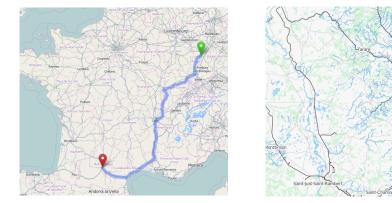
Improper Poisson line process as a SIRSN

Jonas KAHN

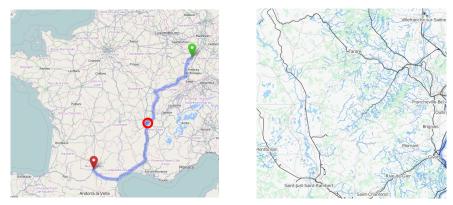
Nantes April 6th, 2016



Invariant by translation, rotation

Invariant by translation, rotation, and scaling

- Invariant by translation, rotation, and scaling
- Routes are foremost



- Invariant by translation, rotation, and scaling
- Routes are foremost, compatible

SIRSN : Scale-invariant random spatial network

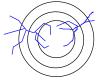
A SIRSN is a set of finite routes (paths) in \mathbb{R}^d , such that :

- 1. $\forall x_1, x_2 \in \mathbb{R}^d$, there is a.s. a unique route $\mathcal{R}(x_1, x_2)$.
- 2. If $x_1, \ldots, x_k \in \mathbb{R}^d$ the network $\mathcal{N}(x_1, \ldots, x_k)$ of routes between each pair of x_i is invariant by all similarities S: the networks $\mathcal{N}(Sx_1, \ldots, Sx_k)$ and $\mathcal{SN}(x_1, \ldots, x_k)$ have the same distributions.
- The length D₁ of the route between 0 and 1 has finite expectation : E [D₁] < ∞.
- Let Ξ = U_{i∈ℕ} Ξ_i where the Ξ_i are independent Poisson processes with intensity 1. The following long-distance network has finite intensity p(1) :

$$\bigcup_{x_1,x_2\in\Xi}\left(\mathcal{R}(x_1,x_2)\setminus \left(B(x_1,1)\cup B(x_2,1)\right)\right).$$

Quelques propriétés (Aldous)

There are motorways :



There are singly-infinite "geodesics"', but no doubly-infinite "geodesic".

Figure : Singly-infinite

Figure : Doubly-infinite

Heuristics for switching from tables to Dijkstra after $p^{\frac{2}{3}}(1)M^{\frac{1}{3}}$ nodes.

Does it exist?

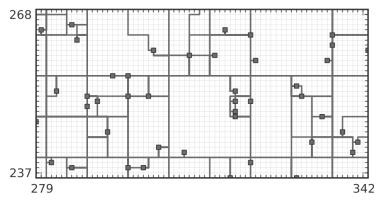


Fig. 4. The spanning subnetwork (within a rectangular window) on sampled points (\blacksquare) in a discrete approximation to model 1.

Figure from Aldous and Ganesan (PNAS 2013)

Does it exist?

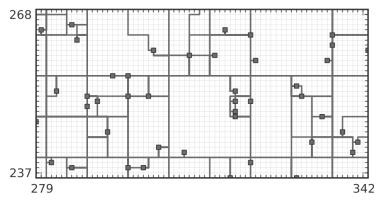


Fig. 4. The spanning subnetwork (within a rectangular window) on sampled points (\blacksquare) in a discrete approximation to model 1.

Figure from Aldous and Ganesan (PNAS 2013)

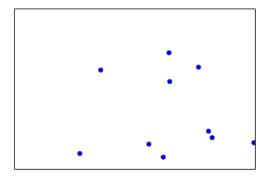
Not very satisfying : Similarity invariance has to be added *a posteriori*.

Poisson point process

- ► For any disjoint measurable B_i, the random variables N(B_i) are disjoint.
- N(B) is a Poisson random variable with parameter $\Lambda(B)$.

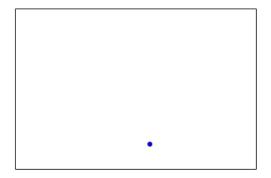
Poisson point process

- ► For any disjoint measurable B_i, the random variables N(B_i) are disjoint.
- N(B) is a Poisson random variable with parameter $\Lambda(B)$.



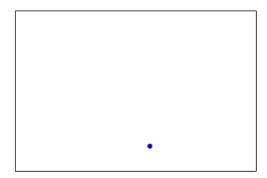
Poisson point process

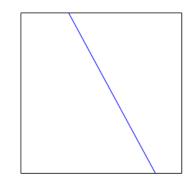
- ► For any disjoint measurable B_i, the random variables N(B_i) are disjoint.
- N(B) is a Poisson random variable with parameter $\Lambda(B)$.



Poisson point process

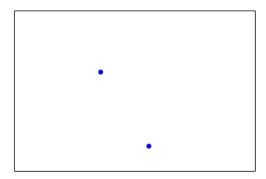
- ► For any disjoint measurable B_i, the random variables N(B_i) are disjoint.
- N(B) is a Poisson random variable with parameter $\Lambda(B)$.

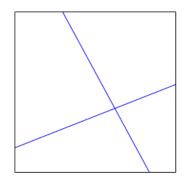




Poisson point process

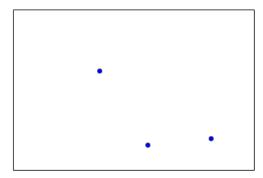
- ► For any disjoint measurable B_i, the random variables N(B_i) are disjoint.
- N(B) is a Poisson random variable with parameter $\Lambda(B)$.

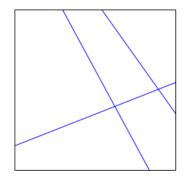




Poisson point process

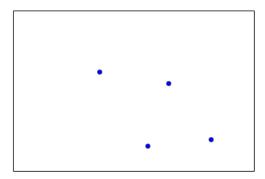
- ► For any disjoint measurable B_i, the random variables N(B_i) are disjoint.
- N(B) is a Poisson random variable with parameter $\Lambda(B)$.

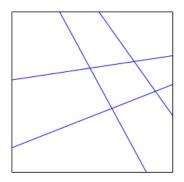




Poisson point process

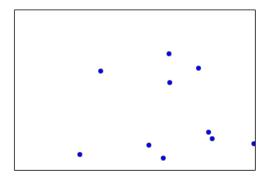
- ► For any disjoint measurable B_i, the random variables N(B_i) are disjoint.
- N(B) is a Poisson random variable with parameter $\Lambda(B)$.

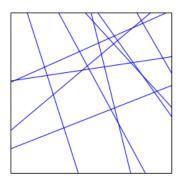




Poisson point process

- ► For any disjoint measurable B_i, the random variables N(B_i) are disjoint.
- N(B) is a Poisson random variable with parameter $\Lambda(B)$.



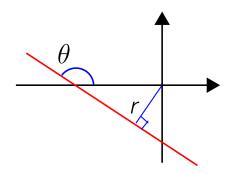


Parametrisation of lines

- Direction. In 2d, angle with axis of abscissas.
- Intersection with normal hyperplane. In 2d, algebraic distance to the origin.

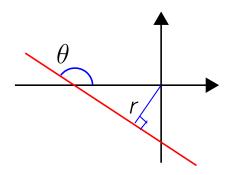
Parametrisation of lines

- Direction. In 2d, angle with axis of abscissas.
- Intersection with normal hyperplane. In 2d, algebraic distance to the origin.



Parametrisation of lines

- Direction. In 2d, angle with axis of abscissas.
- Intersection with normal hyperplane. In 2d, algebraic distance to the origin.



 \implies Image of a homogeneous PPP is translation and rotation invariant

Parametrisation of lines

- Direction. In 2d, angle with axis of abscissas.
- Intersection with normal hyperplane. In 2d, algebraic distance to the origin.

Under this distribution, the number of lines hitting a convex K is a Poisson variable with parameter the perimeter of K (hyperarea in dimension > 2):

 $\mu_d([K]) = hyperarea$ of the boundary of K

Let's add a dimension to the PPP : a speed limit on each line. Measure of PPP :

 $(\gamma - 1) v^{-\gamma} \mathrm{d} v \mu_d(\mathrm{d} l)$

Let's add a dimension to the PPP : a speed limit on each line. Measure of PPP :

$$(\gamma - 1) \mathbf{v}^{-\gamma} \mathrm{d} \mathbf{v} \mu_d(\mathrm{d} l)$$

Power law \implies scale invariance :

$$r \to \Lambda r$$
 $v \to v \Lambda^{\frac{d-1}{\gamma-1}}$.

Let's add a dimension to the PPP : a speed limit on each line. Measure of PPP :

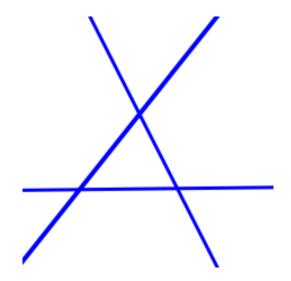
$$(\gamma - 1) \mathbf{v}^{-\gamma} \mathrm{d} \mathbf{v} \mu_d(\mathrm{d} l)$$

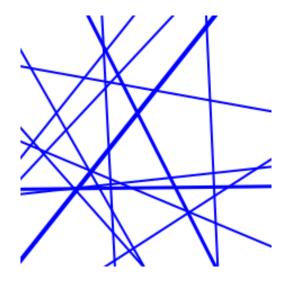
Power law \implies scale invariance :

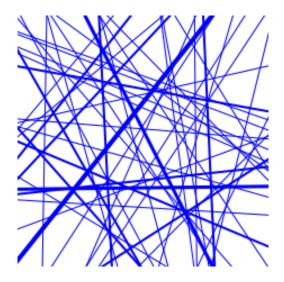
$$r \to \Lambda r$$
 $v \to v \Lambda \frac{d-1}{\gamma-1}$.

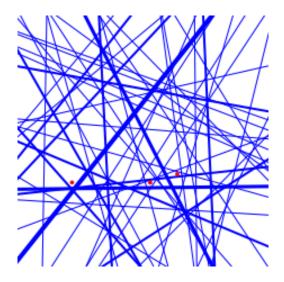
The number of lines faster than v_0 hitting a convex K is a Poisson variable with parameter :

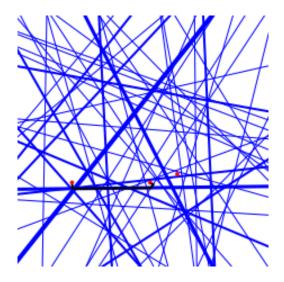
$$\lambda = \pi_d([K] \cap \{v \ge v_0\}) = v_0^{-(\gamma-1)} \cdot \text{hypersurface de } K$$

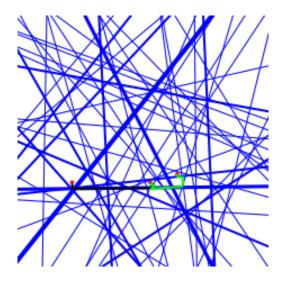


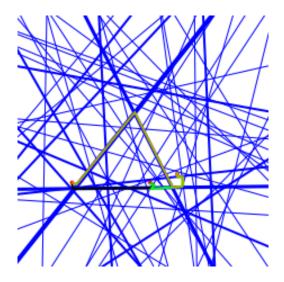


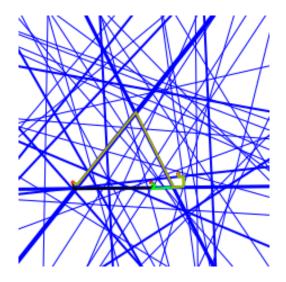












SIRSN?

SIRSN : Scale-invariant random spatial network

A SIRSN is a set of finite routes (paths) in \mathbb{R}^d , such that :

- 1. $\forall x_1, x_2 \in \mathbb{R}^d$, there is a.s. a unique route $\mathcal{R}(x_1, x_2)$.
- 2. If $x_1, \ldots, x_k \in \mathbb{R}^d$ the network $\mathcal{N}(x_1, \ldots, x_k)$ of routes between each pair of x_i is invariant by all similarities S: the networks $\mathcal{N}(Sx_1, \ldots, Sx_k)$ and $\mathcal{SN}(x_1, \ldots, x_k)$ have the same distributions.
- The length D₁ of the route between 0 and 1 has finite expectation : E [D₁] < ∞.
- Let Ξ = U_{i∈ℕ} Ξ_i where the Ξ_i are independent Poisson processes with intensity 1. The following long-distance network has finite intensity p(1) :

$$\bigcup_{x_1,x_2\in\Xi}\left(\mathcal{R}(x_1,x_2)\setminus \left(B(x_1,1)\cup B(x_2,1)\right)\right).$$

Time diameter of balls

Let T_{xy} be the minimum time to go from x to y while respecting speed limits.

Theorem (idea from Kendall)

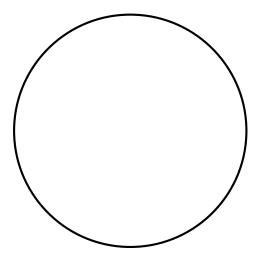
Let $\gamma > d \ge 2$. Let B a ball with radius r. There is T_1 such that for all $\frac{1}{2} > \varepsilon > 0$, with probability at least $1 - \varepsilon$:

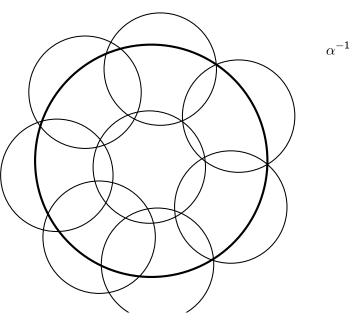
$$T_{B} \stackrel{c}{=} \sup_{x,y \in B} T_{xy}$$

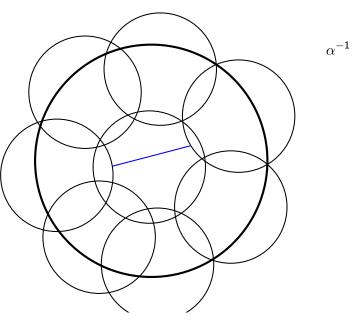
$$\leq T_{1} r^{\frac{\gamma-d}{\gamma-1}} \left(\ln \frac{1}{\varepsilon} \right)^{1/(\gamma-1)}$$

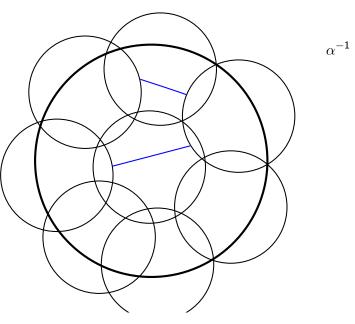
Notably, this maximum time has the following moment, for all $\delta < T_1^{-\frac{1}{\gamma-1}}r^{-\frac{d-1}{\gamma-1}}$:

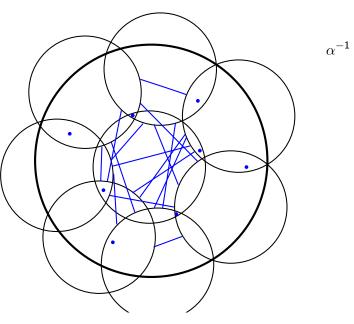
$$\mathbb{E}\left[\exp\left(\delta\, T_B^{\gamma-1}\right)\right]<\infty.$$

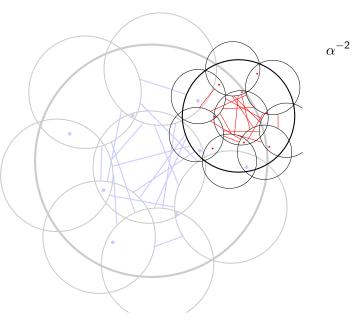


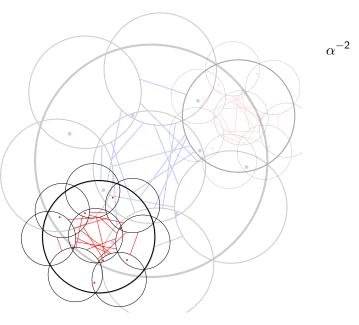


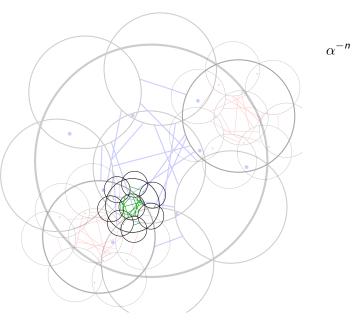


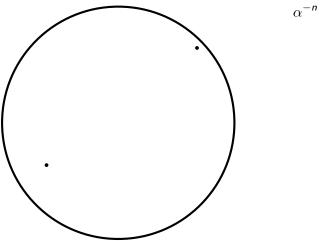


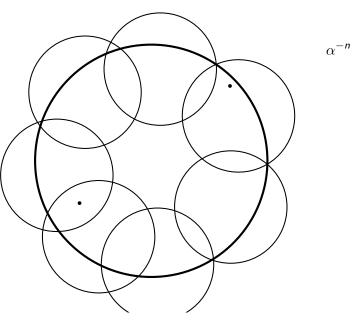


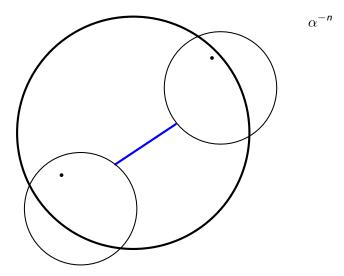


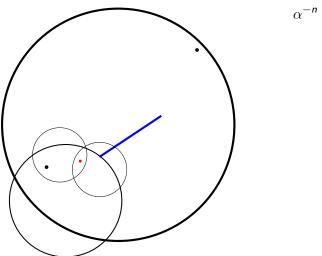


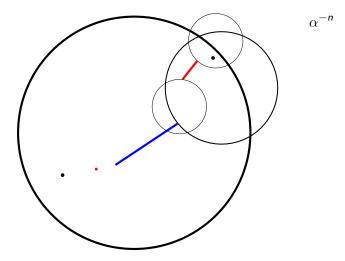


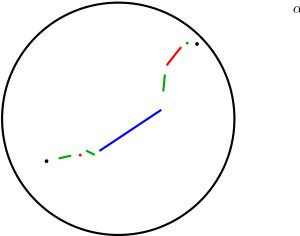




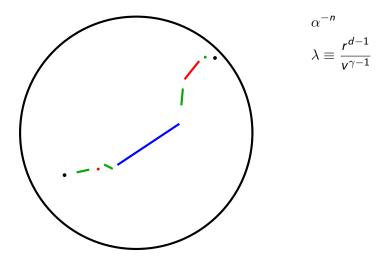


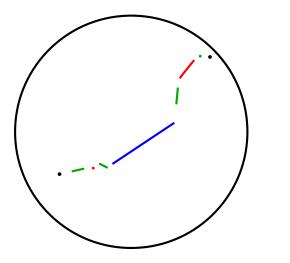




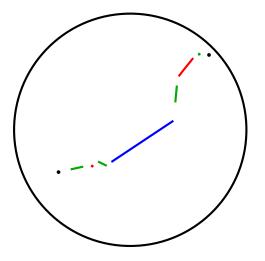


 α^{-n}

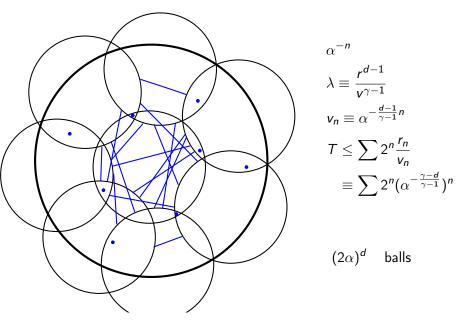


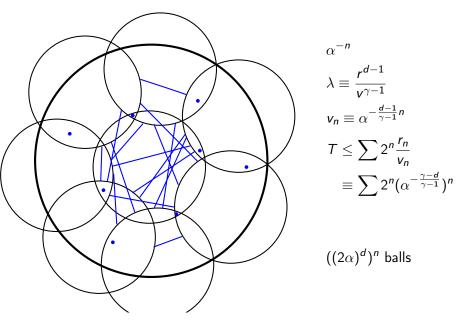


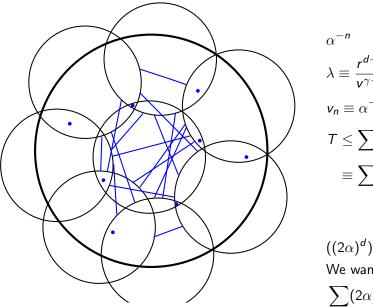
 α^{-n} $\lambda \equiv \frac{r^{d-1}}{v^{\gamma-1}}$ $v_n \equiv \alpha^{-\frac{d-1}{\gamma-1}n}$



 α^{-n} $\lambda \equiv \frac{r^{d-1}}{v^{\gamma-1}}$ $v_n \equiv \alpha^{-\frac{d-1}{\gamma-1}n}$ $T \leq \sum 2^{n} \frac{r_{n}}{v_{n}}$ $\equiv \sum 2^{n} (\alpha^{-\frac{\gamma-d}{\gamma-1}})^{n}$

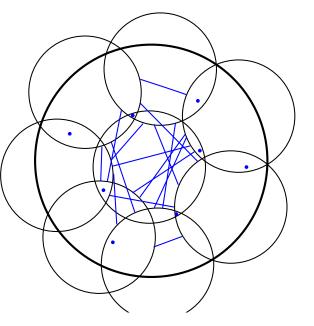






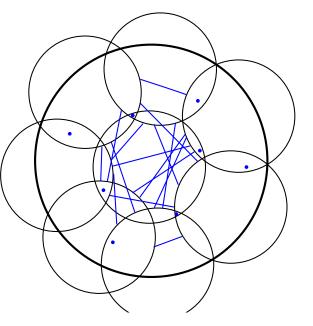
 $\lambda \equiv \frac{r^{d-1}}{v^{\gamma-1}}$ $v_n \equiv \alpha^{-\frac{d-1}{\gamma-1}n}$ $T \leq \sum 2^n \frac{r_n}{v_n}$ $\equiv \sum 2^n (\alpha^{-\frac{\gamma-d}{\gamma-1}})^n$

 $((2lpha)^d)^n$ balls We want $\sum (2lpha)^{d(n+1)} e^{-\lambda_n} \leq arepsilon$



 α^{-n} $\lambda \equiv \frac{r^{d-1}}{v^{\gamma-1}}$ $v_n \equiv \alpha^{-\frac{d-1}{\gamma-1}n} / (n \ln \frac{1}{\varepsilon})^{\frac{1}{\gamma-1}}$ $T \leq \sum 2^n \frac{r_n}{v_n}$ $\equiv \sum 2^n (\alpha^{-\frac{\gamma-d}{\gamma-1}})^n$

 $((2lpha)^d)^n$ balls We want $\sum (2lpha)^{d(n+1)} e^{-\lambda_n} \leq arepsilon$



 α^{-n} $\lambda \equiv \frac{r^{d-1}}{r^{\gamma-1}}$ $v_n \equiv \alpha^{-\frac{d-1}{\gamma-1}n} / (n \ln \frac{1}{c})^{\frac{1}{\gamma-1}}$ $T \leq \sum 2^n \frac{r_n}{v_n}$ $\equiv \sum 2^n (\alpha^{-\frac{\gamma-d}{\gamma-1}})^n$ $\leq T_1 r^{\frac{\gamma-d}{\gamma-1}} \left(\ln \frac{1}{\varepsilon} \right)^{\frac{1}{\gamma-1}}$ $((2\alpha)^d)^n$ balls We want $\sum (2\alpha)^{d(n+1)} e^{-\lambda_n} \le \varepsilon$

Consequence

Our Poisson line process generates a random metric space.

Consequence

Theorem (Kendall)

The minimum time to connect each pair of points is attained. There is at least one geodesic between each pair of points.

Our Poisson line process generates a random geodesic metric space.

Consequence

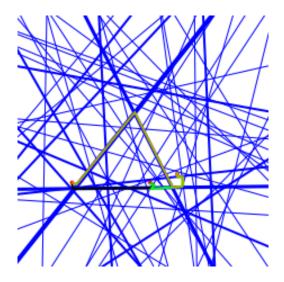
Theorem (Kendall)

The minimum time to connect each pair of points is attained. There is at least one geodesic between each pair of points.

Our Poisson line process generates a random geodesic metric space.

The metric is given by the time needed to travel between two points.

Poisson line process IV



SIRSN : Scale-invariant random spatial network

A SIRSN is a set of finite routes (paths) in \mathbb{R}^d , such that :

- 1. $\forall x_1, x_2 \in \mathbb{R}^d$, there is a.s. a unique route $\mathcal{R}(x_1, x_2)$.
- 2. If $x_1, \ldots, x_k \in \mathbb{R}^d$ the network $\mathcal{N}(x_1, \ldots, x_k)$ of routes between each pair of x_i is invariant by all similarities S: the networks $\mathcal{N}(Sx_1, \ldots, Sx_k)$ and $\mathcal{SN}(x_1, \ldots, x_k)$ have the same distributions.
- The length D₁ of the route between 0 and 1 has finite expectation : E [D₁] < ∞.
- Let Ξ = U_{i∈ℕ} Ξ_i where the Ξ_i are independent Poisson processes with intensity 1. The following long-distance network has finite intensity p(1) :

$$\bigcup_{x_1,x_2\in\Xi}\left(\mathcal{R}(x_1,x_2)\setminus \left(B(x_1,1)\cup B(x_2,1)\right)\right).$$

Mean length of a geodesic

Theorem The length D_1 between 0 and 1 has a finite mean :

 $\mathbb{E}\left[D_{1}\right]<\infty.$

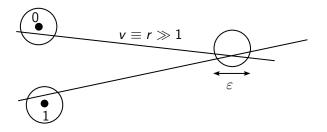
Mean length of a geodesic

Theorem The length D_1 between 0 and 1 has a finite mean :

 $\mathbb{E}[D_1] < \infty.$

Conjecture

 D_1 has a δ -moment if and only if $\delta < 2\gamma + d - 3$.



Geodesics are unique

Theorem (Kendall in dimension 2)

For all $d \ge 2$, for any pair of points x and y in \mathbb{R}^d , the geodesic g_{xy} is almost surely unique.

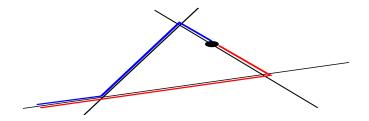
Geodesics are unique

Theorem (Kendall in dimension 2)

For all $d \ge 2$, for any pair of points x and y in \mathbb{R}^d , the geodesic g_{xy} is almost surely unique.

Remark

Almost surely, there are pairs of points x and y in \mathbb{R}^d with several geodesics.



Many directions

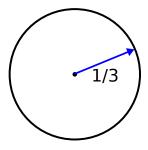
SIRSN : Scale-invariant random spatial network

A SIRSN is a set of finite routes (paths) in \mathbb{R}^d , such that :

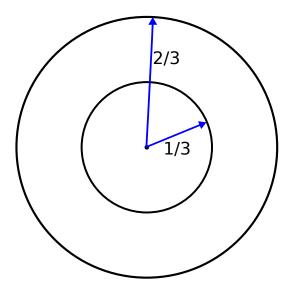
- 1. $\forall x_1, x_2 \in \mathbb{R}^d$, there is a.s. a unique route $\mathcal{R}(x_1, x_2)$.
- 2. If $x_1, \ldots, x_k \in \mathbb{R}^d$ the network $\mathcal{N}(x_1, \ldots, x_k)$ of routes between each pair of x_i is invariant by all similarities S: the networks $\mathcal{N}(Sx_1, \ldots, Sx_k)$ and $\mathcal{SN}(x_1, \ldots, x_k)$ have the same distributions.
- The length D₁ of the route between 0 and 1 has finite expectation : E [D₁] < ∞.
- Let Ξ = U_{i∈ℕ} Ξ_i where the Ξ_i are independent Poisson processes with intensity 1. The following long-distance network has finite intensity p(1) :

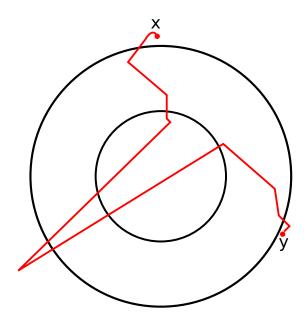
$$\bigcup_{x_1,x_2\in\Xi}\left(\mathcal{R}(x_1,x_2)\setminus \left(B(x_1,1)\cup B(x_2,1)\right)\right).$$

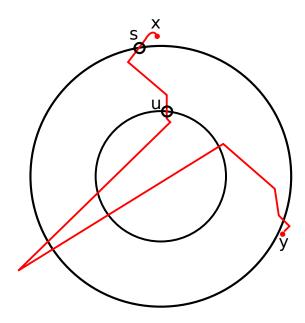
Intensity

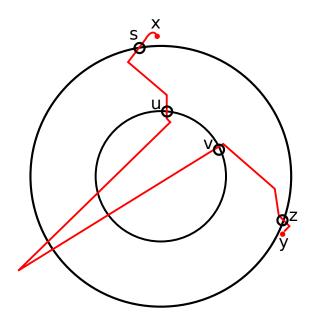


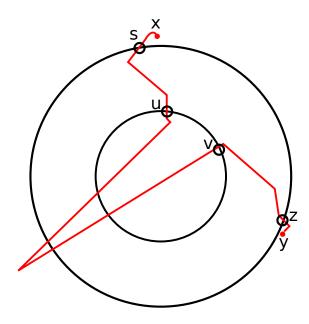
Intensity



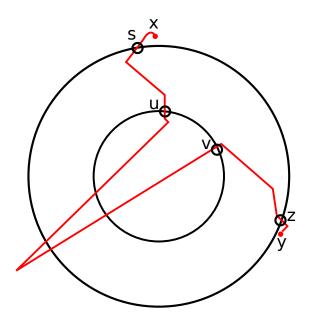




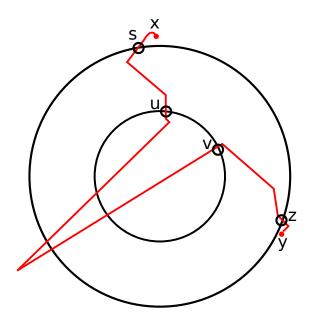




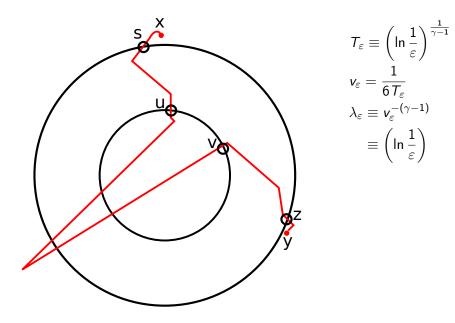
 $T_{arepsilon} \equiv \left(\ln rac{1}{arepsilon}
ight)^{rac{1}{\gamma-1}}$

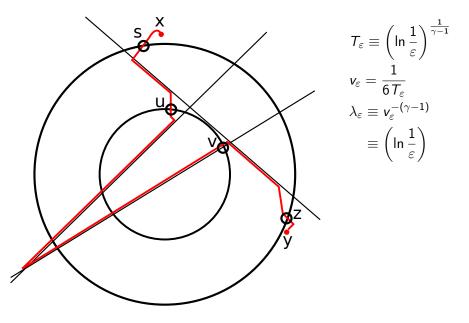


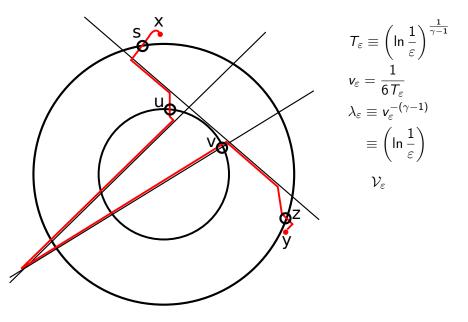
 $T_{\varepsilon} \equiv \left(\ln \frac{1}{\varepsilon} \right)^{\frac{1}{\gamma - 1}}$ $v_{\varepsilon} = \frac{1}{6T_{\varepsilon}}$

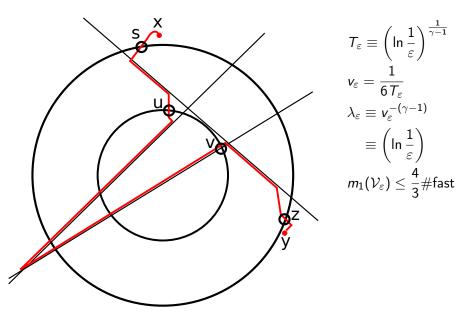


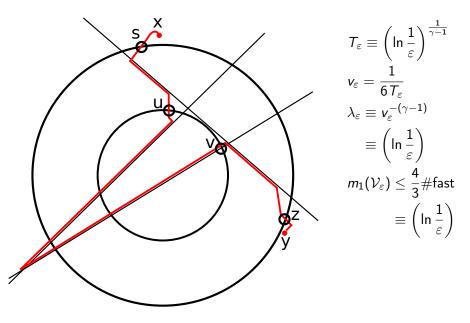
 $T_{\varepsilon} \equiv \left(\ln \frac{1}{\varepsilon} \right)^{\frac{1}{\gamma - 1}}$ $egin{aligned} & m{v}_arepsilon &= rac{1}{6\,T_arepsilon} \ & \lambda_arepsilon &= m{v}_arepsilon^{-(\gamma-1)} \end{aligned}$

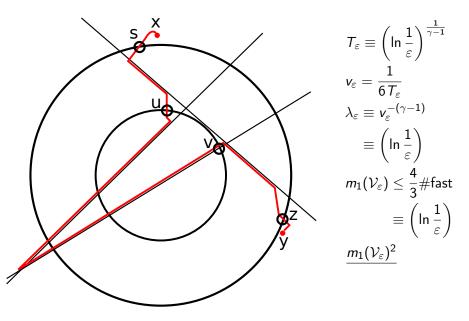


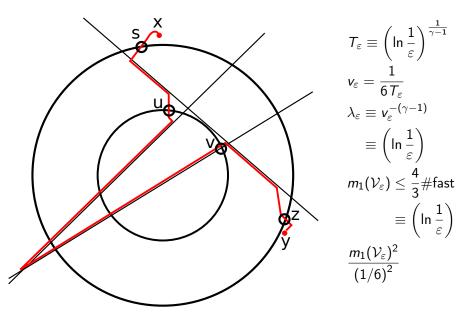


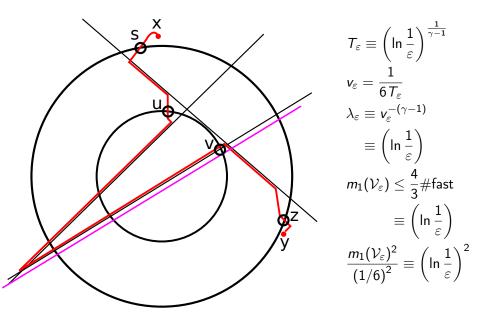


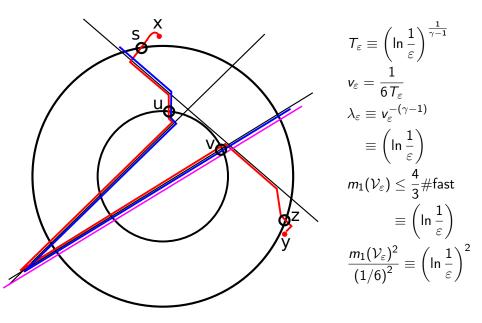


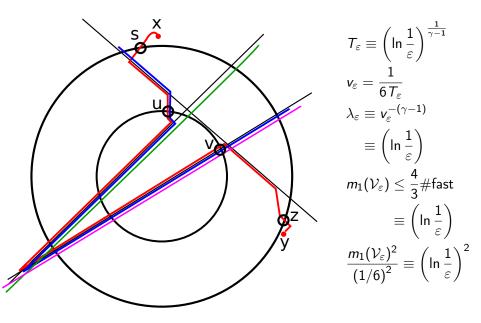


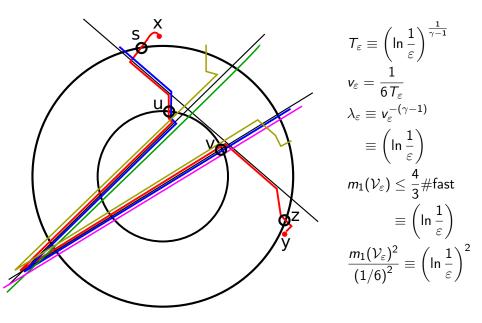


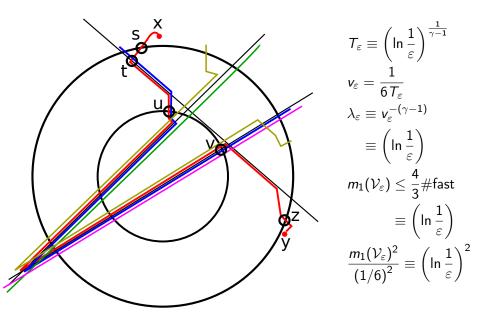


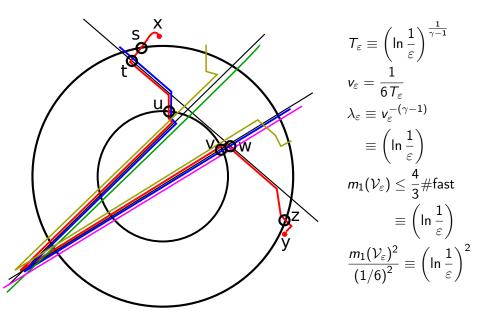


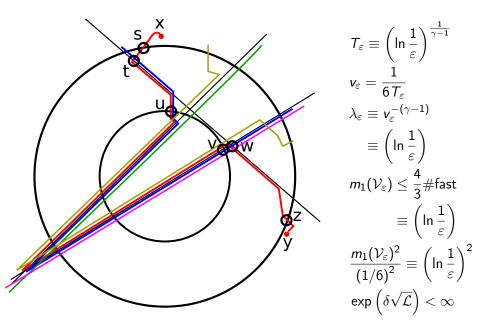












Bonus : compare with Brownian map

The Brownian map is a random metric space :

- homeomorphic to the dimension 2 sphere.
- with Hausdorff dimension 4.
- whose geodesics without their extremal points span a set of Hausdorff dimension 1.
- whose cut-locus from a point has Hausdorff dimension 2 and is a tree.

Our random metric space :

- is homeomorphic to \mathbb{R}^d , with dimension d.
- (under the hypothesis that any geodesic is a limit of geodesics between points in a dense set) whose geodesics without their extremal points span a set of Hausdorff dimension 1.
- cut-locus?