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our aims

branching diffusion with immigration (BDI), ergodic setting,
time-continuous observation ↔ time-discrete observation at small step size ∆:

in continuous time:

independent diffusion paths

position-dependent branching rate

random displacement of offspring

immigration at constant rate

in discrete time:

pairs of successive configurations

no information on particle identities

seemingly ’identifiable’ pairs – and others

→ reconstruction algorithm ??

→ regression schemes for estimation ??
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BDI process, ergodicity, invariant measure

single particle space (E , E): E = Rd with Borel σ-field

configuration space (S ,S): S =
⋃
`∈N0

E ` with Borel σ-field, E 0 = {δ} void conf.

x = (x1, . . . , x`) elements of S , ` : S → N0 length of a configuration,

x ∈ S , A ∈ E : x(A) =
∑`(x)

i=1 εxi (A) number of particles visiting A,

f : E → R a function, x ∈ S : f (x) =
∑`(x)

i=1 f (xi ) with convention f (δ) := 0

particles travel on independent diffusion paths dξs = b(ξs)ds + σ(ξs)dWs ,
a = σσ>, assume: drift C1

b(E), diffusion coefficient C2
b(E)

branching at position-dependent rate κ(·) ∈ Cb(E)

when branching happens in position y ∈ E : number k of descendants and
locations y + v1, . . . , y + vk for offspring selected by Markov kernel

K1(y , dk)K2((y , k), dv1, . . . , dvk) = pk(y)
k∏

j=1

Qr(dvj) ,

finite reproduction means: ρ(·) =
∑

k≥1 kpk(·) in Cb(E)

immigration: PPP on (0,∞)× E with intensity cds Qi(dy)
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with these ingredients:
construct the BDI process as S-valued strong Markov process (ηt)t≥0

infinite lifetime, no accumulation of jumps in finite time,
jumps (branching or immigration) arriving at rate (c + κ(ηs))ds

sequence Tn ↑ ∞ of stopping times such that
on [[Tn,Tn+1[[, `-particle configurations travel on diffusion paths

subprocesses (ηrs+h)h≥0 of all direct descendants of one ancestor at time s are
branching diffusions without immigration, occupation time kernel

H(y , g) = Ey

(∫ ∞
0

g(ηrh) dh

)
, y ∈ E , g ∈ E+

for which there exists a jump diffusion ξ̃ such that

H(y , g) = Ey

(∫ ∞
0

g(ξ̃t) e
−

∫ t
0 [κ(1−ρ)](ξ̃s ) ds dt

)
specified through its generator (writing L for the generator of ξ)

L̃g(y) = Lg(y) + [κρ](y)

∫
E

Qr(dv)[g(y + v)− g(y)]
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proposition 1: the BDI process (ηt)t≥0 is positive Harris recurrent if

(∗) y → H(y , 1) is finite and belongs to L1(Qi)

then: void configuration δ is a recurrent atom, invariant measure on S :

µ(F ) = Eδ

(∫ R

0

1F (ηs) ds

)
, F ∈ S

with R the time of first return to δ, invariant occupation measure on E :

µ(A) = Eδ

(∫ R

0

ηs(A) ds

)
, A ∈ E ;

by (∗), µ is a finite measure on E given by (up to constant multiples)

µ = QiH , µ(E) = EQi

(∫ ∞
0

e−
∫ t

0 [κ(1−ρ)](ξ̃s ) ds dt

)
<∞

(case Qr = ε0 : cf. Ikeda, Nagasawa and Watanabe 1969, Nagasawa 1977,
Löcherbach 2004, H-L 2005, ... our case: jump laws Qr allow for continuous
Lebesgue density of µ on S , Hammer 2012)



aims setting more reconstr regr references

more on the invariant measure

associate to the [κ(1− ρ)]-potential kernel H(y , g) expectation semigroup

Mt(y , g) = Ey

(
g(ξ̃t) e

−
∫ t

0 [κ(1−ρ)](ξ̃s ) ds
)
, t ≥ 0

(Ikeda, Nagasawa and Watanabe 1969), write |||Mt ||| = sup
y∈E

Mt(y ,E).

theorem 1: can construct α> in Cb(E) and a semimartingale of finite jump

intensity ξ̃> with generator L̃> and semigroup

M>t (y , g) = Ey

(
g(ξ̃>t ) e−

∫ t
0 α
>(ξ̃>s ) ds

)
, t ≥ 0

such that duality of Feller semigroups holds:

〈 (L̃ − [κ(1− ρ)])f , g 〉 = 〈 f , (L̃>− α>)g 〉 , f , g ∈ C∞c (E)

〈Mt f , g 〉 = 〈 f ,M>t g 〉 , t ≥ 0

|||Mt ||| ≤ et ‖[κ(1−ρ)‖∞ , |||M>t ||| ≤ et ‖α
>‖∞

(proofs using strongly continuous semigroups, approximation results, bounded
operators on L1(E), bounded perturbation – no flows of diffeomorphisms)
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formally by prop. 1 and thm. 1, when qi is a Lebesgue density for Qi, write

µf = QiH f = 〈 qi,Hf 〉 = 〈H>qi, f 〉 ≤ ∞

where H>(y , g) is the resolvent of the semigroup (M>t )t≥0, thus

y −→ H>(y , qi) =

∫ ∞
0

dt M>t (y , qi) = Ey

(∫ ∞
0

qi(ξ̃>t ) e−
∫ t

0 α
>(ξ̃>s ) ds dt

)
should be a Lebesgue density for µ on E

theorem 2: assume (∗) and

(∗∗) lim sup
t→∞

1

t
log |||Mt ||| < 0 , lim sup

t→∞

1

t
log |||M>t ||| < 0

a) if qi ∈ C0(E), then the invariant occupation measure µ on E admits

a Lebesgue density γ(·) = H>(·, qi) which is C0(E)

b) for q ∈ N: if condition (Mq): y →
∑
k

kqpk(y) is Cb(E) holds, then

µ(`q) =

∫
S

`q(x)µ(dx) =
∑
`

`qµ(E `) < ∞
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the reconstruction algorithm (RA)

from now on: for the semigroup (Pκt (y , dz))t≥0 on E = Rd corresponding to
one-particle motion ξ killed at rate κ(·), we assume heat kernel bounds

(HKB) pκt (y , z) ≤ C t−
d
2 e−

1
2
|z−y|2

C t , 0 < t ≤ t0 , y , z ∈ E

definition 1: call a two-particle configuration (x , x ′) ∈ E×E ε-wellspread if
min

1≤j≤d
|xj − x ′j | ≥ ε ; call a configuration x ∈ S ε-wellspread if arbitrary

two-particle subconfigurations of x are ε-wellspread

write Nε for the set of all configurations in S which are not ε-wellspread

theorem 3: under (HKB) and (M3), we have

µ(Nε) ≤ O(ε) as ε ↓ 0.

proof: resolvant calculations for multi-particle motions under killing rate κ(·)
establish µ(Nε ∩ E `) ≤ D ε `3µ(E `) for ` ≥ 2
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when we observe discretely in time: recording pairs of successive observations
(ηi∆, η(i+1)∆) only, any information on individual particle trajectories between
times i∆ and (i + 1)∆ is lost ... ↪→ problem of particle identification !!!

definition 2: call (x , y) ∈ S×S (∆, λ)-identifiable if (∆ > 0, 0 < λ < 1
2
)

`(x) = `(y) = ` for some ` ∈ N
x = (x1, . . . , x`) is 4∆λ-wellspread, y = (y1, . . . , y`) is 2∆λ-wellspread

exists permutation π of the ` particles (necessarily unique) such that

max
1≤j≤d

|yπ(m),j − xm,j | < ∆λ , 1 ≤ m ≤ `

write ID(∆, λ) for the subset of (∆, λ)-identifiable pairs in S × S , call
pairs (ηi∆, η(i+1)∆) (∆, λ)-identifiable if (ηi∆, η(i+1)∆) ∈ ID(∆, λ) holds

reconstruction algorithm: for (∆, λ)-identifiable pairs (ηi∆, η(i+1)∆), writing
x := ηi∆, y := η(i+1)∆, ` and π as in definition 2, we decide to view

(RA)

{
yπ(m) as the position at time (i + 1)∆ of the particle
which was in position xm at time i∆, for 1 ≤ m ≤ `

(of course, this decision may be wrong ...)
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theorem 4: for (ηt)t≥0 stationary, 0 < λ < 1
2

fixed, as ∆ ↓ 0:

Qµ
(

(ηi∆, η(i+1)∆) /∈ ID(∆, λ) or (RA) decision incorrect
)
≤ O(∆λ)

proof: define ’good = correctly identifiable’ path segments

η[i∆,(i+1)∆] := (ηs)i∆≤s≤(i+1)∆

as elements of the cadlag path space D([i∆, (i + 1)∆],S) such that{
η[i∆,(i+1)∆]’good’

}
⊂
{

(ηi∆, η(i+1)∆) ∈ ID(∆, λ) and (RA) decision is correct
}

we prove under assumptions (HKB) and (M1) that

Qµ
(
η[i∆,(i+1)∆] is (∆, λ)-good

)
≥ 1− O(∆λ)

as ∆ ↓ 0, with leading contribution on l.h.s. (cf. thm. 3 and def. 2)

Qµ
(
ηi∆ is 4∆λ-wellspread

)
= 1− µ(N4∆λ) ≥ 1− O(∆λ)

which explains the rate in theorem 4; as a by-product:

(+) Qµ
(

(ηi∆, η(i+1)∆) ∈ ID(∆, λ) , (RA) decision incorrect
)
≤ O(∆)
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filling regression schemes for σ2(·) (dim d = 1)

E := R, let CI(∆, λ) denote the set of ’(∆, λ)-good’ path segments:{
η[m∆,(m+1)∆] ∈ CI(∆, λ)

}
⊂
{

(ηm∆, η(m+1)∆) ∈ ID(∆, λ)
}

consider any interval A such that inf
x∈A

γ(x) > 0 , w.l.o.g. A := [0, 1]

subdivide A into n cells Aj of equal length, by ergodicity

( since lim
i→∞

1
i

∑i
m=1 1{ηm∆(Aj )≥1}1{ η[m∆,(m+1)∆] ∈ CI(∆,λ) } exists in (0,∞) )

associate to every cell Aj a stopping time τj with finite mean, 1 ≤ j ≤ n:

τj := min
{
m ∈ N0 : ηm∆(Aj) ≥ 1 and (ηm∆, η(m+1)∆) ∈ ID(∆, λ)

}
take some mj such that particle mj in configuration ητj∆ visits Aj , then put

(RS) Xj := (ητj∆)mj ∈ Aj , Yj :=

(
(η(τj+1)∆)π(mj ) − (ητj∆)mj√

∆

)2

, 1 ≤ j ≤ n

with π prescribed by the reconstruction algorithm (RA) (we are allowed to fill
several cells at the same time)
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theorem 5: assume d = 1, (HKB), (M3), ..., then the regression scheme (RS)

(Xj , Yj) , 1 ≤ j ≤ n

has the following properties as n→∞ and ∆ ↓ 0:

a) the Xj , 1 ≤ j ≤ n, are approximately aequidistant

b) on an exceptional event of small probability ≤ O(n∆),
some Yj ’s in (RS) may not correspond to underlying one-particle motions; but
(RA) always provides a trivial deterministic bound |Yj | ≤ ∆2λ−1, 1 ≤ j ≤ n

c) on an event of large probability ≥ 1−O(n∆), the scheme (RS) satisfies

Yj = σ2(Xj)(1 + Uj) + Rj , 1 ≤ j ≤ n

where for iid BM’s Wj , 1 ≤ j ≤ n, iid pairs (Uj ,Rj) and some global cst

Uj = 2

∫ 1

0

WjdWj = [Wj(1)2 − 1] , E(R2
j ) ≤ C ∆

(proof: recall (ητj∆, η(τj+1)∆) ∈ ID(∆, λ) for all 1 ≤ j ≤ n by construction;
c) ←↩ event that (RA) decides correctly, thus all Yj are taken out of some true
underlying one-particle motion; b) ←↩ event (+) in theorem 4)
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estimation of the diffusion coefficient at points a ∈ int(A), A = [0, 1]:
for n large and ∆ small, consider regression schemes (RS)

unknown σ2(·), assume σ2 ∈ Hβ , the Hölder class of smoothness β > 2

consider as an example kernel estimators (other examples could be
local polynomial estimators, cf. Tsybakov 2009 section 1.6)

kernel K of order bβc, bandwidth h = n−
1

2β+1 , Kh = 1
h
K( ·

h
), estimator

σ̂2
n,∆(a) :=

1

n

n∑
j=1

Yj Kh(Xj − a)

(since Xj , 1 ≤ j ≤ n, approximately aequidistant: 1
n

∑n
j=1 Kh(Xj − a) ≈ 1)

quadratic risk when estimating from (RS)

sup
σ2∈Hβ

Eσ2

(∣∣∣σ̂2
n,∆(a)− σ2(a)

∣∣∣2) ≤ O
(
n ∆2λ

)
+ O

(
n−

2β
2β+1

)
arises as the sum of two terms:

on the exceptional set of probability O(n∆): all |Yj | ≤ ∆2λ−1

usual nonparametric squared risk on event of probability 1− O(n∆)
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both terms will be of same order

O
(
n−

2β
2β+1

)
= O(

1

n hn
) = O

(
n ∆2λ

)
if we take ∆ = ∆n such that ∆2λ= 1

n2hn
=n−

4β+1
2β+1 : we thus arrive at

corollary: estimating unknown σ2 ∈ Hβ , β > 2 fixed, from time-discrete
observation of the BDI process at step size ∆

∆ = ∆n such that ∆λ =
1

n
√
hn

=
1

n
n+

1/2
2β+1

using reconstruction algorithm (RA) to fill a regression scheme (RS) with n
cells, we have asymptotically as n→∞

sup
σ2∈Hβ

Eσ2

(∣∣∣σ̂2
n,∆(a)− σ2(a)

∣∣∣2) ≤ O
(
n−

2β
2β+1

)
i.e. we attain the nonparametric rate known to be optimal (Tsybakov 2009
sect. 2.5) for squared risk in standard regression schemes for unknown f ∈ Hβ

(Uj ,Vj) , Vj = f (Uj) + εj , 1 ≤ j ≤ n

with iid errors εj and equispaced deterministic Uj –THE END–
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