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SIRSN : Scale-invariant random spatial network

A SIRSN is a set of finite routes (paths) in Rd , such that :
1. ∀x1, x2 ∈ Rd , there is a.s. a unique route R(x1, x2).
2. If x1, . . . , xk ∈ Rd the network N (x1, . . . , xk) of routes

between each pair of xi is invariant by all similarities S : the
networks N (Sx1, . . . ,Sxk) and SN (x1, . . . , xk) have the same
distributions.

3. The length D1 of the route between 0 and 1 has finite
expectation : E [D1] <∞.

4. Let Ξ =
⋃

i∈N Ξi where the Ξi are independent Poisson
processes with intensity 1. The following long-distance network
has finite intensity p(1) :⋃

x1,x2∈Ξ

(R(x1, x2) \ (B(x1, 1) ∪ B(x2, 1))) .



Quelques propriétés (Aldous)

There are motorways :

There are singly-infinite “geodesics” ’, but no doubly-infinite
“geodesic”.

Figure : Singly-infinite
Figure : Doubly-infinite

Heuristics for switching from tables to Dijkstra after p
2
3 (1)M

1
3

nodes.



Does it exist ?

Figure from Aldous and Ganesan (PNAS 2013)

Not very satisfying : Similarity invariance has to be added a
posteriori.
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Poisson line process I

Poisson point process
Let Λ a measure on X. A Poisson point process is a random set of
points in X such that, denoting N(B) the number of points in B :

I For any disjoint measurable Bi , the random variables N(Bi )
are disjoint.

I N(B) is a Poisson random variable with parameter Λ(B).
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Poisson line process II
Parametrisation of lines

I Direction. In 2d, angle with axis of abscissas.
I Intersection with normal hyperplane. In 2d, algebraic distance

to the origin.

θ

r

=⇒ Image of a homogeneous PPP is translation and rotation
invariant
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Poisson line process II

Parametrisation of lines
I Direction. In 2d, angle with axis of abscissas.
I Intersection with normal hyperplane. In 2d, algebraic distance

to the origin.

Under this distribution, the number of lines hitting a convex K is a
Poisson variable with parameter the perimeter of K (hyperarea in
dimension > 2) :

µd ([K ]) = hyperarea of the boundary of K



Poisson line process III

Let’s add a dimension to the PPP : a speed limit on each line.
Measure of PPP :

(γ − 1)v−γdvµd (dl)

Power law =⇒ scale invariance :

r → Λr v → vΛ
d−1
γ−1 .

The number of lines faster than v0 hitting a convex K is a Poisson
variable with parameter :

λ = πd ([K ] ∩ {v ≥ v0}) = v−(γ−1)
0 · hypersurface de K
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SIRSN : Scale-invariant random spatial network

A SIRSN is a set of finite routes (paths) in Rd , such that :
1. ∀x1, x2 ∈ Rd , there is a.s. a unique route R(x1, x2).
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between each pair of xi is invariant by all similarities S : the
networks N (Sx1, . . . ,Sxk) and SN (x1, . . . , xk) have the same
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3. The length D1 of the route between 0 and 1 has finite
expectation : E [D1] <∞.

4. Let Ξ =
⋃

i∈N Ξi where the Ξi are independent Poisson
processes with intensity 1. The following long-distance network
has finite intensity p(1) :⋃

x1,x2∈Ξ
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Time diameter of balls
Let Txy be the minimum time to go from x to y while respecting
speed limits.

Theorem (idea from Kendall)
Let γ > d ≥ 2.
Let B a ball with radius r . There is T1 such that for all 1

2 > ε > 0,
with probability at least 1− ε :

TB=̂ sup
x ,y∈B

Txy

≤ T1r
γ−d
γ−1

(
ln

1
ε

)1/(γ−1)

Notably, this maximum time has the following moment, for all

δ < T
− 1

γ−1
1 r−

d−1
γ−1 :

E
[
exp
(
δT γ−1

B

)]
<∞.
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Consequence

Theorem (Kendall)
The minimum time to connect each pair of points is attained.
There is at least one geodesic between each pair of points.

Our Poisson line process generates
a random

geodesic

metric space.

The metric is given by the time needed to travel between two
points.
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Mean length of a geodesic

Theorem
The length D1 between 0 and 1 has a finite mean :

E [D1] <∞.

Conjecture
D1 has a δ-moment if and only if δ < 2γ + d − 3.

0

1

ε

v ≡ r � 1



Mean length of a geodesic

Theorem
The length D1 between 0 and 1 has a finite mean :

E [D1] <∞.

Conjecture
D1 has a δ-moment if and only if δ < 2γ + d − 3.

0

1

ε

v ≡ r � 1



Geodesics are unique

Theorem (Kendall in dimension 2)
For all d ≥ 2, for any pair of points x and y in Rd , the geodesic
gxy is almost surely unique.

Remark
Almost surely, there are pairs of points x and y in Rd with several
geodesics.



Geodesics are unique

Theorem (Kendall in dimension 2)
For all d ≥ 2, for any pair of points x and y in Rd , the geodesic
gxy is almost surely unique.

Remark
Almost surely, there are pairs of points x and y in Rd with several
geodesics.



Many directions



SIRSN : Scale-invariant random spatial network

A SIRSN is a set of finite routes (paths) in Rd , such that :
1. ∀x1, x2 ∈ Rd , there is a.s. a unique route R(x1, x2).
2. If x1, . . . , xk ∈ Rd the network N (x1, . . . , xk) of routes

between each pair of xi is invariant by all similarities S : the
networks N (Sx1, . . . ,Sxk) and SN (x1, . . . , xk) have the same
distributions.

3. The length D1 of the route between 0 and 1 has finite
expectation : E [D1] <∞.

4. Let Ξ =
⋃

i∈N Ξi where the Ξi are independent Poisson
processes with intensity 1. The following long-distance network
has finite intensity p(1) :⋃

x1,x2∈Ξ

(R(x1, x2) \ (B(x1, 1) ∪ B(x2, 1))) .



Intensity

1/3

Tε ≡
(
ln

1
ε

) 1
γ−1

vε =
1

6Tε
λε ≡ v−(γ−1)

ε

≡
(
ln

1
ε

)
m1(Vε) ≤

4
3

#fast

≡
(
ln

1
ε

)
m1(Vε)2

(1/6)2 ≡
(
ln

1
ε

)2

exp
(
δ
√
L
)
<∞



Intensity

1/3

2/3

Tε ≡
(
ln

1
ε

) 1
γ−1

vε =
1

6Tε
λε ≡ v−(γ−1)

ε

≡
(
ln

1
ε

)
m1(Vε) ≤

4
3

#fast

≡
(
ln

1
ε

)
m1(Vε)2

(1/6)2 ≡
(
ln

1
ε

)2

exp
(
δ
√
L
)
<∞



Intensity

x

y

Tε ≡
(
ln

1
ε

) 1
γ−1

vε =
1

6Tε
λε ≡ v−(γ−1)

ε

≡
(
ln

1
ε

)
m1(Vε) ≤

4
3

#fast

≡
(
ln

1
ε

)
m1(Vε)2

(1/6)2 ≡
(
ln

1
ε

)2

exp
(
δ
√
L
)
<∞



Intensity

x

y

s

u

Tε ≡
(
ln

1
ε

) 1
γ−1

vε =
1

6Tε
λε ≡ v−(γ−1)

ε

≡
(
ln

1
ε

)
m1(Vε) ≤

4
3

#fast

≡
(
ln

1
ε

)
m1(Vε)2

(1/6)2 ≡
(
ln

1
ε

)2

exp
(
δ
√
L
)
<∞



Intensity

x

y

s

u

v

z

Tε ≡
(
ln

1
ε

) 1
γ−1

vε =
1

6Tε
λε ≡ v−(γ−1)

ε

≡
(
ln

1
ε

)
m1(Vε) ≤

4
3

#fast

≡
(
ln

1
ε

)
m1(Vε)2

(1/6)2 ≡
(
ln

1
ε

)2

exp
(
δ
√
L
)
<∞



Intensity

x

y

s

u

v

z

Tε ≡
(
ln

1
ε

) 1
γ−1

vε =
1

6Tε
λε ≡ v−(γ−1)

ε

≡
(
ln

1
ε

)
m1(Vε) ≤

4
3

#fast

≡
(
ln

1
ε

)
m1(Vε)2

(1/6)2 ≡
(
ln

1
ε

)2

exp
(
δ
√
L
)
<∞



Intensity

x

y

s

u

v

z

Tε ≡
(
ln

1
ε

) 1
γ−1

vε =
1

6Tε

λε ≡ v−(γ−1)
ε

≡
(
ln

1
ε

)
m1(Vε) ≤

4
3

#fast

≡
(
ln

1
ε

)
m1(Vε)2

(1/6)2 ≡
(
ln

1
ε

)2

exp
(
δ
√
L
)
<∞



Intensity

x

y

s

u

v

z

Tε ≡
(
ln

1
ε

) 1
γ−1

vε =
1

6Tε
λε ≡ v−(γ−1)

ε

≡
(
ln

1
ε

)
m1(Vε) ≤

4
3

#fast

≡
(
ln

1
ε

)
m1(Vε)2

(1/6)2 ≡
(
ln

1
ε

)2

exp
(
δ
√
L
)
<∞



Intensity

x

y

s

u

v

z

Tε ≡
(
ln

1
ε

) 1
γ−1

vε =
1

6Tε
λε ≡ v−(γ−1)

ε

≡
(
ln

1
ε

)

m1(Vε) ≤
4
3

#fast

≡
(
ln

1
ε

)
m1(Vε)2

(1/6)2 ≡
(
ln

1
ε

)2

exp
(
δ
√
L
)
<∞



Intensity

x

y

s

u

v

z

Tε ≡
(
ln

1
ε

) 1
γ−1

vε =
1

6Tε
λε ≡ v−(γ−1)

ε

≡
(
ln

1
ε

)

m1(Vε) ≤
4
3

#fast

≡
(
ln

1
ε

)
m1(Vε)2

(1/6)2 ≡
(
ln

1
ε

)2

exp
(
δ
√
L
)
<∞



Intensity

x

y

s

u

v

z

Tε ≡
(
ln

1
ε

) 1
γ−1

vε =
1

6Tε
λε ≡ v−(γ−1)

ε

≡
(
ln

1
ε

)

m1(

Vε

) ≤ 4
3

#fast

≡
(
ln

1
ε

)
m1(Vε)2

(1/6)2 ≡
(
ln

1
ε

)2

exp
(
δ
√
L
)
<∞



Intensity

x

y

s

u

v

z

Tε ≡
(
ln

1
ε

) 1
γ−1

vε =
1

6Tε
λε ≡ v−(γ−1)

ε

≡
(
ln

1
ε

)
m1(Vε) ≤

4
3

#fast

≡
(
ln

1
ε

)
m1(Vε)2

(1/6)2 ≡
(
ln

1
ε

)2

exp
(
δ
√
L
)
<∞



Intensity

x

y

s

u

v

z

Tε ≡
(
ln

1
ε

) 1
γ−1

vε =
1

6Tε
λε ≡ v−(γ−1)

ε

≡
(
ln

1
ε

)
m1(Vε) ≤

4
3

#fast

≡
(
ln

1
ε

)

m1(Vε)2

(1/6)2 ≡
(
ln

1
ε

)2

exp
(
δ
√
L
)
<∞



Intensity

x

y

s

u

v

z

Tε ≡
(
ln

1
ε

) 1
γ−1

vε =
1

6Tε
λε ≡ v−(γ−1)

ε

≡
(
ln

1
ε

)
m1(Vε) ≤

4
3

#fast

≡
(
ln

1
ε

)
m1(Vε)2

(1/6)2 ≡
(
ln

1
ε

)2

exp
(
δ
√
L
)
<∞



Intensity

x

y

s

u

v

z

Tε ≡
(
ln

1
ε

) 1
γ−1

vε =
1

6Tε
λε ≡ v−(γ−1)

ε

≡
(
ln

1
ε

)
m1(Vε) ≤

4
3

#fast

≡
(
ln

1
ε

)
m1(Vε)2

(1/6)2

≡
(
ln

1
ε

)2

exp
(
δ
√
L
)
<∞



Intensity

x

y

s

u

v

z

Tε ≡
(
ln

1
ε

) 1
γ−1

vε =
1

6Tε
λε ≡ v−(γ−1)

ε

≡
(
ln

1
ε

)
m1(Vε) ≤

4
3

#fast

≡
(
ln

1
ε

)
m1(Vε)2

(1/6)2 ≡
(
ln

1
ε

)2

exp
(
δ
√
L
)
<∞



Intensity

x

y

s

u

v

z

Tε ≡
(
ln

1
ε

) 1
γ−1

vε =
1

6Tε
λε ≡ v−(γ−1)

ε

≡
(
ln

1
ε

)
m1(Vε) ≤

4
3

#fast

≡
(
ln

1
ε

)
m1(Vε)2

(1/6)2 ≡
(
ln

1
ε

)2

exp
(
δ
√
L
)
<∞



Intensity

x

y

s

u

v

z

Tε ≡
(
ln

1
ε

) 1
γ−1

vε =
1

6Tε
λε ≡ v−(γ−1)

ε

≡
(
ln

1
ε

)
m1(Vε) ≤

4
3

#fast

≡
(
ln

1
ε

)
m1(Vε)2

(1/6)2 ≡
(
ln

1
ε

)2

exp
(
δ
√
L
)
<∞



Intensity

x

y

s

u

v

z

Tε ≡
(
ln

1
ε

) 1
γ−1

vε =
1

6Tε
λε ≡ v−(γ−1)

ε

≡
(
ln

1
ε

)
m1(Vε) ≤

4
3

#fast

≡
(
ln

1
ε

)
m1(Vε)2

(1/6)2 ≡
(
ln

1
ε

)2

exp
(
δ
√
L
)
<∞



Intensity

x

y

s

u

v

z

t

Tε ≡
(
ln

1
ε

) 1
γ−1

vε =
1

6Tε
λε ≡ v−(γ−1)

ε

≡
(
ln

1
ε

)
m1(Vε) ≤

4
3

#fast

≡
(
ln

1
ε

)
m1(Vε)2

(1/6)2 ≡
(
ln

1
ε

)2

exp
(
δ
√
L
)
<∞



Intensity

x

y

s

u

v

z

w

t

Tε ≡
(
ln

1
ε

) 1
γ−1

vε =
1

6Tε
λε ≡ v−(γ−1)

ε

≡
(
ln

1
ε

)
m1(Vε) ≤

4
3

#fast

≡
(
ln

1
ε

)
m1(Vε)2

(1/6)2 ≡
(
ln

1
ε

)2

exp
(
δ
√
L
)
<∞



Intensity

x

y

s

u

v

z

w

t

Tε ≡
(
ln

1
ε

) 1
γ−1

vε =
1

6Tε
λε ≡ v−(γ−1)

ε

≡
(
ln

1
ε

)
m1(Vε) ≤

4
3

#fast

≡
(
ln

1
ε

)
m1(Vε)2

(1/6)2 ≡
(
ln

1
ε

)2

exp
(
δ
√
L
)
<∞



Bonus : compare with Brownian map
The Brownian map is a random metric space :

I homeomorphic to the dimension 2 sphere.
I with Hausdorff dimension 4.
I whose geodesics without their extremal points span a set of

Hausdorff dimension 1.
I whose cut-locus from a point has Hausdorff dimension 2 and is

a tree.
Our random metric space :

I is homeomorphic to Rd , with dimension d .
I has Hausdorff dimension dγ−d

γ−d > d . For d = 2 and γ = 3, we
get 4.

I (under the hypothesis that any geodesic is a limit of geodesics
between points in a dense set) whose geodesics without their
extremal points span a set of Hausdorff dimension 1.

I cut-locus ?


