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Stochastic graphs

Typical graph evolution (preferential attachment)

Step n −→

Node/Edge
addition/deletion

Step n + 1

Evolution in continuous time?
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Ornstein-Uhlenbeck processes

Definition: Ornstein-Uhlenbeck process X

Take A ∈Md ,d(R) and Σ ∈Md ,q(R) where d , q ∈ N+, (Wt)t∈R+ a
q-dimensional Brownian motion with respect to F . X = (Xt : t ≥ 0) is an
Ornstein-Uhlenbeck process when it solves

dXt = −AXtdt + ΣdWt , X0 given. (1)

Standing assumptions

ΣΣ∗ is invertible

a0 := minλ∈Sp(A)Re(λ) > 0

X0
d
= N (0,V∞) ,Vt =

∫ t
0 e−AuΣΣ∗e−A

∗udu

X is ergodic and stationary.
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Graph generation

Definition: Graph observation Y

Take S a measurable subset of Rd . Define:

Y S
t = 1Xt∈S (2)

Take for example S ij := {x : x i ≥ 1, x j ≥ 1} and Y ij
t := Y S ij

t . Then Yt is a
graph.

A,Σ
Represents underlying relations

Stable

Yt

Represents observed relations
Evolves in time
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Interbank lending model

The preceding is inspired by a model of interbank lending [CFS15, FI13]:

dX i
t = − a

D

D∑
j=0

(
X i
t − X j

t

)
dt + σidW i

t
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Problematic

How to estimate (A,ΣΣ∗) from the observation of Y ?

Use long time limit (n∆n → +∞) to apply ergodic properties
(estimate V∞)

Use high frequency (∆n → 0) to estimate parameters related to local
fluctuations (estimate ΣΣ∗)

Related: estimation from sign changes [Flo87], estimation from
thresholded process [IUY09]
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Gebelein inequality

Theorem ([Jan97, Theorem 10.11])

Take H, K two closed subspaces of some Gaussian Hilbert space. Define
PHK the restriction to H of the orthogonal projection onto K . Define the
maximal correlation coefficient between variables A,B respectively
measurable w.r.t. the sigma field generated by H and K :

ρ(H,K ) = sup
A∈L2(H),B∈L2(K)

|Cor (A,B)| .

Then we have:
ρ(H,K ) = ‖PHK‖

where ‖ · ‖ is the operator norm.

In practice, it means that

Cov (f (X ), g(Y )) ≤ ρ(X ,Y )
√
Var (f (X ))Var (g(Y ))
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Gebelein inequality for Ornstein-Uhlenbeck processes

Proposition

Take (X ,Y ) a Gaussian vector. Assume that Cov (X ), Cov (Y ) are
non-degenerate. Then we have

ρ(X ,Y ) = ‖Cov (X )−1/2
Cov (X ,Y )Cov (Y )−1/2 ‖.

For stationary OU processes, we have:

Cov (Xs) = Cov (Xt) = V∞, Cov (Xt ,Xs) = e−A(t−s)V∞.

Therefore, with vM = maxλ∈Sp(V∞) λ, vm = minλ∈Sp(V∞) λ:

ρ(Xs ,Xt) = ‖V−1/2
∞ e−A(t−s)V 1/2

∞ ‖ ≤
√

vM
vm

e−a0|t−s|.
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Correlation inequality for Ornstein-Uhlenbeck processes

Theorem (Mixing properties)

There exists a finite constant C(3), depending only on V∞, such that for
any t ≥ s ≥ 0 and functions ϕ, φ, square-inegrable w.r.t. the law of X:

|Cov (ϕ ((Xu)u≤s) , φ ((Xv )v≥t))|

≤ C(3)e
−a0|t−s|

√
Var (ϕ ((Xu)u≤s))Var (φ ((Xv )v≥t)). (3)

Proof.

E [ϕsφt ] = E [ϕsE [φt | Xs ]]

= E [E [ϕs | Xs ]E [φt | Xs ]]

= E [E [ϕs | Xs ]φt ]

= E [E [ϕs | Xs ]E [φt | Xt ]]

≤ ρ(Xs ,Xt)
√
Var (E [ϕs | Xs ])Var (E [φt | Xt ])

≤ ρ(Xs ,Xt)
√
Var (ϕs)Var (φt).
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Bound on variance of sums of functionals of X

Corollary

Consider a measurable function g : N×N× C0([0, 1],Rd)→ R such that
E
[
g(k , n, (Xs)k∆n≤s≤(k+1)∆n

)2
]
< +∞ for any k , n ∈ N. For n ∈ N

define

v2
n = sup

k<n
Var

(
g(k, n, (Xs)k∆n≤s≤(k+1)∆n

)
)
,

ξ
(n)
k =

√
∆n

n
g(k , n, (Xs)k∆n≤s≤(k+1)∆n

).

Then, there is a finite constant C(4), dependent only on the parameters
A,Σ of the model, such that:

Var

(
n−1∑
k=0

ξ
(n)
k

)
≤ C(4)v

2
n . (4)
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Bound on variance of sums of functionals of X

Proof.
Denote gk = g(k , n, (Xs)s∈I (k)) where In(k) = [k∆n, (k + 1)∆n].

Var

(
n−1∑
k=0

ξ
(n)
k

)
=

∆n

n

n−1∑
k=0

Var (gk) +
2∆n

n

n−1∑
k=0

n−1∑
l=k+1

Cov (gk , gl)

≤ ∆n

n
nv2

n +
2∆n

n
n
∑
m≥0

C(3)v
2
n e
−a0m∆n

≤ v2
n

(
∆n + 2C(3)

∆n

1− e−a0∆n

)
≤ C(4)v

2
n

Where we use that for l > k, u ∈ In(k), v ∈ In(l), we have
u ≤ (k + 1)∆n ≤ l∆n ≤ v , and apply Theorem 2:

Cov (gk , gl) ≤ C(3)e
−a0|k+1−l|∆n

√
Var (gk)Var (gl). (5)
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Occupation time convergence

Definition

The occupation time statistic is defined as:

OTS
n =

1

n

n−1∑
k=0

Y S
k∆n

=
1

n

n−1∑
k=0

1Xk∆n∈S . (6)

OTS
n =

n−1∑
k=0

√
∆n

n

1Xk∆n∈S√
n∆n

Var

(
1Xk∆n∈S√

n∆n

)
∝ 1

n∆n

Using Corollary 1, we have Var
(
OTS

n

)
= O

(
n−1∆−1

n

)
and convergence in L2

under the assumption n∆n → +∞.
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Crossing number convergence

Definition

We define the crossings statistic by:

CSn =
1

n
√

∆n

n−1∑
k=0

1Y S
k∆n
6=Y S

(k+1)∆n
. (7)

We choose here S = {x1 ≥ 1} and consider only crossings from 0 to 1. Write

Z
(n)
k = 1X 1

k∆n
<11X 1

(k+1)∆n
≥1.

1

n
√

∆n

n−1∑
k=0

Z
(n)
k =

n−1∑
k=0

√
∆n

n

Z
(n)
k√
n∆n

, and E
[
Z

(n)
k

]
∼ Var

(
Z

(n)
k

)
∼
√

∆n

Var

(
Z

(n)
k√
n∆n

)
= O

(
1

n∆
3/2
n

)
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Expectations and CLT
We have E

[
OTS

n

]
= ν∞(S). Assuming n∆n → +∞,

OTS
n

L2

−→ ν∞(S)

We also have:

Theorem

√
n∆n

(
OT

[1,+∞[
n − ν∞ ([1,+∞[)

)
d−→ N

(
0, ν∞

(
σ2F ′2

))
(8)

as n→ +∞, where F solves LF + (1x≥1 − ν∞([1,+∞[)) = 0 with L the
infintesimal generator of the OU.

We have E
[
Z

(n)
k

]
∼
√

∆n

√
(ΣΣ∗)11

2π µV 11
∞

(1). Assuming n∆
3/2
n → +∞,

Cn
L2

−→ 2

√
(ΣΣ∗)11

2π
µV 11
∞

(1)
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Application

How to estimate (A,ΣΣ∗) from the observation of Y ?

Assume we observe Y ij for S ij = {x i ≥ 1, x j ≥ 1}.
Assume A = diag(a1, . . . ad). Then

V ij
∞ =

(ΣΣ∗)ij

ai + aj
.

Using CS ii

n , we can estimate (ΣΣ∗)ii

Using OTS ii

n , we can estimate V ii
∞, and we get ai

Using OTS ij

n , we can estimate V ij
∞, and we get (ΣΣ∗)ij
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Optimality of Cn convergence speed?

√√√√Var

(∑
k

Z
(n)
k

)
∝ ∆0

n
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Proof of CLT for OTn

OTc
t =

1

t

∫ t

0
1Xs≥1ds

∫ t

0
f̂ (Xs)ds = t (OTc

t − ν∞ ([1,+∞[)) f̂ (x) = f (x)− ν∞ ([1,+∞[)

L = −ax ∂
∂x

+
σ2

2

∂2

∂x2
LF = −f̂

Mt = F (Xt)− F (X0) +

∫ t

0
f̂ (Xs)ds =

∫ t

0
σF ′(Xs)dWs

Mt√
t

=
F (Xt)− F (X0) + (OTc

t − ν∞ ([1,+∞[)) t√
t

d−→ N
(
0, ν∞

(
σ2F ′2

))
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Proof of CLT for OTn

OTc
t√
t

d−→ N
(
0, ν∞

(
σ2F ′2

))

Dn :=
√

n∆n

(
OT

[1,+∞[
n −OTc

n∆n

)
=

√
∆n

n

n−1∑
k=0

∫ ∆n

0

f (Xk∆n)− f (Xk∆n+u)

∆n
du

√
n∆n

(
OT

[1,+∞[
n − ν∞ ([1,+∞[)

)
d−→ N

(
0, ν∞

(
σ2F ′2

))
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