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I - Introduction : Statistics and
Topological Data Analysis



Topological data analysis and topological inference

• Geometric inference, algebraic topology tools and computational
topology have recently witnessed important developments with regards
to data analysis, giving birth to the field of topological data analysis
(TDA).

• The aim of TDA is to infer relevant, qualitative and quantitative topolog-
ical structures (clusters, holes ...) directly from the data.

• The two popular methods in TDA : Mapper algorithm [Singh et al., 2007]
and persistent homology [Edelsbrunner et al., 2002].

• Topological inference methods aim to
infer topological properties of an unknown
topological space X, typically from a point
cloud Xn “close” to X.



[distribution of galaxies]

[3D shape database]

[Sensor Data]

Application fields of TDA methods



Topological data analysis methods can be used:

• For exploratory analysis, visualization:

• For feature extraction in supervised settings (prediction) :

[Chazal et al., 2014b]

[Chazal et al., 2015a]



Non exhaustive list of questions for a statistical approach to TDA :

• proving consistency of TDA methods.

• providing confidence regions for topological features and discussing the
significance of the estimated topological quantities.

• selecting relevant scales at which the topological phenomenon should be
considered.

• dealing with outliers and providing robust methods for TDA.

• ...

Statistics and TDA
Until very recently, TDA and topological inference mostly relied on deterministic
approaches. Alternatively, a statistical approach to TDA means that :

• we consider data as generated from an unknown distribution

• the inferred topological features by TDA methods are seen as estimators
of topological quantities describing an underlying object.



II- Homology
and

Persistent homology



Basic tools for TDA : Offsets and Simplicial Complexes

Point clouds in themselves do not carry any non trivial topological or geometric
structure.

For a point cloud Xn in Rd (or in a metric space),
the α-offset of Xn is defined by

Xαn =
⋃
x∈Xn

B(x, α).

More generally, for any compact set X,

Xα :=
⋃
x∈X

B(x, α) = d−1X ([0, α])

where the distance function dX to X is

dX(y) = inf
x∈X
‖x− y‖ (in Rd)

General idea: deduce from (Xαn)r>0 some topological and geometric information
of an underlying object.



Basic tools for TDA : Offsets and Simplicial Complexes

Non-discrete sets such as offsets, and also continuous mathematical shapes like
curves, surfaces cannot easily be encoded as finite discrete structures.

A geometric simplicial complex C is a set of simplices such that:

• Any face of a simplex from C is also in C.

• The intersection of any two simplices s1, s2 ∈ C is either a face of both
s1 and s2, or empty.



Basic tools for TDA : Offsets and Simplicial Complexes
Examples:

• A simplex [x0, x1, · · · , xk] is in the Čech complex Čechα(Xn) if and only

if
⋂k
j=0B(xj , α) 6= ∅.

• A simplex [x0, x1, · · · , xk] is in the Rips complex Ripsα(Xn) if and only if
‖xj − xj′‖ ≤ α for all j, j′ ∈ {1, . . . , k}.

Can be also defined for a set of points in any metric space or for any compact
metric space.

Rips Čech

Nerve Theorem : the offsets Xαn of a point cloud Xn in Rd are homotopy equiv-
alent to the Čech complex Čechα(Xn)



Filtrations of simplicial complexes

Given a point cloud Xn in Rd, we generally define a filtration of (nested simpli-
cial) complexes by considering all the possibles scale parameters α : (Cα)α∈A

α

Cα1 Cα2



Homology inference

• Singular homology provides a algebraic description of “holes” in a geo-
metric shape (connected components, loops, etc ...)

• Betti number βk is the rank of the k-th homology group.

• Computational Topology : Betti numbers can be computed on simplicial
complexes.

Homology inference [Niyogi et al., 2008 and 2011] [Balakrishnan et al., 2012] :
The Betti number (actually the homotopy type) of Riemannian manifolds with
positive reach can be recovered with high probability from offsets of a sample on
(or close to) the manifold.



Persistent homology

Starting from a point cloud Xn, let Filt = (Cα)α∈A be a fitration of nested
simplicial complexes.

• multiscale information ;

• more stable and more robust ;

• (but does not answer the scale selection problem...)

α

Persistent homology: identification of “persistent” topological features along the
filtration.



Barecodes and Persistence Diagrams

Xn

Barecode

Filtration of simplicial
complexes Filt(Xn)

Offsets



Barecodes and Persistence Diagrams

Dgm (Filt(Xn))
Persistence diagram of the

filtration Filt(Xn) built on Xn.

Xn

Barecode

Filtration of simplicial
complexes Filt(Xn)

Offsets birth

death



Distance between persistence diagrams and stability

birth

death

∞

0

Multiplicity: 2

Add the diagonal

Dgm1

Dgm2

The bottleneck distance between two diagrams Dgm1 and Dgm2 is

db(Dgm1,Dgm2) = inf
γ∈Γ

sup
p∈Dgm1

‖p− γ(p)‖∞

where Γ is the set of all the bijections between Dgm1 and Dgm2 and

‖p− q‖∞ = max(|xp − xq|, |yp − yq|).



Distance between persistence diagrams and stability

birth

death

∞

0

Multiplicity: 2

Add the diagonal

Theorem [Chazal et al., 2012]: For any compact metric spaces (X, ρ) and (Y, ρ′),

db (Dgm(Filt(X)),Dgm(Filt(Y))) ≤ 2 dGH (X,Y) .

Consequently, if X and Y are embedded in the same metric space (M, ρ) then

db (Dgm(Filt(X)),Dgm(Filt(Y))) ≤ 2 dH (X,Y) .

Dgm(Filt(Y))

Dgm(Filt(X))



III - Statistics
and

Persistent homology



Persistence diagram inference [Chazal et al., 2014b]

∞

0
0

X̂n Filt(X̂n)

Dgm(Filt(X̂n))
n points sampled in X
according to µ

Filt(X)

∞

0
0

Dgm(Filt(X))

X

Convergence
???

Estimator of Dgm(Filt(K))

(M, ρ) metric space
X compact set in M. well defined for any

compact metric space
[Chazal et al., 2012]

Joint work with F. Chazal, M. Glisse and C. Labruère.



Theorem: For a, b > 0 :

sup
µ∈P(a,b,M)

E
[
db(Dgm(Filt(Xµ)),Dgm(Filt(X̂n)))

]
≤ C

(
lnn

n

)1/b

where C only depends on a and b.

Under additional technical hypotheses, for any estimator D̂gmn of Dgm(Filt(Xµ)):

lim inf
n→∞

sup
µ∈P(a,b,M)

E
[
db(Dgm(Filt(Xµ)), D̂gmn)

]
≥ C′n−1/b

where C′ is an absolute constant.

For a, b > 0, µ satisfies the (a, b)-standard assumption on its support Xµ if for any
x ∈ Xµ and any r > 0 :

µ(B(x, r)) ≥ min(arb, 1).

P(a, b,M) : set of all the probability measures satisfying the (a, b)-standard as-
sumption on the metric space (M, ρ).

Persistence diagram inference [Chazal et al., 2014a]



Confidence sets for persistence diagrams [Fasy et al., 2014]

P
(

Dgm(Filt(K)) ∈ R̂
)
≥ 1− α ??



Confidence sets for persistence diagrams [Fasy et al., 2014]

Using the Hausdorff stability, we can define confidence sets for persistence dia-
grams:

db (Dgm (Filt(K)) ,Dgm (Filt(Xn))) ≤ dH(K,Xn).

It is sufficient to find cn such that

lim sup
n→∞

(
dH(K,Xn) > cn

)
≤ α.

P
(

Dgm(Filt(K)) ∈ R̂
)
≥ 1− α ??



IV - Robust distance functions for
TDA and geometric inference



Standard TDA methods are not robust to outliers

Xr :=
⋃
x∈X

B(x, r)

= d−1X ([0, r])

where the distance
function dX to X is

dX(y) = inf
x∈X
‖x− y‖



Standard TDA methods are not robust to outliers

Xr :=
⋃
x∈X

B(x, r)

= d−1X ([0, r])

where the distance
function dX to X is

dX(y) = inf
x∈X
‖x− y‖



We would like to consider the sub levels of an alternative distance function
related to the sampling measure, which support is X, or close to X.

Robust TDA with an alternative distance function ?



Preliminary distance function to a measure P :
Let u ∈]0, 1[ be a positive mass, and P a probability measure on Rd:

δP,u(x) = inf {r > 0 : P (B(x, r)) ≥ u}

supp(P )

x

δP,u(x)

u

δP,u is the smallest distance needed to
capture a mass of at least u.

δP,u is the quantile function at u of the r.v.

‖x−X‖

where X ∼ P .

Distance To Measure [Chazal et al., 2011]



Preliminary distance function to a measure P :
Let u ∈]0, 1[ be a positive mass, and P a probability measure on Rd:

δP,u(x) = inf {r > 0 : P (B(x, r)) ≥ u}

supp(P )

x

δP,u(x)

u

Definition: Given a probability measure P
on Rd and m > 0, the distance function to
the measureP (DTM) is defined by

dP,m : x ∈ Rd 7→
(

1

m

∫ m

0

δ2P,u(x)du

)1/2

Distance To Measure [Chazal et al., 2011]



Distance To Measure [Chazal et al., 2011]

• Stability under Wassertein perturbations:

‖dP,m − dQ,m‖∞ ≤
1√
m
W2(P,Q)

• The function x 7→ d2P,m(x) is semiconcave, this is ensuring strong reg-
ularity properties on the geometry of its sublevel sets.

• Consequently, if P̃ is a probability distribution close to P for Wasserstein
distance W2, then the sublevel sets of dP̃ ,m provide a topologically
correct approximation of the support of P .

Properties of the DTM :



Let X1, . . . , Xn sample according to P and let Pn be the empirical measure.
Then

d2
Pn,

k
n

(x) =
n

k

k∑
i=1

||x−X(i)||2

where ||X(1) − x|| ≥ ||X(2) − x|| ≥ · · · ≥ ||X(k) − x| · · · ≥ ||X(n) − x||

Distance to The Empirical Measure (DTEM)

x

k = 8

X(i)



Estimation of the DTM via the empirical DTM

Quantity of interest:
d2
Pn,

k
n

(x)− d2
P, kn

(x)

• Observe that

d2P,m(x) =
1

m

∫ m

0

F−1x (u)du

where Fx is the cdf of ‖x−X‖2 with X ∼ P .

• The distance to the empirical measure is the empirical counter part of
the distance to P :

dPn,m(x)2 =
1

m

∫ m

0

F−1x,n(u)du

where Fx,n is the cdf of ‖x−X‖2 with X ∼ Pn.

• Finally we get that

d2
Pn,

k
n

(x)− d2
P, kn

(x) =
1

m

∫ m

0

{
F−1x,n(u)− F−1x (u)

}
du

[Chazal et al., 2014b] and [Chazal et al., 2015b]



Estimation of the DTM via the empirical DTM

Quantity of interest:
d2
Pn,

k
n

(x)− d2
P, kn

(x)

Two complementary approaches of the problem:

• Asymptotic approach : kn
n = m is fixed and n tends to infinity.

• Non asymptotic approach : n is fixed, and we want a tight control
over the fluctuations of the empirical DTM, in function of k, which
can be taken very small.

We do not use Wasserstein stability for either of the two approaches.
Wasserstein rates of convergence [Fournier and Guillin, 2013 ;Dereich et al.,
2013] do not provide tight rates for the DTM in this context.

[Chazal et al., 2014b] and [Chazal et al., 2015b]



Theorem: Let P be a measure on Rd with compact support. Let D be a
compact domain on Rd and m ∈ (0, 1). Assume that there exists an uni-
form upper bound ωD on the modulus of continuity for the family (F−1x )x∈D
satisfying

lim
u→0

ωD(u) = ωD(0) = 0.

Then
√
n(d2Pn,m − d

2
P,m)converges in distribution to B on D, where B is a

centered Gaussian process with covariance kernel

κ(x, y) =
1

m2

∫ F−1
x (m)

0

∫ F−1
y (m)

0

(
P
[
B(x,

√
t) ∩B(y,

√
s)
]
−Fx(t)Fy(s)

)
ds dt.

Functional convergence [Chazal et al., 2014b]

Modulus of continuity ω̃x of F−1x : for any v ∈ (0, 1]

ω̃x(v) := sup
(u,u′)∈[0,1]2, u 6=u′, ‖u−u′‖≤v

|F−1x (u)− F−1x (u′)|.

joint work with F. Chazal, B. Fasy, F. Lecci, A. Rinaldo and L. Wasserman



Theorem: Let x be a fixed observation point in Rd. Assume that ωx :
(0, 1] → R+ is an upper bound on the modulus of continuity of F−1x . Let
k < n

2 . For any λ > 0:

P
(∣∣∣d2Pn, kn (x)− d2

P, kn
(x)
∣∣∣ ≥ λ) ≤ 2 exp

(
−n

8

k
n[

ωx
(
k
n

)]2λ2
)

+ ...

Assume moreover that ωx(u)/u is a non increasing function, then

E
(∣∣∣d2Pn, kn (x)− d2

P, kn
(x)
∣∣∣) ≤ C√

n

√
n

k
ωx

(
k

n

)
.

Fluctuations of the DTEM [Chazal et al., 2015b]

E
(∣∣∣d2Pn, kn (x)− d2

P, kn
(x)
∣∣∣) ≤ Cn

k

1√
n

√
k

n
ωx

(
k

n

)renormalization by the mass proportion

parametric rate of convergence

localization at the origin

statistical complexity
of the problem

joint work with F. Chazal and P. Massart



Fluctuations of the DTEM [Chazal et al., 2015b]

The quantile function F−1x carries some geometric information.
For instance ω(0+) = 0 means that the support of dFx is a closed interval.



Bootstrap and significance of topological features
[Chazal et al., 2014b]

Aim : studying the persistent homology of the sub-levels of the DTM and
providing confidence regions.

Two alternative boostrap methods :

• by bootstrapping the DTM

• Bottleneck Bootstrap



Bootstrap and significance of topological features
[Chazal et al., 2014b]

Bootstrapping the DTM

For m ∈ (0, 1), define cα by

P
(√
n||d2P,m − d2Pn,m||∞ > cα

)
= α.

Let X∗1 , . . . , X
∗
n be a sample from Pn, and let P ∗n be the corresponding (boot-

strap) empirical measure.

We consider the bootstrap quantity dP∗n ,m(x) of dPn,m.

The bootstrap estimate ĉα is defined by

P
(√

n||d2Pn,m − d
2
P∗n ,m

||∞ > ĉα |X1, . . . , Xn

)
= α

where ĉα can be approximated by Monte Carlo.

Theorem: If F−1x is regular enough, the distance to measure function is
Hadamard differentiable at P . Consequently, the bootstrap method for the
DTM is asymptotically valid.



Bootstrap and significance of topological features
[Chazal et al., 2014b]

Dgm : persistence diagram of the sub-levels of dP,m

D̂gm : persistence diagram of the sub-levels of dPn,m.
Let

Cn =

{
E ∈ Diag : db(D̂gm, E) ≤ ĉα√

n

}
,

where Diag is the set of all the persistence diagrams.

Then,

P(Dgm ∈ Cn) = P
(

db(Dgm, D̂gm) ≤ ĉα√
n

)
≥ P

(
‖d2P,m − d2Pn,m‖∞ ≤

ĉα√
n

)

Bootstrapping the DTM

Bootstrap estimate



Bootstrap and significance of topological features
[Chazal et al., 2014b]

The Bottleneck Bootstrap

Dgm : persistence diagram of the sub-levels of dP,m

D̂gm : persistence diagram of the sub-levels of dPn,m.

D̂gm
∗

: persistence diagram of the sub-levels of dP∗n ,m.

We directly bootstrap in the set of the persistence diagram by considering the

random quantity db(D̂gm
∗
, D̂gm). We define t̂α by

P
(√

ndb(D̂gm
∗
, D̂gm) > t̂α |X1, . . . , Xn

)
= α.

The quantile t̂α can be estimated by Monte Carlo.



Bootstrap and significance of topological features
[Chazal et al., 2014b]

In practice, the bottleneck bootstrap can lead to more precise inferences because
in many cases the following stability result is not sharp

db(D̂gm,Dgm) ≤ ‖d2P,m − d2Pn,m‖∞.

For both methods we can identify significant features by putting a band of size
2ĉα or 2t̂α around the diagonal:



Concluding remarks

• TDA methods focus on the topological properties (homology / persistent
homology) of a shape.

• TDA methods can be used

– as an “exploratory method”, in particuar when the point cloud is
sampled on (close to) a real geometric object

– as a “feature extraction” procedure, next these extracted features can
be used for learning purposes.

• TDA is an emerging field, at the interface maths, computer sciences, statis-
tics.

• Many topics about the statistical analysis of TDA

• Applications in many fields of sciences ( medecine, biology, dynamic sys-
tems, astronomy, dynamical systems, physics ...)

• TDA methods need to bring together Geometric Inference, Computational
Topology and Geometry, Statistics and Learning methods.



Thank you !
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Topological invariants

For comparing topological spaces, we consider topological invariants (preserved
by homeomorphism) : numbers, groups, polynomials.

How topological spaces can be compared from a topological point of view ?



Topological invariants

Homotopy is weaker than homeomorphism but is preserves many topological
invariants.

For comparing topological spaces, we consider topological invariants (preserved
by homeomorphism) : numbers, groups, polynomials.

How topological spaces can be compared from a topological point of view ?

• Two continous functions f : X → Y and g : X → Y are homotopic
if there exists a continous application H : X × [0, 1] → Y such that
H(·, 0) = f and H(·, 1) = g.

• Two topological spaces X and Y are homotopic if there exists two con-
tinous applications f : X → Y and g : Y → X such that

– g ◦ f is homotopic to idX ;

– f ◦ g is homotopic to idY ;



Topological Stability and Regularity

Topological inference : under “regularity assumptions”, topological properties of
X can be recovered from (the off-sets) of a close enough object Y.



Topological Stability and Regularity

Topological inference : under “regularity assumptions”, topological properties of
X can be recovered from (the off-sets) of a close enough object Y.

• The local feature size is a local notion of regularity :
For x ∈ X, lfsX(x) := d (x,M(Xc)) .

• Weak feature size and its extensions [Chazal and Lieutier, 2007] (by con-
sidering the critical values of dX).

• The global version of the local feature
size is the reach [Federer, 1959] :

κ(X) = inf
x∈Xc

lfsX(x).

The reach is small if either X is not
smooth or if X is close to being self-
intersecting.



Topological Stability and Regularity

Topological inference : under “regularity assumptions”, topological properties of
X can be recovered from (the off-sets) of a close enough object Y.

Theorem [Chazal and Lieutier, 2007]: Let X and Y be two compact sets in
Rd and let ε > 0 be such that dH(X,Y) < ε, wfs(X) > 2ε and wfs(Y) > 2ε.
Then for any 0 < α < 2ε, Xα and Yβ are homotopy equivalent.

Example :

dH(X,Y) = inf {α ≥ 0 | X ⊂ Yα and Y ⊂ Xα}



Topological Stability and Regularity

Topological inference : under “regularity assumptions”, topological properties of
X can be recovered from (the off-sets) of a close enough object Y.

Theorem [Chazal and Lieutier, 2007]: Let X and Y be two compact sets in
Rd and let ε > 0 be such that dH(X,Y) < ε, wfs(X) > 2ε and wfs(Y) > 2ε.
Then for any 0 < α < 2ε, Xα and Yβ are homotopy equivalent.

Example :

dH(X,Y) = inf {α ≥ 0 | X ⊂ Yα and Y ⊂ Xα}

Sampling conditions in Hausdorff metric.

Statistical analysis of homotopy inference can be deduced from support estima-
tion of a distribution under the Hausdorff metric.
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