Smoothness of the invariant density of interacting neurons

Eva Löcherbach

Rennes, Dynstoch 2016

- 4 回 ト 4 ヨ ト 4 ヨ ト

Interacting neurons

- *N* neurons $X_t^1, \ldots, X_t^N, X_t^i \in \mathbb{R}, t \ge 0$
- Each neuron 'spikes' with rate $f(X_t^i)$.
- $f \in C^1$, strictly positive.

- 4 同 6 4 日 6 4 日 6

Interacting neurons

- *N* neurons $X_t^1, \ldots, X_t^N, X_t^i \in \mathbb{R}, t \ge 0$
- Each neuron 'spikes' with rate $f(X_t^i)$.
- $f \in C^1$, strictly positive.
- If *i* spikes :
- \Rightarrow neuron *i* is reset to a resting potential 0
- \Rightarrow for all $j \neq i : j$ receives an additional amount of potential $W_{i \rightarrow j}$.

- 4 同 6 4 日 6 4 日 6

• Between two successive spikes, some leak effect induces an attraction to an equilibrium potential *m*

$$dX_t^i = b(X_t^i)dt = -\lambda(X_t^i - m)dt, \lambda > 0.$$

イロト イヨト イヨト イヨト

3

• Between two successive spikes, some leak effect induces an attraction to an equilibrium potential *m*

$$dX_t^i = b(X_t^i)dt = -\lambda(X_t^i - m)dt, \lambda > 0.$$

Remark

Process is a PDMP with generator

$$Lg(x) = \sum_{i=1}^{N} f(x^{i})[g(\Delta_{i}(x)) - g(x)] - \lambda \sum_{i=1}^{N} \frac{\partial g}{\partial x^{i}}(x^{i} - m),$$

where

$$\Delta_{i}(x) = \left(x^{1} + W_{i \to 1}, ..., x^{i-1} + W_{i \to i-1}, 0, x^{i+1} + W_{i \to i+1}, ...\right)^{T}.$$

・ロト ・日本 ・モート ・モート

Where does this model come from?

• Can be seen as a very easy variant of Leaky Integrate and Fire Models where spiking occurs randomly with a rate depending on the potential.

• There is some relation with interacting Hawkes processes having memory of variable length...

- 4 同 6 4 日 6 4 日 6

- Want to estimate f(a), based on observation of $(X_t)_{t \in [0,T]}$, in a non-parametric way.
- Next talk : Kernel type estimator.
- Need : Regularity of invariant density !

Hypothesis

X recurrent in the sense of Harris, with invariant probability measure π .

(Follows basically from partial regeneration induced by spikes.)

・ロン ・聞と ・ほと ・ほと

•
$$\pi^1(g) := \int_{\mathbb{R}^N} \pi(dx) g(x^1)$$
 invariant probability of first neuron.

• Question :
$$\pi(dx) = \pi(x)dx$$
? π smooth ????

• Question :
$$\pi^1(dx^1) = \pi^1(x^1)dx^1$$
? π^1 smooth ????

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

•
$$\pi^1(g) := \int_{\mathbb{R}^N} \pi(dx) g(x^1)$$
 invariant probability of first neuron.

• Question :
$$\pi(dx) = \pi(x)dx$$
? π smooth ????

• Question :
$$\pi^1(dx^1) = \pi^1(x^1)dx^1$$
? π^1 smooth ????

Problem : There is **not** a lot of noise in the system. Only the "exponential densities" of the jump times.

Second Problem : Jump kernel $\mathcal{K}(x, dy) = \sum_{i=1}^{N} \frac{f(x^i)}{f(x)} \delta_{\Delta^i(x)}(dy), \ \bar{f} = \sum_{j=1}^{N} f(x^j), \ \text{is partly}$ degenerate ! Indeed : $[\Delta_i(x)]^i = 0!!!!$

イロト イポト イヨト イヨト

IPP based on jump noise

Proposition

Let $\gamma_t(x)$ the joint flow of the N particles starting from $x \in \mathbb{R}^N$ at time 0 (solution to ODE), $e(t, x) = e^{-\int_0^t \overline{f}(\gamma_s(x))ds}$ survival rate. Then

$$\pi(g) = \sum_{i=1}^{N} \int_{\mathbb{R}^{N}} \pi(dx) f(x^{i}) \int_{0}^{\infty} e(t, \Delta_{i}(x)) g(\gamma_{t}(\Delta^{i}(x))) dt.$$

(Follows from considering the "just-before-jump" chain and its transitions)

イロン イヨン イヨン イヨン

Application

This implies for the first particle :

$$E_{\pi}(h'(X_t^1)) = \sum_{i=1}^N \int_{\mathbb{R}^N} \pi(dx) f(x^i) \int_0^\infty e(t, \Delta_i(x)) h'(\gamma_t^1(\Delta^i(x))) dt.$$

But $(y = [\Delta^i(x)]^1)$

$$\int_0^\infty e(t,y)h'(\gamma_t^1(y)dt = \int_0^\infty \frac{e(t,y)}{b(\gamma_t^1(y))} [h \circ \gamma_t^1]'(y)dt$$
$$= \left[e(t,y)\frac{h(\gamma_t^1(y))}{b(\gamma_t^1(y))}\right]_{t=0}^{t=\infty} - \int_0^\infty \frac{d}{dt} \left(\frac{e(t,y)}{b(\gamma_t^1(y))}\right) h(\gamma_t^1(y))dt.$$

- - 4 回 ト - 4 回 ト

1. PROBLEM : border term at t = 0 gives $\frac{h(y)}{b(y)}$ where $y = [\Delta^i(x)]^1$ position of first neuron after a spike of *i*. If i = 1 this gives the total contribution

$$\int \pi(dx) f(x^1) rac{h(0)}{b(0)}$$
 : Dirac measure in 0!

 \implies have to stay away from 0!!!

・ 回 と ・ ヨ と ・ ヨ と

1. PROBLEM : border term at t = 0 gives $\frac{h(y)}{b(y)}$ where $y = [\Delta^i(x)]^1$ position of first neuron after a spike of *i*. If i = 1 this gives the total contribution

$$\int \pi(dx) f(x^1) rac{h(0)}{b(0)}$$
 : Dirac measure in 0!

 \implies have to stay away from 0!!!

2. PROBLEM : we divide by $b(\gamma_t^1(y))$. \implies have to stay away from $\{y : b(y) = 0\} = \{m\}$.

(4月) イヨト イヨト

Theorem

Let $f \in C^k$, $||f||_{\infty,k} \leq F$, such that $f^{(k)}$ is Hölder α . Then

 $\pi^1 \in C^k(\Omega_k)$

and

$$\sup_{v \neq v', v, v' \in \Omega_k} \frac{|(\pi^1)^{(k)}(v) - (\pi^1)^{(k)}(v')|}{|v - v'|^{\alpha}} \leq C,$$

where C does not depend on f but only on the bounds of the function class f belongs to.

Here, Ω_k denotes the subset of all positions "sufficiently far away" from 0 and from *m*, even after *k* **IPP's**!

Outlook : Lebesgue density in dimension N

First comments :

- Since we can only use the jump noise, we need at least N jumps.
- The flow transports (preserves) density nicely.
- Jump of particle *i* destroys density in direction of *e_i*.

- 4 同 6 4 日 6 4 日 6

Outlook : Lebesgue density in dimension N

First comments :

- Since we can only use the jump noise, we need at least N jumps.
- The flow transports (preserves) density nicely.
- Jump of particle *i* destroys density in direction of *e_i*. But : Immediately after, density is created by the jump noise.

イロト イポト イヨト イヨト

NUMMELIN SPLITTING

For the "just-before-jump"-chain $Z_k = X_{T_k-}$, with associated transition kernel Q:

Theorem

$$Q^N(x,dy) \geq 1_C(x)\beta\nu(y)dy,$$

where $\nu \in C_c^{\infty}(\mathbb{R}^N)$.

• Idea of proof : A specific **order of successive jumps** creates density : e.g. 1 spikes first, followed by 2 followed by 3 etc...

• Idea of proof : A specific **order of successive jumps** creates density : e.g. 1 spikes first, followed by 2 followed by 3 etc... this could be compared to the weak Hörmander condition. Successive jumps of 1, 2, 3, ... induce a diagonal structure of what would be the "Malliavin covariance matrix" here.

• The idea of using favorable sequences of jump events has already been used by Duarte and Ost (2015) to show Harris recurrence of the process.

• Nummelin splitting implies : there exists an extended stopping time (the regeneration time) *R* such that

 $X_{T_R-}=Z_R\sim\nu(x)dx.$

• Can we preserve this density ???

(ロ) (同) (E) (E) (E)

Preservation of density

We start from

$$X_{T_R-}=Z_R\sim\nu(x)dx.$$

Suppose *i* jumps at time $T_R \Rightarrow$ replace $x \mapsto \Delta_i(x)$: does not depend on x^i any more. But :

 $(t,x)\mapsto G(t,x)=\gamma_t(\Delta_i(x))$ explores the whole space :

$$J_{G}(t,x) = \det \sqrt{\frac{\partial G}{\partial t \partial x} (\frac{\partial G}{\partial t \partial x})^{T}} > 0.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Preservation of density

We start from

$$X_{T_R-}=Z_R\sim\nu(x)dx.$$

Suppose *i* jumps at time $T_R \Rightarrow$ replace $x \mapsto \Delta_i(x)$: does not depend on x^i any more. But :

$$(t,x)\mapsto {\mathcal G}(t,x)=\gamma_t(\Delta_i(x))$$
 explores the whole space :

$$J_G(t,x) = \det \sqrt{\frac{\partial G}{\partial t \partial x} (\frac{\partial G}{\partial t \partial x})^T} > 0.$$

In this case, the **co-area formula** implies that we have a measurable Lebesgue density for Z_{R+1} and thus for Z_n for all $n \ge R$. In particular, $\pi(dx) = \pi(x)dx$ with some **measurable** π .

In order to obtain more regularity, we have to work more (no IPP, but transformations of variables - based on the flow for the non-spiking particles, and based on the jump noise for the spiking one) :

Theorem

If $f \ge f_0 > \lambda$, the invariant density π is at least k-times differentiable, for any $k : 2k < Nf_0/\lambda - N$.

So we need a balance between the explosion rate λ of the inverse flow and the minimal jump rate.

This is of course a very strong condition - but the transitions are also very degenerate...

소리가 소문가 소문가 소문가

Some literature

- DUARTE, A., OST, G. A model for neural activity in the absence of external stimuli. To appear in Markov Proc. Related Fields 2016, available on http://arxiv.org/abs/1410.6086.
- POLY, G. Absolute continuity of Markov chains ergodic measures by Dirichlet forms methods. To appear in Ann. IHP, 2013.
- You can find this work on arXiv : https ://arxiv.org/abs/1601.07123, 2016.

(1) マン・ション・

Thank you for your attention.

・ロト ・回ト ・ヨト

∢ ≣ ≯