a cone

ϕΩ(x) =
∫

Ω∗
e−(x,y)dy = L(Ω∗,Leb)(LebΩ∗)(x)

Properties of ϕΩ: If g ∈ GL(V ) is an automorphism of

G (i.e. gΩ = Ω), we have

ϕΩ(gx) = |det g|−1ϕΩ(x).

Consequently, ϕΩ(x)dx is the invariant measure of the

cone Ω: ∫
Ω
f(gx)ϕΩ(x)dx =

∫
Ω
f(x)ϕΩ(x)dx.
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Example Ω = R+.

It is

a self-dual cone: Ω∗ = R+

a homogeneous cone:

∀x, y > 0∃c ∈ Aut(Ω) = R+ y = cx.

Self-dual homogeneous cones are called symmetric cones.

Characteristic function and invariant measure of R+:

ϕR+(x) =
∫ ∞

0
e−xydy =

1

x
, x > 0

∫ ∞
0

f(cx)
1

x
dx =

∫ ∞
0

f(x)
1

x
dx, c > 0
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Gamma function. For s > 0

Γ(s) =
∫ ∞

0
e−xxs−1dx =

∫ ∞
0

e−xxsϕR+(x)dx

Gamma integral. For s > 0

LR+,dxx
(xs)(y) = LR+(xs−1)(y) =

∫ ∞
0

e−xyxs−1dx = Γ(s)y−s

The Riesz distributions Rs on R+ are defined by

L(Rs)(y) = y−s = a power function

Riesz distributions on R+ are positive measures if and

only if s > 0. Then they have density Rs(x) = xs−1/Γ(s).
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Gamma integrals are important in statistics:

the functions : x 7→
e−xy

L(Rs)(y)
Rs(x) =: γs,y(x)

are probability densities for s, y > 0.

They are GAMMA densities on R+ (interpolation of χ2
n)

Their Laplace transform: L(γs,y)(z) = (1 + zy−1)−s.

If µ is a measure on a cone Ω ⊂ V = Rn, then the family

of probability measures

γy(dx) =
e−(x,y)

L(µ)(y)
µ(dx)

is called exponential family generated by µ.
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Cone of positive definite symmetric matrices
Sn = Sym+(n,R)
Crucial in multivariate statistics.

Generalized power function of matrix argument x ∈ Sn

∆s(y) =
n∏
i=1

(det y≤i
det y<i

)si
”past power function”

If y = diag(y1, . . . , yn), we have ∆s(y) =
∏n
i=1 y

si
i

For constant s = s(1, . . . ,1), we have ∆s(y) = (det y)s
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Gamma integrals on Sn: Siegel integrals(1935, number

theory), appeared before in statistics(Wishart 1928),

computed by Ingham (1933).

Characteristic function and invariant measure density

ϕSn(x) = (detx)−
n+1

2

Gamma function of Sn: for sj >
j−1

2 and cn = (2π)
n(n−1)

4

ΓSn(s) =
∫
S+
n

e−tr(x)∆s(x)ϕSn(x)dx = cn
∏
i

Γ(sj −
j − 1

2
)
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Gamma-Siegel integral∫
S+
n

e−tr(xy)∆s(x)ϕSn(x)dx = ΓSn(s)∆s(y
−1) = ΓSn(s)δ−s(y)

where sj >
j−1

2 and δs(y) is the ”future power function”:

δs(y) =
n∏
i=1

(det y≥i
det y>i

)si
.

A.c. Riesz measures Rs(x) = ∆s(x)ϕSn(x)/ΓSn(s)

have Laplace transform ∆s(y−1) = δ−s(y).

(There exist also singular positive Riesz measures)
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Exp. families of Riesz measures: Wishart measures γs,y
The parameter s is called the shape parameter, y is the

scale parameter

The density of γs,y:

e−tr(xy)∆s(x)ϕSn(x)

ΓSn(s)δ−s(y)

The Laplace transform of γs,y:

L(γs,y)(z) =
δ−s(y + z)

δ−s(y)

In the case of one-dimensional shape parameter s =

s(1, . . . ,1), we have δs(y) = (det y)s and

L(γs,y)(z) = (det(y + z) det(y−1))−s = det(I + zy−1)−s
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Important direction of modern multivariate statistics:
Wishart laws and Riesz measures
on subcones Ω of Sn.

Cones of matrices with obligatory zeros and dual cones

WHY CONES WITH OBLIGATORY ZEROS APPEAR
IN STATISTICS:

X = (X1, X2, . . . , Xn)t a Gaussian vector N(m,Σ).

Some entries of the vector X are supposed to be
conditionally independent knowing others
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Conditional independence in a.c. case

X = (X1, X2, X3) : Random vector

fX1,X2,X3
(x1, x2, x3) : density function

X1 and X3 are conditionally independent knowing X2

⇔ fX1,X3|X2=x2
= fX1|X2=x2

fX3|X2=x2

⇔ fX1,X2,X3
(x1, x2, x3) = F (x1, x2)G(x2, x3)
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X ∼ N(0,Σ), Σ ∈ S+
3

fX1,X2,X3
(x1, x2, x3) = (det 2πΣ)−1/2 exp(−txΣ−1x/2)

Put σ := Σ−1. Mixing x1 and x3 can be avoided only

when σ13 = 0:

fX1,X2,X3
(x1, x2, x3)

= (2π)−3/2(detσ)1/2exp
(
−(σ11x

2
1 + 2σ12x1x2 + σ22x

2
2)/2

)
×exp

(
−(2σ23x2x3 + σ33x

2
3)/2

)
Therefore,

(X1⊥X3)|X2 ⇔ σ13 = 0

The matrix σ = Σ−1 has obligatory zeros σ13 = σ31 = 0
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The position of zeros in Σ−1 is encoded by a graph

G = (V,E) : undirected graph

V = {1, . . . , r} : the set of vertices

E ⊂ V × V : the set of edges

i ∼ j ⇔ (i, j) ∈ E

ZG :=
{
x ∈ Sym(r,R) |xij = 0 if i 6= j and i 6∼ j

}
PG := ZG ∩ S

+
r a sub-cone of S+

r

X ∼ N(0,Σ), Σ−1 ∈ PG
⇔ Xi and Xj are conditionally independent knowing all

other components if i 6= j and i 6∼ j

Example 1 (X1⊥X3)|X2 corresponds to G: 1–2–3
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Example 1. Graph G = A3: 1–2–3

ZG :=


x11 x12 0
x12 x22 x23
0 x23 x33

 |xij ∈ R


PG := ZG ∩ S

+
3

This cone is homogeneous

(GL(PG) acts transitively on PG)
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Z∗G :=


ξ11 ξ12 ∗
ξ12 ξ22 ξ23
∗ ξ23 ξ33

 |xij ∈ R


P ∗G = QG :=

{
ξ ∈ Z∗G | tr xξ > 0 for all x ∈ Ω1 \ {0}

}
=

{
ξ ∈ Z∗G |

∣∣∣∣∣ξ11 ξ12
ξ12 ξ22

∣∣∣∣∣ > 0,

∣∣∣∣∣ξ22 ξ23
ξ23 ξ33

∣∣∣∣∣ > 0, ξ33 > 0

}
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Example 2. Graph G = A4: 1–2–3–4

ZG :=



x11 x21 0 0
x21 x22 x32 0
0 x32 x33 x43
0 0 x43 x44

 |x11, . . . , x44 ∈ R


PG := ZG ∩ S

+
4

This cone is non-homogeneous

P ∗G = QG :=
{
ξ ∈ Z∗G | tr xξ > 0 for all x ∈ Ω1 \ {0}

}
=

{
ξ ∈ Z∗G |

∣∣∣∣∣ξ11 ξ12
ξ12 ξ22

∣∣∣∣∣ > 0,

∣∣∣∣∣ξ22 ξ23
ξ23 ξ33

∣∣∣∣∣ > 0,

∣∣∣∣∣ξ33 ξ34
ξ34 ξ44

∣∣∣∣∣ > 0, ξ44 > 0

}
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Theory of graphical models

started in 1976 by Lauritzen and Speed,

is for decomposable graphs G

G is decomposable

⇔ G has no cycle of length ≥ 4 as an induced subgraph

Example: A4 =1–2–3–4 from Example 2

ΩG ⊂ ZG is homogeneous if and only if

G is decomposable and A4-free (Letac-Massam, Ishi)
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Wishart distributions for decomposable graphs

A seminal paper:

G. Letac and H. Massam,
Wishart distributions for decomposable graphs,
The Annals of Statistics, 35 (2007), 1278–1323.

Letac-Massam power functions on QAn

H(α, β, η) =

∏n−1
i=1 |η{i:i+1}|αi∏n−1

i=2 η
βi
ii

This definition comes from the graph theory
(CLIQUES {i, i+ 1}, SEPARATORS {i})
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Our approach to Wishart theory for decomposable

graphs:

Consider analogs of “future” and “past” power

functions

δs(x) and ∆s(x)

for all eliminating orders of vertices
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There are many (but not all) orders of vertices 1,2, . . . , n

that we should consider in order to have a harmonious

theory of Riesz and Wishart distributions on the cones

related to graphs.

These orders are called eliminating orders of vertices.

Let v+ be the set of future(w.r. to the order) neigbours

(w.r. to the graph) of v.

An eliminating order of the vertices of G is a permuta-

tion {v1, . . . , vn} of V such that for all v, the set v+ is

a complete graph
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Example. For the graph A3 : 1− 2− 3:

the orders 1 ≺ 2 ≺ 3, 1 ≺ 3 ≺ 2, 3 ≺ 2 ≺ 1 and

3 ≺ 1 ≺ 2 are eliminating orders

2 ≺ 1 ≺ 3 and 2 ≺ 3 ≺ 1 are not eliminating.

Proposition. All eliminating orders on An are obtained

by an intertwining of two sequences

1 ≺ 2 ≺ 3 < . . . ≺M − 1 ≺M
n ≺ n− 1 ≺ . . . ≺M + 2 ≺M + 1 ≺M
for an M ∈ V .



Power functions

Notations:

v− = all the predecessors of v w.r. to ≺
v+ = future neighbours of v.

We define power functions

∆≺s (y) :=
∏
v∈V

(det y{v}∪v−

det y
v−

)sv
(y ∈ PG),

δ≺s (η) :=
∏
v∈V

(det η{v}∪v+

det η
v+

)sv
(η ∈ QG)

where det y∅ = 1 = det η∅.
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In this research and lecture:
RECENT RESULTS ON RIESZ MEASURES AND
WISHART DISTRIBUTIONS FOR GRAPHS
An = 1− 2− . . .− n

From now on,

G = An = 1− 2− . . .− n
QAn and PAn are important non-homogeneous(n ≥ 4)
cones appearing in the statistical theory of graphical
models

They correspond to the practical model of nearest neigh-
bour interactions:

in the Gaussian character (X1, X2, . . . , Xn), non-neighbours
Xi, Xj, |i− j| > 1 are conditionally independent with re-
spect to other variables.
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Theorem 0. Let M be the maximal element with re-

spect to an eliminating order ≺, M = 1,2, . . . , n.

Then for all y ∈ PG,

δ≺s (πZ∗G
(y−1)) = ∆≺−s(y) = ∆(M)

−s (y)

Proof: Direct computation.

Corollary. The power functions δ≺s (η) and ∆≺−s(y) de-

pend only on M , the maximal element of ≺.
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Formulas for the power functions may be written as:

∆(M)
s (y) = y

s1−s2
11 |y{1:2}|

s2−s3 . . . |y{1:M−1}|
sM−1−sM

×|y|sM

×|y{M+1:n}|
sM+1−sM . . . y

sn−sn−1
nn

For 2 ≤M ≤ n− 1,

δ
(M)
s (η) =

∏M−1
i=1 |η{i:i+1}|si

∏n
i=M+1 |η{i−1:i}|si∏M−1

i=2 η
si−1
ii · ηsM−1−sM+sM+1

MM ·
∏n−1
i=M+1 η

si+1
ii

= a Letac-Massam power function H

δ
(1)
s , δ

(n)
s are not covered by Letac-Massam approach.
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For n ≥ 2 define ϕn : QAn → R+ by

ϕn(η) =
n−1∏
i=1

|η{i,i+1}|
−3/2 ∏

i 6=1,n

ηii

For n = 1 set

ϕ1(η) = η−1.

We will see that ϕn is the characteristic function of the

cone QAn.
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Laplace transform of power functions

Theorem 1. For all n ≥ 1, 1 ≤M ≤ n and y ∈ PAn,∫
QAn

e−tr(yη)δ
(M)
s (η)ϕn(η)dη = π(n−1)/2ΓQAn(s)∆(M)

−s (y)

where ΓQAn(s) =
{∏

i 6=M Γ(si − 1
2)
}

Γ(sM).

The integral converges if and only if si >
1
2, for all i 6= M

and sM > 0.
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Theorem 2. For all n ≥ 1, for all 1 ≤ M ≤ n and for

all η ∈ QAn,∫
PAn

e−tr(yη)∆(M)
s (y)dy = π(n−1)/2ΓPAn(s)δ(M)

−s (η)ϕn(η).

where ΓPAn(s) =
{∏

i 6=M Γ(si + 3
2)
}

Γ(sM + 1).

The integral converges if and only if si > −3
2, for all

i 6= M and sM > −1.
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Corrolary 3.(
4

π2

)n−1
2
∫
PAn

e−tr(yη)dy = ϕn(η).

Thus, up to a factor, ϕn is the characteristic function

of the cone QAn.
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Method: Recurrent constructions of the cones PAn
and QAn from the cones PAn−1

and QAn−1
.

(Two versions of An−1: 2− . . .−n and 1− . . .− (n−1))
Let Φn : R+ × R× PAn−1

−→ PAn, (a, b, z) 7−→ y

and Φ̃n : R+ × R× PAn−1
−→ PAn, (a, b, z) 7−→ ỹ

y =


1
b . . .
0
... . . .
0 . . . . . . . . . 0 1



a 0 . . . 0
0
... z
0




1
b . . .
0
... . . .
0 . . . . . . . . . 0 1



T

ỹ =


1
0 .. .
0
... . . .
0 . . . . . . . . . b 1



T 
0

z ...
0

0 . . . 0 a




1
0 .. .
0
... . . .
0 . . . . . . . . . b 1


The maps Φn and Φ̃n are bijections.
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Let Ψn : R+ × R×QAn−1
−→ QAn, (α, β, x) 7−→ η

and Ψ̃n : R+ × R×QAn−1
−→ QAn, (α, β, x) 7−→ η̃

η = π




1
β . . .
0
... . . .
0 . . . . . . . . . 0 1



T 
α 0 . . . 0
0
... x
0




1
β . . .
0
... . . .
0 . . . . . . . . . 0 1



.

η̃ = π




1
0 .. .
0
... . . .
0 . . . . . . . . . β 1




0
x ...

0
0 . . . 0 α




1
.. .

0
... . . .
0 . . . . . . . . . β 1



T
.

The maps Ψn and Ψ̃n are bijections.
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for all M = 2, . . . , n,

∆(M)
s (y) = as1∆(M)

(s2,...,sn)(z);

δ
(M)
s (η) = αs1δ

(M)
(s2,...,sn)(x).

For M = 1, . . . , n− 1 we use ỹ = Φ̃n(a, b, z) and

η̃ = Ψ̃n(α, β, x):

∆(1)
s (ỹ) = asn∆(1)

(s1,...,sn−1)(z);

δ
(1)
s (η̃) = αsnδ

(1)
(s1,...,sn−1)(x).

Jacobians: J(Φn)(a, b, z) = J(Φ̃n)(a, b, z) = a,

J(Ψn)(α, β, x) = x22, J(Ψ̃n)(α, β, x) = xn−1,n−1.
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Proof of Theorem 1, M > 1: We proceed by induc-

tion

For n = 1,

∫ ∞
0

e−yηδ(1)
s (η)ϕA1

(η)dη =
∫ ∞

0
e−yηηs−1dη = Γ(s)y−s.
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Assume that the assertion holds for some number of

vertices n− 1.

Let y = Φn(a, b, z) and let us make the change of vari-

able η = Ψn(α, β, x).

The induction hypothesis gives∫
QAn−1

e− tr(zx)δ
(M)
(s2,...,sn)(x)ϕAn−1

(x)dx =

π(n−2)/2
{ ∏
i 6=1,M

Γ(si −
1

2
)
}

Γ(sM)∆(M)
−(s2,...,sn)(z),

if and only if si >
1
2, for all i 6= M and sM > 0.
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The change of variable η = Ψn(α, β, x) gives dη =

x22dαdβdx. Thus, we have∫
QAn

e− tr(yη)δ
(M)
s (η)ϕAn(η)dη

=
∫ ∞

0

∫ ∞
−∞

∫
QAn−1

e−(aα+ax22(b+β)2+tr(zx)) ×

× αs1δ
(M)
(s2,...,sn)(x)x

−1/2
22 α−3/2ϕAn−1

(x)x22dαdβdx

=
∫ ∞

0

∫ ∞
−∞

∫
QAn−1

e−(aα+ax22(b+β)2+tr(zx)) ×

× αs1−3/2δ
(M)
(s2,...,sn)(x)ϕAn−1

(x)x
1/2
22 dαdβdx,
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Now, use the Gaussian integral∫ ∞
−∞

e−ax22(b+β)2
dβ = π1/2a−1/2x

−1/2
22

and the gamma integral∫ ∞
0

e−aααs1−3/2dα = a−s1+1/2Γ(s1 −
1

2
),

that is finite if and only if s1 >
1
2,
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we get∫
QAn

e− tr(yη)δ
(M)
s (η)ϕAn(η)dη

= π
1
2a−s1Γ(s1 −

1

2
)
∫
QAn−1

e− tr(zx)δ
(M)
(s2,...,sn)(x)ϕAn−1

(x)dx

= π
1
2a−s1Γ(s1 −

1

2
)π

n−2
2

{ ∏
i 6=1,M

Γ(si −
1

2
)
}

Γ(sM)∆(M)
−(s2,...,sn)(z)
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LETAC-MASSAM CONJECTURE

This conjecture was formulated in

G. Letac and H. Massam,

Wishart distributions for decomposable graphs,

The Annals of Statistics, 35 (2007), 1278–1323.

Recall Letac-Massam power functions on QAn

H(α, β, η) =

∏n−1
i=1 |η{i:i+1}|αi∏n−1

i=2 η
βi
ii
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The Laplace transform formula ∀y ∈ PAn∫
QAn

e− tr(yη)H(α, β, η)ϕQAn(η)dη = Cα,βH(α, β, π−1(y)),

will be referred to as the Letac-Massam (LM) formula

on QAn.
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There are 2n− 3 parameters α, β in H(α, β, ·).

By [L-M], the LM formula holds for ”‘well chosen”’ α, β,

i.e. α, β veryfing Letac-Massam conditions:

(C) αj,j+1 = βj+1 if 1 ≤ j ≤M − 2,

αj,j+1 = βj if M + 1 ≤ j ≤ n− 1

(I) αj,j+1 >
1
2 for all j = 1, . . . , n− 1,

αM−1,M + αM,M+1 − βM > 0

for some M = 2, . . . , n− 1.

Remarks. (C) limits the number of ”‘free”’ parame-

ters α, β to n.

There are n parameters si indexing the power function

δ
(M)
s (η).

H(α, β, η) = δ
(M)
s (η) if and only if (C) holds true.
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Recall

Theorem 1. For all n ≥ 1, 1 ≤M ≤ n and y ∈ PAn,

∫
QAn

e−tr(yη)δ
(M)
s (η)ϕn(η)dη = π(n−1)/2ΓQAn(s)∆(M)

−s (y)

where ΓQAn(s) =
{∏

i 6=M Γ(si − 1
2)
}

Γ(sM).

The integral converges if and only if si >
1
2, for all i 6= M

and sM > 0.
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Define ri = αi−βi+1, for all 1 ≤ i ≤ n−3 and pi = αi−βi,
for all 3 ≤ i ≤ n− 1. We have

H(α, β, η) = δ
(M)
s (η)

M−1∏
i=2

η
ri−1
ii

n−1∏
i=M+1

η
pi
ii ,

where si = αi, for all 1 ≤ i ≤ M − 1; si = αi−1, for all

M + 1 ≤ i ≤ n and βM = sM−1 − sM + sM+1.
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We have proved

L-M CONJECTURE Letac-Massam formula on QAn
holds if and only if conditions (C) and (I) are satisfied

Recall that (C) is equivalent to

H(α, β, η) = δ
(M)
s (η)

for some M = 2, . . . , n− 1

(I) is equivalent to “δ(M)
s admits Laplace transform”

Thus the functions δ
(M)
s are more natural as power

functions on QG than H(α, β, η).
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OUTLINE OF THE PROOF OF the L-M CON-
JECTURE on QAn

Letac-Massam Conjecture for power functions δ(M)
s

and ∆(M)
s

Let ϕ(y) = π(y−1).

The Letac-Massam formula is equivalent,
for each 2 ≤M ≤ n− 1, to∫

QAn
e− tr(yη)δ

(M)
s (η)

M−1∏
i=2

η
ri−1
ii

n−1∏
i=M+1

η
pi
iiϕQAn(η)dη

= Cα,β∆(M)
−s (y)

M−1∏
i=2

ϕ(y)
ri−1
ii

n−1∏
i=M+1

ϕ(y)piii .
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The Letac-Massam conditions (C) are equivalent to the

following n− 2 alternative conditions:

p3 = p4 = . . . = pn−1 = 0 or
r1 = p4 = . . . = pn−1 = 0 or

... ... ... ... or
r1 = . . . = rn−4 = pn−1 = 0 or
r1 = . . . = rn−4 = rn−3 = 0.

(1)
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We express, for each M , the constant Cα,β as a function

of M, s = (si), (ri) and (pi).

Lemma 4. If the LM formula holds for all y ∈ PAn then

we have

Cα,β = π(n−1)/2 ×{ ∏
i 6=M

Γ(si −
1

2
)
}

Γ(sM)
∏

2≤i<M

Γ(si + ri−1)

Γ(si)

∏
M<i≤n−1

Γ(si + pi)

Γ(si)
.

If y is diagonal, then LM formula holds if and only if

si >
1
2 for i 6= M , sm > 0, si + ri−1 > 0 for 2 ≤ i < M

and si + pi > 0 for M < i ≤ n− 1.

Proof We take y diagonal. The proof is a by-product

of the main induction proof.
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We prove the Letac-Massam conjecture by induction

on n. The proof of the initiation part (n = 4) and the

heredity part (n ≥ 5) are the same, so they are given

together.

Step 1 (descent in Letac-Massam formula, from

QAn to QAn−1
).

Let n ≥ 4, α = (α1, . . . , αn−1) and β = (β2, . . . , βn−1).

Suppose that the Letac-Massam formula holds for Hn(α, β, ·)
on QAn. Then the Letac-Massam formula holds on

QAn−1
for:

(i) the function Hn−1((α1, . . . , αn−2), (β2, . . . , βn−2), ·)
and the graph 1− . . .− (n− 1)

(ii) the function Hn−1((α2, . . . , αn−1), (β3, . . . , βn−1), ·)
and the graph 2− . . .− n.
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Proof of Step 1. We choose 2 ≤ M ≤ n − 2. For

all y ∈ PAn, let, successively, y = Φ̃n(a, b, z) and z =

Φn−1(a, b, Z). One easily checks that ϕ(y)ii = ϕ(z)ii =

ϕ(Z)ii. Integration on QAn with two successive changes

of variables η = Ψ̃n(α, β, x) and then x = Ψn−1(α, β,X)

gives∫
QAn−2

e− tr(ZX)δ
(M)
(s2,...,sn−1)(X)

M−1∏
i=2

X
ri−1
ii

n−1∏
i=M+1

X
pi
ii ϕQAn−2

(X)dX

(2)

= C
(n−2)
α,β ∆(M)

−(s2,...,sn−1)
(Z)

M−1∏
i=2

ϕ(Z)
ri−1
ii

n−1∏
i=M+1

ϕ(Z)piii .

where C
(n−2)
α,β =

Cα,β

πΓ(s1−
1
2)Γ(sn−1

2)
.
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Now, we apply one more change of variable X = Ψ̃n−2(α, β, U)
in formula (2) and we set Z = Φ̃n−2(a,0, T ). Let
F (α, β, U) be the integrated function. We first com-
pute J =

∫∞
−∞

∫∞
0 Fdαdβ = 2

∫∞
0
∫∞
0 Fdαdβ. Using the

change of variables u = aα, t = aUn−2,n−2β
2 we get

J = 2a−pn−1 ×∫ ∞
0

∫ ∞
0

e−
(
aα+aUn−2,n−2β

2
)
αsn−1−3

2(aα+ aβ2Un−2,n−2)pn−1dαdβ =

a−(sn−1+pn−1)U
−1/2
n−2,n−2

∫ ∞
0

∫ ∞
0

e−(u+t)usn−1−3
2t−

1
2(u+ t)pn−1dudt

Now, using the change of variables u = u, v = u+ t, we
get (with a change of variable x = u/v)

J = a−(sn−1+pn−1)U
−1/2
n−2,n−2

∫ ∞
0

(∫ v
0
usn−1−3

2(v − u)−
1
2du

)
e−vvpn−1dv

= a−(sn−1+pn−1)U
−1/2
n−2,n−2B(sn−1 −

1

2
,
1

2
)Γ(sn−1 + pn−1)

(3)
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We get∫
QAn−3

e− tr(TU)δ
(M)
(s2,...,sn−2)(U)

M−1∏
i=2

U
ri−1
ii

n−2∏
i=M+1

U
pi
ii ϕQAn−3

(U)dU

(4)

= C
(n−3)
α,β ∆(M)

−(s2,...,sn−2)(T )
M−1∏
i=2

ϕ(T )
ri−1
ii

n−2∏
i=M+1

ϕ(T )piii ,

where

C
(n−3)
α,β =

Cα,β

π
3
2Γ(s1 − 1

2)Γ(sn − 1
2)Γ(sn−1 − 1

2)
×

Γ(sn−1)

Γ(pn−1 + sn−1)
.

(5)
By the same argument as to obtain formula (2), we ob-
serve that the Letac-Massam formula pour la fonction
Hn−1((α1, . . . , αn−2), (β2, . . . , βn−2), ·) on QAn−1

and the
graph 1− 2− . . .− (n− 1) is equivalent to formula (4).
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By a mirror argument, with the change of variables X =

Ψn−2(α, β, U) in (2), we get the Letac-Massam formula

for Hn−1((α2, . . . , αn−1), (β3, . . . , βn−1), ·) and the graph

2− . . .− n.

Proof of Lemma 4. For y diagonal, formula (5) leads

by induction to formula from Lemma 4, observing that

the last equation we get is

a−sM
∫ ∞

0
e−axxsM

dx

x
= C

(1)
α,βa

−sM

so that C(1)
α,β = Γ(sM).
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Step 2 (induction step). The Letac-Massam conjec-
ture on QAn−1

implies the Letac-Massam conjecture on
QAn.

Proof. Let n ≥ 4. Suppose that the Letac-Massam
formula holds for some α and β and suppose that the
Letac-Massam conjecture is true on QAn−1

.

For n ≥ 5, we use Step 1 and the induction hypothesis.
Thus one of the following n − 3 conditions has to be
satisfied: for an M ∈ {2, . . . , n− 2}

r1 = . . . = rM−2 = pM+1 = . . . = pn−2 = 0,

and, simultaneously, one of the following n−3 ”shifted”
conditions has to be satisfied: for an M ∈ {2, . . . , n−2}

r2 = . . . = rM−1 = pM+2 = . . . = pn−1 = 0.
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This implies that either conditions (C) are satisfied or

p3 = . . . = pn−2 = 0; r2 = . . . = rn−3 = 0. (6)

Let us assume this exceptional case. The equality

rM−1 = 0 implies sM = sM+1 and pM = 0 implies

sM = sM−1. Also, from pj = rj−1 for all 3 ≤ j ≤ n− 2,

we get s2 = . . . = sM−1 and sM+1 = . . . = sn−1. Thus,

s2 = . . . = sn−1 = s. In the case (6), using the formula

for ϕ(Z)ii, formula (2) reduces to∫
QAn−2

e− tr(ZX)δ
(M)
(s,...,s)(X)Xr1

22X
pn−1
n−1, n−1ϕQAn−2

(X)dX

= C
(n−2)
α,β |Z|−s

(|Z{3:n−1}|
|Z|

)r1
(|Z{2:n−2}|

|Z|

)pn−1

. (7)



A TRICK: take SECOND DERIVATIVE with re-

spect to Zn−2,n−1 and restrain to Zn−2,n−1 = 0

The derivatives of all orders of the integral (7) can be

computed under the integral sign. We obtain∫
QAn−2

e− tr(ZX)δ
(M)
(s,...,s)(X)Xr1

22X
pn−1
n−1, n−1X

2
n−2,n−1ϕQAn−2

(X)dX

=
C

(n−2)
α,β

4
∂2

∂Z2
n−2,n−1

(
|Z|−s

(|Z{3:n−1}|
|Z|

)r1
(|Z{2:n−2}|

|Z|

)pn−1
)
. (8)

53



LHS: Let us change the variables X = Ψ̃n−2(α, β, U)

and set Z = Φ̃n−2(a,0, T ), i.e. Zn−2,n−1 = 0. Similarly

as in the proof of (4) in Step 1, we find that the left

hand side of (8) is

a−(s+pn−1+1)Γ(s+ pn−1 + 1)B
(
s− 1

2,
3
2

)
× (9)∫

QAn−3

e− tr(TU)δ
(M)
(s,...,s)(U)Ur1

22Un−2,n−2ϕQAn−3
(U)dU.

54



RHS is standard, using Leibniz formula. We get that

for Zn−2,n−1 = 0, the right hand side of (8) is

C
(n−2)
α,β

2
a−(s+pn−1+1)|T |−(s+r1+1)|T{3:n−2}|

r1−1 ×[
(s+ r1 + pn−1)|T{3:n−2}||T{2:n−3}| − r1|T{3:n−3}||T |

]
.

(10)
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Equating (10) and (9), we obtain∫
QAn−3

e− tr(TU)δ
(M)
(s,...,s)U

r1
22Un−2,n−2ϕQAn−3

(U)dU =

sd(s, r1, T )

s+ pn−1

[
(s+ r1 + pn−1)|T{3:n−2}||T{2:n−3}| − r1|T{3:n−3}||T |

]
,

(11)

where d(s, r1, T ) = C
(n−3)
α,β |T |−(s+r1+1)|T{3:n−2}|r1−1.
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Formula (11) is supposed to be true for our pn−1 =

αn−1−βn−1. It is surely true for pn−1 = 0, because the

Letac-Massam conditions (1) are then satisfied. Equat-

ing (11) for these two values of pn−1, and noting that

by Lemma 4 the constant C(n−3)
α,β does not depend on

pn−1, we get

s[(s+ r1 + pn−1)|T{3:n−2}||T{2:n−3}| − r1|T{3:n−3}||T |]
s+ pn−1

=

= (s+ r1)|T{3:n−2}||T{2:n−3}| − r1|T{3:n−3}||T |,

which is equivalent to

r1pn−1

(
|T{3:n−2}||T{2:n−3}| − |T{3:n−3}||T |

)
= 0,

where for n = 5 we set |T{3:n−3}| = 1.
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We observe that |T{3:n−2}||T{2:n−3}| − |T{3:n−3}||T | 6= 0,

for example for T such that Tii = 2 for all 2 ≤ i ≤ n−2,

Ti,i+1 = Ti+1,i = 1 for 2 ≤ i ≤ n− 3 and Tij = 0 for all

other i, j (in this case, this expression equals 1).

Thus, for n ≥ 5, in the exceptional case (6), we also

have r1 = 0 or pn−1 = 0.

In both cases we fall in the Letac-Massam conditions

(C) and the proof of the induction step is finished.
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For n = 4, we get formula (2) for M = 2, the computa-
tions are simpler (no use of Leibniz formula is needed),
and no condition s2 = s3 = s appears. The analogue
of formula (11) is

Γ(s3 + p3 + 1)B(s3 −
1

2
,
3

2
)
∫ ∞

0
e−tuus2u

1

u
du =

C
(2)
α,β

2
(s2 + p3)t−(s2+1), t > 0.

After substitution of the constant
C

(2)
α,β = π

1
2Γ(s2)Γ(s3 − 1

2)Γ(s3+p3)
Γ(s3)

one gets

(s3 + p3)s2 = s3(s2 + p3)

equivalent to r1p3 = 0, so r1 = 0 or p3 = 0.

We get the Letac-Massam conditions for QA4
.
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