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Eva Löcherbach

Rennes, Dynstoch 2016
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Interacting neurons

• N neurons X 1
t , . . . ,X

N
t ,X

i
t ∈ R, t ≥ 0

• Each neuron ‘spikes’ with rate f (X i
t ).

• f ∈ C 1, strictly positive.

• If i spikes :

⇒ neuron i is reset to a resting potential 0
⇒ for all j 6= i : j receives an additional amount of potential Wi→j .
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• Between two successive spikes, some leak effect induces an
attraction to an equilibrium potential m

dX i
t = b(X i

t )dt = −λ(X i
t −m)dt, λ > 0.

Remark

Process is a PDMP with generator

Lg(x) =
N∑
i=1

f (x i )[g(∆i (x))− g(x)]− λ
N∑
i=1

∂g

∂x i
(x i −m),

where

∆i (x) =
(
x1 + Wi→1, ..., x

i−1 + Wi→i−1, 0, x
i+1 + Wi→i+1, ...

)T
.
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Where does this model come from ?

• Can be seen as a very easy variant of Leaky Integrate and Fire
Models where spiking occurs randomly with a rate depending on
the potential.

• There is some relation with interacting Hawkes processes having
memory of variable length...
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AIM

• Want to estimate f (a), based on observation of (Xt)t∈[0,T ], in a
non-parametric way.

• Next talk : Kernel type estimator.

• Need : Regularity of invariant density !

Hypothesis

X recurrent in the sense of Harris, with invariant probability
measure π.

(Follows basically from partial regeneration induced by spikes.)
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• π1(g) :=
∫
RN π(dx)g(x1) invariant probability of first neuron.

• Question : π(dx) = π(x)dx? π smooth ? ? ? ?

• Question : π1(dx1) = π1(x1)dx1? π1 smooth ? ? ? ?

Problem : There is not a lot of noise in the system. Only the
“exponential densities” of the jump times.

Second Problem : Jump kernel

K (x , dy) =
∑N

i=1
f (x i )

f̄ (x)
δ∆i (x)(dy), f̄ =

∑N
j=1 f (x j), is partly

degenerate ! Indeed : [∆i (x)]i = 0!!!!
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IPP based on jump noise

Proposition

Let γt(x) the joint flow of the N particles starting from x ∈ RN at

time 0 (solution to ODE), e(t, x) = e−
∫ t

0 f̄ (γs(x))ds survival rate.
Then

π(g) =
N∑
i=1

∫
RN

π(dx)f (x i )

∫ ∞
0

e(t,∆i (x))g(γt(∆i (x))dt.

(Follows from considering the “just-before-jump” chain and its
transitions)
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Application

This implies for the first particle :

Eπ(h′(X 1
t )) =

N∑
i=1

∫
RN

π(dx)f (x i )

∫ ∞
0

e(t,∆i (x))h′(γ1
t (∆i (x)))dt.

But (y = [∆i (x)]1)∫ ∞
0

e(t, y)h′(γ1
t (y)dt =

∫ ∞
0

e(t, y)

b(γ1
t (y))

[h ◦ γ1
t ]′(y)dt

=

[
e(t, y)

h(γ1
t (y))

b(γ1
t (y))

]t=∞

t=0

−
∫ ∞

0

d

dt

(
e(t, y)

b(γ1
t (y))

)
h(γ1

t (y))dt.
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1. PROBLEM : border term at t = 0 gives h(y)
b(y) where

y = [∆i (x)]1 position of first neuron after a spike of i . If i = 1
this gives the total contribution∫

π(dx)f (x1)
h(0)

b(0)
: Dirac measure in 0!

=⇒ have to stay away from 0 ! ! !

2. PROBLEM : we divide by b(γ1
t (y)).

=⇒ have to stay away from {y : b(y) = 0} = {m}.
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Theorem

Let f ∈ C k , ‖f ‖∞,k ≤ F , such that f (k) is Hölder α. Then

π1 ∈ C k(Ωk)

and

sup
v 6=v ′,v ,v ′∈Ωk

|(π1)(k)(v)− (π1)(k)(v ′)|
|v − v ′|α

≤ C ,

where C does not depend on f but only on the bounds of the
function class f belongs to.

Here, Ωk denotes the subset of all positions “sufficiently far away”
from 0 and from m, even after k IPP’s !

Eva Löcherbach Smoothness of the invariant density of interacting neurons



The model
IPP based on jump noise

Lebesgue density in dimension N

Outlook : Lebesgue density in dimension N

First comments :

• Since we can only use the jump noise, we need at least N jumps.

• The flow transports (preserves) density nicely.

• Jump of particle i destroys density in direction of ei .

But :
Immediately after, density is created by the jump noise.
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NUMMELIN SPLITTING

For the “just-before-jump”-chain Zk = XTk−, with associated
transition kernel Q :

Theorem

QN(x , dy) ≥ 1C (x)βν(y)dy ,

where ν ∈ C∞c (RN).
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• Idea of proof : A specific order of successive jumps creates
density : e.g. 1 spikes first, followed by 2 followed by 3 etc...

this
could be compared to the weak Hörmander condition. Successive
jumps of 1, 2, 3, . . . induce a diagonal structure of what would be
the “Malliavin covariance matrix” here.

• The idea of using favorable sequences of jump events has already
been used by Duarte and Ost (2015) to show Harris recurrence of
the process.

• Nummelin splitting implies : there exists an extended stopping
time (the regeneration time) R such that

XTR− = ZR ∼ ν(x)dx .

• Can we preserve this density ? ? ?
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Preservation of density

We start from
XTR− = ZR ∼ ν(x)dx .

Suppose i jumps at time TR ⇒ replace x 7→ ∆i (x) : does not
depend on x i any more. But :

(t, x) 7→ G (t, x) = γt(∆i (x)) explores the whole space :

JG (t, x) = det
√

∂G
∂t∂x ( ∂G

∂t∂x )T > 0.

In this case, the co-area formula implies that we have a
measurable Lebesgue density for ZR+1 and thus for Zn for all
n ≥ R. In particular, π(dx) = π(x)dx with some measurable π.
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In order to obtain more regularity, we have to work more (no IPP,
but transformations of variables - based on the flow for the
non-spiking particles, and based on the jump noise for the spiking
one) :

Theorem

If f ≥ f0 > λ, the invariant density π is at least k−times
differentiable, for any k : 2k < Nf0/λ− N.

So we need a balance between the explosion rate λ of the inverse
flow and the minimal jump rate.

This is of course a very strong condition - but the transitions are
also very degenerate...
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Some literature

• Duarte, A., Ost, G. A model for neural activity in the
absence of external stimuli. To appear in Markov Proc. Related
Fields 2016, available on http ://arxiv.org/abs/1410.6086.

• Poly, G. Absolute continuity of Markov chains ergodic
measures by Dirichlet forms methods. To appear in Ann. IHP, 2013.

• You can find this work on arXiv :
https ://arxiv.org/abs/1601.07123, 2016.
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Thank you for your attention.
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