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Classical Hodgkin-Huxley-System

dVt = −F (Vt , nt ,mt , ht)dt + S(t)dt

dnt =
[
αn(Vt)(1− nt)− βn(Vt)nt

]
dt

dmt =
[
αm(Vt)(1−mt)− βm(Vt)mt

]
dt

dht =
[
αh(Vt)(1− ht)− βh(Vt)ht

]
dt

with

membrane potential V of a neuron

deterministic periodic external input signal S

internal gating variables n,m, h modeling activation of ion channels

(explicit) smooth coefficient functions F , αi , βi



Classical Hodgkin-Huxley-System

dVt = −F (Vt , nt ,mt , ht)dt + S(t) dt

dnt =
[
αn(Vt)(1− nt)− βn(Vt)nt

]
dt

dmt =
[
αm(Vt)(1−mt)− βm(Vt)mt

]
dt

dht =
[
αh(Vt)(1− ht)− βh(Vt)ht

]
dt

with

membrane potential V of a neuron

deterministic periodic external input signal S

internal gating variables n,m, h modeling activation of ion channels

(explicit) smooth coefficient functions F , αi , βi



Stochastic Hodgkin-Huxley-System

dVt = −F (Vt , nt ,mt , ht)dt + dξt

dnt =
[
αn(Vt)(1− nt)− βn(Vt)nt

]
dt

dmt =
[
αm(Vt)(1−mt)− βm(Vt)mt

]
dt

dht =
[
αh(Vt)(1− ht)− βh(Vt)ht

]
dt

dξt = γ( S(t) − ξt)dt + σ(ξt)dWt

with

membrane potential V of a neuron

deterministic periodic external input signal S

internal gating variables n,m, h modeling activation of ion channels

(explicit) smooth coefficient functions F , αi , βi

γ > 0 and σ ∈ C 3
b bounded away from 0, W 1D Brownian Motion



Some Sample Paths
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stochastic HH with periodic signal:  voltage  v(t)  function of  t ; black dotted line indicating periodicity of the semigroup

[ms]

[m
V

]

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

stochastic HH with periodic signal:  gating variables n(t) (violet),  m(t)  (blue), h(t) (grey)  functions of  t
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stochastic HH with periodic signal: periodic signal and driving noisy input (mean reverting CIR type diffusion)

the following parameters werde used for signal and CIR : period = 28 , amplitude = 9 , sigma = 0.5 , tau = 0.75 , K = 30 
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stochastic HH with periodic signal: periodic signal and driving noisy input (mean reverting CIR type diffusion)

the following parameters werde used for signal and CIR : period = 28 , amplitude = 5 , sigma = 1.5 , tau = 0.25 , K = 30 
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Introduce Parametrized Signal

Let S = S(ϑ,T ) depend on an unknown shape parameter ϑ ∈ Θ ⊂ Rd and
let it be periodic with unknown periodicity T ∈ (0,∞).

Then the equation for X = (V , n,m, h, ξ) is of the form

dXt = B(ϑ,T )(t,Xt)dt + Σ(Xt)dWt

and its solution lives on R× [0, 1]3 × R (if started there).

Long-term goal:

Estimate (ϑ,T ) from continuous observation not of X , but only of the
membrane potential V .

Immediate goal:

Prove LAN for the corresponding sequence of statistical experiments.
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Likelihood-Ratios for Observation of X , V or ξ

Write P(ϑ,T ) for the law on C ([0,∞);R5) under which the canonical
process (ηt)t≥0 solves the stochastic Hodgkin-Huxley system starting
from a fixed and deterministic x0 = (v0, n0,m0, h0, ξ0).

Consider the following filtrations:

F0
t = σ

(
ηs , 0 ≤ s ≤ t +

)
↔ observe full process

F1
t = σ

(
η

(1)
s , 0 ≤ s ≤ t +

)
↔ observe membrane potential V

F5
t = σ

(
η

(5)
s , 0 ≤ s ≤ t +

)
↔ observe distorted signal ξ

These lead to three different sequences of experiments(
C ([0,∞);R5),F i

n,
{
P(ϑ,T )|F i

n

∣∣∣ (ϑ,T ) ∈ Θ× (0,∞)
})

, n ∈ N

where i = 0, 1, 5.
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Likelihood-Ratios for Observation of X , V or ξ

However, as the parameters are only present in the drift term for the fifth
(and thus also the first) equation and the local martingale part of X
under P(ϑ,T )|F0

n
is given by

(

∫ ·
0

σ(ξt)dWt , 0, 0, 0,

∫ ·
0

σ(ξt)dWt)
>,

we can conclude that for all i ∈ {0, 1, 5} under P(ϑ,T )|F i
t

log

(
dP(ϑ′,T ′)|F i

t

dP(ϑ,T )|F i
t

)
d
= γ

∫ t

0

S(ϑ′,T ′)(s)− S(ϑ,T )(s)

σ(ξs)
dWs

− γ2

2

∫ t

0

(
S(ϑ′,T ′)(s)− S(ϑ,T )(s)

σ(ξs)

)2

ds

=: Λ
(ϑ′,T ′)/(ϑ,T )
t .

⇒ If LAN holds for any of these sequences, it holds for all of them.
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Conditions on the Deterministic Signal

For each ϑ ∈ Θ let Sϑ ∈ C 2([0,∞)) be a 1-periodic function with

1 S(·)(s) ∈ C 1(Θ) for all s ∈ [0,∞).

2 ∇ϑSϑ(·) ∈ L2
loc(0,∞) for all ϑ ∈ Θ.

3 S : (ϑ,T ) 7→ S(ϑ,T ) := Sϑ
( ·
T

)
is L2

loc-differentiable with derivative

Ṡ(ϑ,T ) ∈ (L2
loc(0,∞))d+1.

4 Ṡ : (ϑ,T ) 7→ Ṡ(ϑ,T ) is L2
loc-continuous.

5 For each (ϑ,T ) ∈ Θ× (0,∞) there are α ∈ (0, 1] and
β ∈ [0, (1 + 3α)/2) such that for suitable ε > 0∥∥∇ϑS(ϑ,T ) −∇ϑS(ϑ,T ′)

∥∥
L2(0,t)

≤ Ctβ |T − T ′|α

for all t > 0, T ′ ∈ (T − ε,T + ε) and some constant C that does
not depend on T ′ or t.
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4 Ṡ : (ϑ,T ) 7→ Ṡ(ϑ,T ) is L2
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4 Ṡ : (ϑ,T ) 7→ Ṡ(ϑ,T ) is L2
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4 Ṡ : (ϑ,T ) 7→ Ṡ(ϑ,T ) is L2
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Local Asymptotic normality

Fix (ϑ,T ) ∈ Θ× (0,∞). Suppose that for each t > 0 the matrix

J(ϑ,T )(t) = γ2ν

[(
∇ϑSϑ
−tT−2S ′ϑ

)(
∇ϑSϑ
−tT−2S ′ϑ

)>]
∈ R(d+1)×(d+1)

is invertible (we will define the measure ν in a minute).

Let (hn)n ⊂ Rd+1 any
bounded sequence and set (ϑn,Tn) := (ϑ,T ) + δnhn with the local scale

δn := diag
(
n−1/2, . . . , n−1/2, n−3/2

)
∈ R(d+1)×(d+1).

Theorem (Local Asymptotic Normality)

With

I (ϑ,T ) :=

∫ 1

0
J(ϑ,T )(s)ds and ∆

(ϑ,T )
n := γδn

∫ n

0

Ṡ(ϑ,T )(s)

σ (ξs)
dWs

we have ∆
(ϑ,T )
n

L−→ N
(
0, I (ϑ,T )

)
and

Λ
(ϑn,Tn)/(ϑ,T )
n = h>n ∆

(ϑ,T )
n −

1

2
h>n I (ϑ,T )hn + oP(ϑ,T ) (1).
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Tools for the Proof

The grid chain (ξkT )k∈N0
is a time homogeneous Markov chain.

Due to our assumptions it is positive Harris-recurrent and we write
µ for its unique invariant probability measure.

The path segment chain (Ξk)k∈N0
with

Ξk :=
(
ξ(k−1)T+s

)
s∈[0,T ]

, k ∈ N,

Ξ0 ∈ C [0,T ] arbitrary with Ξ0(T ) = ξ0,

is a C [0,T ]-valued time homogeneous Markov chain. It inherits
positive Harris-recurrence from the grid chain and we denote its
invariant probability measure by m.
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The path segment chain (Ξk)k∈N0
with

Ξk :=
(
ξ(k−1)T+s

)
s∈[0,T ]

, k ∈ N,

Ξ0 ∈ C [0,T ] arbitrary with Ξ0(T ) = ξ0,

is a C [0,T ]-valued time homogeneous Markov chain. It inherits
positive Harris-recurrence from the grid chain and we denote its
invariant probability measure by m.



Tools for the Proof

Strong Law of Large Numbers for Ξ (Höpfner, Kutoyants, 2010)

(At)t≥0 increasing process, F ∈ L1(m) nonnegative with

AkT =
k∑

j=1

F (Ξj) for all k ∈ N.

Then
1

t
At

t→∞−−−→ 1

T
m(F ) P(ϑ,T )-a.s.

Apply this to show that for 1-periodic bounded measurable f and m ∈ N0

1

t

∫ t

0

f (s/T )

σ2(ξs)
ds

t→∞−−−→
∫ 1

0

f (s)µP0,sT (σ−2)ds︸ ︷︷ ︸
=:ν(ds)

P(ϑ,T )-a.s.
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Tools for the Proof

Strong Law of Large Numbers for Ξ (Höpfner, Kutoyants, 2010)

(At)t≥0 increasing process, F ∈ L1(m) nonnegative with

AkT =
k∑

j=1

F (Ξj) for all k ∈ N.

Then
1

t
At

t→∞−−−→ 1

T
m(F ) P(ϑ,T )-a.s.

Apply this to show that for 1-periodic bounded measurable f and m ∈ N0

1

nm+1

∫ tn

0

sm
f (s/T )

σ2(ξs)
ds

n→∞−−−→ tm+1

m + 1

∫ 1

0

f (s)µP0,sT (σ−2)ds︸ ︷︷ ︸
=:ν(ds)

P(ϑ,T )-a.s.



Main Step of the Proof

〈
δn

∫ · n
0

Ṡ(ϑ,T )(s)

σ(ξs)
dWs

〉
t

= δ2
n

∫ tn

0

Ṡ(ϑ,T )(s)Ṡ(ϑ,T )(s)>

σ2(ξs)
ds

=

∫ tn

0

 n−1∇ϑSϑ( s
T

)∇ϑSϑ( s
T

)> n−2
(
−sT−2S ′ϑ( s

T
)∇ϑSϑ( s

T
)
)

n−2
(
−sT−2S ′ϑ( s

T
)∇ϑSϑ( s

T
)
)>

n−3s2T−4S ′ϑ( s
T

)2

σ−2(ξs)ds

n→∞−−−−→ ν

 t∇ϑSϑ∇ϑS
>
ϑ −

(
t2

2
T−2S ′ϑ∇ϑSϑ

)
−
(

t2

2
T−2S ′ϑ∇ϑSϑ

)>
t3

3
T−4(S ′ϑ)2



=

∫ t

0
ν


 ∇ϑSϑ

−sT−2S ′ϑ

 ∇ϑSϑ

−sT−2S ′ϑ

>
 ds



Example

A simple example for a signal that satisfies the regularity
assumptions is

S(ϑ,T )(s) =
l∑

k=0

(
gk(ϑ) sin

(
2kπs

T

)
+ hk(ϑ) cos

(
2kπs

T

))
with l ∈ N0 and gk , hk ∈ C 1(Θ) for all k ∈ {0, . . . , n}.

For σ ≡ 1 and the above signal with l = d , hk ≡ 0 and gk
depending only on ϑk , the invertibility condition for J(ϑ,T )(t) also
holds.
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with l ∈ N0 and gk , hk ∈ C 1(Θ) for all k ∈ {0, . . . , n}.
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depending only on ϑk , the invertibility condition for J(ϑ,T )(t) also
holds.



Next Step

Construct estimator(s) for (ϑ,T ) involving only V .
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