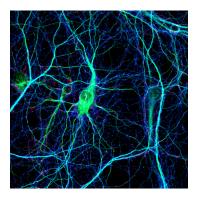
Second-order pseudo-stationary random fields and point processes on graphs and their edges

Jesper Møller (in collaboration with Ethan Anderes and Jakob G. Rasmussen)

Aalborg University

• • = • • = •

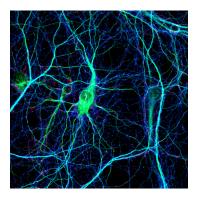
Graph with edges = dendrite networks of neurons:



The dendrites (green) carry information from other neurons to the cell body.

< 回 ト < 三 ト < 三 ト

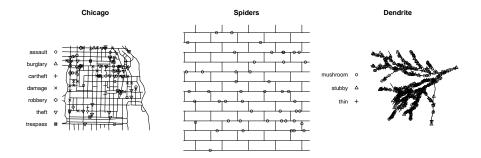
Graph with edges = dendrite networks of neurons:



The dendrites (green) carry information from other neurons to the cell body.

How do we model the random field = diameter along this graph with edges (i.e. all green lines!)?

Point patterns on graphs with edges (i.e. all lines!):



How do we determine

- clustering in street crimes?

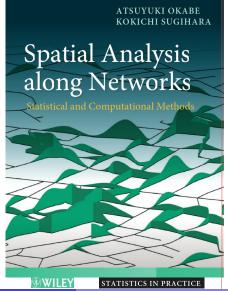
- any evidence of interaction between positions of spider webs on mortar lines of a brick wall?

- the joint spatial distribution of spines (small protusions) of different types?

Snow's (1855) cholera map: Point pattern on a graph with edges = street network around the Broad Street pump:

Conclusion: cause of the victims' illness was contamination of the water from the Broad Street pump.

Textbook on ...



Jesper Møller (Aalborg University) Random fields and point processes on graphs

→ 臣 → 臣 → のへの

Some other research:

Cressie, Frey, Harch & Smith (2006). Spatial prediction on a river network. *Journal of Agricultural, Biological, and Environmental Statistics*.

Ver Hoef, Peterson & Theobald (2006). Spatial statistical models that use flow and stream distance. *Environmental and Ecological Statistics*.

Some other research:

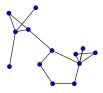
Cressie, Frey, Harch & Smith (2006). Spatial prediction on a river network. *Journal of Agricultural, Biological, and Environmental Statistics*.

Ver Hoef, Peterson & Theobald (2006). Spatial statistical models that use flow and stream distance. *Environmental and Ecological Statistics*.

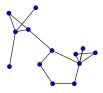
Ang, Baddeley & Nair (2012). Geometrically corrected second order analysis of events on a linear network, with applications to ecology and criminology. *Scandinavian Journal of Statistics*.

Baddeley, Jammalamadaka & Nair (2014). Multitype point process analysis of spines on the dendrite network of a neuron. *Journal of the Royal Statistical Society: Series C (Applied Statistics)*.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

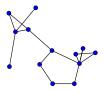


A graph with Euclidean edges \mathcal{G} is a triple $(\mathcal{V}, \{e_i : i \in I\}, \{\varphi_i : i \in I\})$ where I is a *countable index set* with $0 \notin I$ and



A graph with Euclidean edges \mathcal{G} is a triple $(\mathcal{V}, \{e_i : i \in I\}, \{\varphi_i : i \in I\})$ where I is a *countable index set* with $0 \notin I$ and

(a) each e_i is a set (an edge) with two associated vertices $\{u_i, v_i\} \subseteq \mathcal{V}$ (the adjacent vertices);

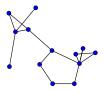


A graph with Euclidean edges \mathcal{G} is a triple $(\mathcal{V}, \{e_i : i \in I\}, \{\varphi_i : i \in I\})$ where I is a *countable index set* with $0 \notin I$ and

(a) each e_i is a set (an edge) with two associated vertices $\{u_i, v_i\} \subseteq \mathcal{V}$ (the adjacent vertices);

(b) $(\mathcal{V}, \{\{u_i, v_i\} : i \in I\})$ is a connected graph with no graph loops;

・何ト ・ヨト ・ヨト

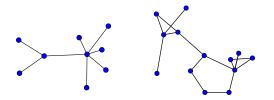


A graph with Euclidean edges \mathcal{G} is a triple $(\mathcal{V}, \{e_i : i \in I\}, \{\varphi_i : i \in I\})$ where I is a *countable index set* with $0 \notin I$ and

- (a) each e_i is a set (an edge) with two associated vertices $\{u_i, v_i\} \subseteq \mathcal{V}$ (the adjacent vertices);
- (b) $(\mathcal{V}, \{\{u_i, v_i\} : i \in I\})$ is a connected graph with no graph loops;

(c)
$$\varphi_i : e_i \mapsto (a_i, b_i)$$
 is a bijection (edge-coordinate).
E.g. $\varphi_i^{-1} =$ natural parametrization of e_i .

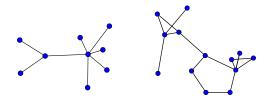
L = index set for random fields/space for point processes on G:



If no overlap (left panel): $L = \mathcal{V} \cup \bigcup_{i \in I} e_i$.

・ 何 ト ・ ヨ ト ・ ヨ ト

L = index set for random fields/space for point processes on G:

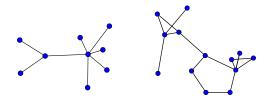


If no overlap (left panel): $L = \mathcal{V} \cup \bigcup_{i \in I} e_i$.

If overlap ("bridges/tunnels/multiple roads"; right panel): $L = (\{0\} \times \mathcal{V}) \cup \bigcup_{i \in I} (\{i\} \times e_i).$

< 回 ト < 三 ト < 三 ト

L = index set for random fields/space for point processes on G:



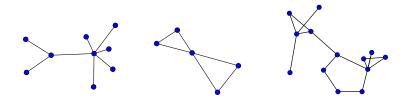
If no overlap (left panel): $L = \mathcal{V} \cup \bigcup_{i \in I} e_i$.

If overlap ("bridges/tunnels/multiple roads"; right panel): $L = (\{0\} \times \mathcal{V}) \cup \bigcup_{i \in I} (\{i\} \times e_i).$

Geodesic distance: $d_{\mathcal{G}}(u, v) = \text{infimum of length of paths in } \mathcal{G}$ **between** $u, v \in L$ (where "length" is induced by edge-coordinates and usual length on the intervals (a_i, b_i)).

(Existing literature consider only the special case of a) linear network: edges = straight line segments, only meeting at vertices, and $\varphi_i \sim$ natural parametrization, so

 $d_{\mathcal{G}}(u, v) =$ length of shortest set-connected path between u and v.



(Left and middle panels: linear networks. Right panel: *not* a linear network.)

• How do we construct covariance functions of the form

$$c(u,v) = c_0(d_{\mathcal{G}}(u,v))$$

for $u, v \in L$? Say then that c is **pseudo-stationary**.

4 1 1 4 1 1 4

• How do we construct covariance functions of the form

$$c(u,v) = c_0(d_{\mathcal{G}}(u,v))$$

for $u, v \in L$? Say then that c is **pseudo-stationary**.

Study GRFs Z = {Z(u) : u ∈ L} with a pseudo-stationary covariance function.

• How do we construct covariance functions of the form

$$c(u,v) = c_0(d_{\mathcal{G}}(u,v))$$

for $u, v \in L$? Say then that c is **pseudo-stationary**.

Study GRFs Z = {Z(u) : u ∈ L} with a pseudo-stationary covariance function. Then Z restricted to a geodesic path in G is indistinguishable from a corresponding GRF on a closed interval and with a stationary covariance function.

• How do we construct covariance functions of the form

$$c(u,v) = c_0(d_{\mathcal{G}}(u,v))$$

for $u, v \in L$? Say then that c is **pseudo-stationary**.

- Study GRFs Z = {Z(u) : u ∈ L} with a pseudo-stationary covariance function. Then Z restricted to a geodesic path in G is indistinguishable from a corresponding GRF on a closed interval and with a stationary covariance function.
- How do we construct **point processes on** *L* with pair correlation function of the form

$$g(u,v) = g_0(d_{\mathcal{G}}(u,v))$$

for $u, v \in L$? (Pseudo-stationarity).

• How do we construct covariance functions of the form

$$c(u,v) = c_0(d_{\mathcal{G}}(u,v))$$

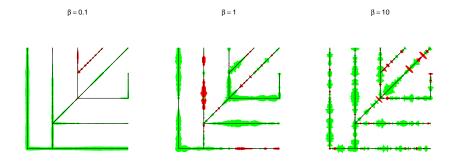
for $u, v \in L$? Say then that c is **pseudo-stationary**.

- Study GRFs Z = {Z(u) : u ∈ L} with a pseudo-stationary covariance function. Then Z restricted to a geodesic path in G is indistinguishable from a corresponding GRF on a closed interval and with a stationary covariance function.
- How do we construct **point processes on** *L* with pair correlation function of the form

$$g(u,v) = g_0(d_{\mathcal{G}}(u,v))$$

for $u, v \in L$? (**Pseudo-stationarity**). So far only the Poisson process is known to be pseudo-stationary.

PART 1: PSEUDO-STATIONARY COVARIANCE FUNCTIONS AND RANDOM FIELDS



< 3 > < 3 >

Definition 2:

• The class of functions

$$t\mapsto \exp(-eta t),\quad t\geq 0,$$

for $\beta > 0$ is the class of **positive definite exponential functions** (PDEFs)

3

(日) (周) (三) (三)

Definition 2:

• The class of functions

$$t\mapsto \exp(-\beta t), \quad t\geq 0,$$

for $\beta > 0$ is the class of **positive definite exponential functions** (PDEFs)

• A graph with Euclidean edges ${\cal G}$ is said to support the PDEFs if for any $\beta>$ 0,

$$c(u,v) = \exp(-\beta d_{\mathcal{G}}(u,v))$$

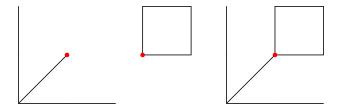
is positive semi-definite for $u, v \in L$.

くほと くほと くほと

Definition 3:

Suppose $\mathcal{G}_1 = (\{\mathcal{V}_1, \{e_i : i \in I_1\}, \{\varphi_i : i \in I_1\}) \text{ and } \mathcal{G}_2 = (\{\mathcal{V}_2, \{e_i : i \in I_2\}, \{\varphi_i : i \in I_2\}) \text{ have only one vertex } v_0 \text{ in common, but no common edges and disjoint index sets } I_1 \text{ and } I_2.$

The **1-sum** of \mathcal{G}_1 and \mathcal{G}_2 is the graph with Euclidean edges given by $\mathcal{G} = (\mathcal{V}_1 \cup \mathcal{V}_2, \{e_i : i \in I_1 \cup I_2\}, \{\varphi_i : i \in I_1 \cup I_2\}).$



Graphs with Euclidean edges supporting the exponential covariance function:

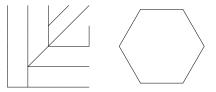
Theorem 1. If $\mathcal{G}_1, \mathcal{G}_2, \ldots$ support the PDEFs, then the 1-sum of $\mathcal{G}_1, \mathcal{G}_2, \ldots$ supports the PDEFs. In fact $\sigma^2 \exp(-\beta d_{\mathcal{G}}(u, v))$ is (strictly) positive definite for all $\beta, \sigma^2 > 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Graphs with Euclidean edges supporting the exponential covariance function:

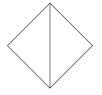
Theorem 1. If $\mathcal{G}_1, \mathcal{G}_2, \ldots$ support the PDEFs, then the 1-sum of $\mathcal{G}_1, \mathcal{G}_2, \ldots$ supports the PDEFs. In fact $\sigma^2 \exp(-\beta d_{\mathcal{G}}(u, v))$ is (strictly) positive definite for all $\beta, \sigma^2 > 0$.

Theorem 2. Cycles and trees support the exponential covariance function, and so do countable 1-sums of these.



Forbidden subgraph:

Theorem 3. Suppose G is a graph with Euclidean edges that has three paths which have common endpoints but are otherwise pairwise disjoint.



Forbidden subgraph:

Theorem 3. Suppose G is a graph with Euclidean edges that has three paths which have common endpoints but are otherwise pairwise disjoint.

Then there exists a $\beta > 0$ s.t.

$$c(u, v) = \exp(-\beta d_{\mathcal{G}}(u, v)), \quad u, v \in L,$$

is not positive semi-definite.

Sim. of GRF on \mathcal{G} with $c(u, v) = \sigma^2 \exp(-\beta d_{\mathcal{G}}(u, v))$

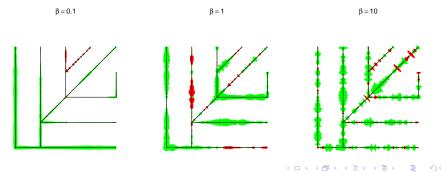
• On a finite collection of *n* points $\subset L$: "just" sim. from N_n .

(人間) トイヨト イヨト

Sim. of GRF on \mathcal{G} with $c(u, v) = \sigma^2 \exp(-\beta d_{\mathcal{G}}(u, v))$

- On a finite collection of *n* points $\subset L$: "just" sim. from N_n .
- On a tree \mathcal{G} : 1) Simulate multivariate normal distribution on \mathcal{V} (can be done sequentially).

2) Exploit Markov property: Simulate conditional independent Ornstein-Uhlenbeck processes on edges given the values on \mathcal{V} .



 $c_0: [0,\infty) \mapsto [0,\infty)$ is **completely monotonic** if it is continuous and $(-1)^k c_0^{(k)}(t) \ge 0$ for all $t \in (0,\infty)$ and $k = 1, 2, \ldots$

くぼう くほう くほう

 $c_0: [0,\infty) \mapsto [0,\infty)$ is **completely monotonic** if it is continuous and $(-1)^k c_0^{(k)}(t) \ge 0$ for all $t \in (0,\infty)$ and $k = 1, 2, \ldots$

Theorem 4. If \mathcal{G} supports the PDEFs, then $c(u, v) = c_0(d_{\mathcal{G}}(u, v))$ is pos. def. whenever c_0 is completely monotonic and non-constant.

・ 同 ト ・ ヨ ト ・ ヨ ト …

 $c_0: [0,\infty) \mapsto [0,\infty)$ is **completely monotonic** if it is continuous and $(-1)^k c_0^{(k)}(t) \ge 0$ for all $t \in (0,\infty)$ and $k = 1, 2, \ldots$

Theorem 4. If \mathcal{G} supports the PDEFs, then $c(u, v) = c_0(d_{\mathcal{G}}(u, v))$ is pos. def. whenever c_0 is completely monotonic and non-constant.

Because

$$c_0(t) = \sigma^2 \mathrm{E}\left[\exp(-tY)\right]$$

for some $\sigma^2 > 0$ and some non-constant r.v. $Y \ge 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

 $c_0: [0,\infty) \mapsto [0,\infty)$ is **completely monotonic** if it is continuous and $(-1)^k c_0^{(k)}(t) \ge 0$ for all $t \in (0,\infty)$ and $k = 1, 2, \ldots$

Theorem 4. If \mathcal{G} supports the PDEFs, then $c(u, v) = c_0(d_{\mathcal{G}}(u, v))$ is pos. def. whenever c_0 is completely monotonic and non-constant.

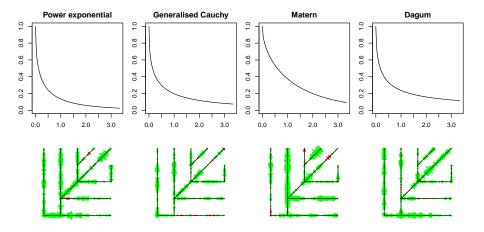
Because

$$c_0(t) = \sigma^2 \mathrm{E}\left[\exp(-tY)\right]$$

for some $\sigma^2 > 0$ and some non-constant r.v. $Y \ge 0$.

- Distribution of Y = inverse Laplace transform of $\mathcal{L}(t) = c_0(t)/\sigma^2$. If available on closed form, then simulation boils down to simulate
 - a realization $Y = \beta$
 - a GRF with $c(u, v) = \sigma^2 \exp(-\beta d_{\mathcal{G}}(u, v))$.

Simulations using completely monotonic covariance fcts:



A B A A B A

< 一型

Examples of completely monotonic covariance functions:

Theorem 5. Suppose \mathcal{G} supports the PDEFs. Then for $\sigma^2, \beta > 0$, we have parametric families of pos. def. cov. fcts. $c(u, v) = c_0(d_{\mathcal{G}}(u, v))$:

• Power exponential covariance function:

$$c_0(s) = \sigma^2 \exp\left(-\beta s^{lpha}
ight), \quad lpha \in (0,1].$$

• Generalized Cauchy covariance function:

$$c_0(s)=\sigma^2\left(eta s^lpha+1
ight)^{-\xi/lpha},\quad lpha\in(0,1],\ \xi>0.$$

• The Matérn covariance function:

$$c_0(s)=\sigma^2rac{ig(eta sig)^lpha {\cal K}_lphaig(eta sig)}{\Gamma(lpha)2^{lpha-1}}, \quad lpha\in(0,1/2].$$

• The Dagum covariance function:

$$c_0(s) = \sigma^2 \left[1 - \left(rac{eta s^lpha}{1 + eta s^lpha}
ight)^{\xi/lpha}
ight], \quad lpha, \xi \in (0, 1].$$

Forbidden covariance properties:

In Theorem 5:

- Reduced parameter range for α when compared to corresponding covariance functions on $\mathbb{R}.$

- Same range as for corresponding covariance functions on \mathbb{S}^1 (cycles).

Forbidden covariance properties:

In Theorem 5:

- Reduced parameter range for α when compared to corresponding covariance functions on $\mathbb{R}.$

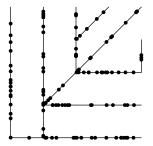
- Same range as for corresponding covariance functions on \mathbb{S}^1 (cycles).

Theorem 6. For any of the functions c(u, v) given in Theorem 5 but with $\alpha > 0$ outside the parameter range given in Theorem 5,

- there exists a graph with Euclidean edges \mathcal{G} which supports the PDEFs (and is not necessarily a cycle),
- but c(u, v) is **not** a covariance function.

□ > < □ > < □ >

PART 2: PSEUDO-STATIONARY POINT PROCESSES



21 / 29

3

- 4 目 ト - 4 日 ト - 4 日 ト

• A (simple locally finite) point process on \mathcal{G} is a random set $X \subset L$ s.t. $X \cap e_i$ is a.s. finite for all $i \in I$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- A (simple locally finite) point process on \mathcal{G} is a random set $X \subset L$ s.t. $X \cap e_i$ is a.s. finite for all $i \in I$.
- Let $\lambda_{\mathcal{G}} =$ Lebesgue measure on *L* (obtained via the edge-coordinates).

- A (simple locally finite) point process on \mathcal{G} is a random set $X \subset L$ s.t. $X \cap e_i$ is a.s. finite for all $i \in I$.
- Let $\lambda_{\mathcal{G}} =$ Lebesgue measure on *L* (obtained via the edge-coordinates).
- X has n^{th} order intensity function $\rho^{(n)}$ if for small sets $B_1, \ldots, B_n \subseteq L$,

$$P(X \text{ has a point in each of } B_1, \ldots, B_n) \approx \rho^{(n)}(u_1, \ldots, u_n) \, \mathrm{d}\lambda_{\mathcal{G}}(u_1) \cdots \, \mathrm{d}\lambda_{\mathcal{G}}(u_n) \, .$$

・ 同 ト ・ ヨ ト ・ ヨ ト

- A (simple locally finite) point process on \mathcal{G} is a random set $X \subset L$ s.t. $X \cap e_i$ is a.s. finite for all $i \in I$.
- Let $\lambda_{\mathcal{G}} =$ Lebesgue measure on *L* (obtained via the edge-coordinates).
- X has n^{th} order intensity function $\rho^{(n)}$ if for small sets $B_1, \ldots, B_n \subseteq L$,

P(X has a point in each of
$$B_1, \ldots, B_n$$
) $\approx \rho^{(n)}(u_1, \ldots, u_n) d\lambda_{\mathcal{G}}(u_1) \cdots d\lambda_{\mathcal{G}}(u_n)$.

• Intensity function: $\rho(u) = \rho^{(1)}(u)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- A (simple locally finite) point process on \mathcal{G} is a random set $X \subset L$ s.t. $X \cap e_i$ is a.s. finite for all $i \in I$.
- Let $\lambda_{\mathcal{G}} =$ Lebesgue measure on *L* (obtained via the edge-coordinates).
- X has n^{th} order intensity function $\rho^{(n)}$ if for small sets $B_1, \ldots, B_n \subseteq L$,

P(X has a point in each of
$$B_1, \ldots, B_n$$
) $\approx \rho^{(n)}(u_1, \ldots, u_n) d\lambda_{\mathcal{G}}(u_1) \cdots d\lambda_{\mathcal{G}}(u_n)$.

- Intensity function: $\rho(u) = \rho^{(1)}(u)$.
- Pair correlation function: $g(u, v) = \rho^{(2)}(u, v)/[\rho(u)\rho(v)]$.

• X is (second-order intensity-reweighted) pseudo-stationary if $g(u, v) = g_0(d_{\mathcal{G}}(u, v))$.

- 4 目 ト - 4 日 ト - 4 日 ト

• X is (second-order intensity-reweighted) pseudo-stationary if $g(u, v) = g_0(d_{\mathcal{G}}(u, v))$. Then the (inhomogeneous) K-function is

$$\mathcal{K}(r) = \int_0^r g_0(t) \,\mathrm{d}t, \quad r \ge 0.$$

くほと くほと くほと

• X is (second-order intensity-reweighted) pseudo-stationary if $g(u, v) = g_0(d_{\mathcal{G}}(u, v))$. Then the (inhomogeneous) K-function is

$$K(r) = \int_0^r g_0(t) \,\mathrm{d}t, \quad r \ge 0.$$

• If $\rho(u)$ is locally integrable, then for each $u \in L$ there exists a point process $X_{u}^{!}$ on \mathcal{G} which follows the **reduced Palm distribution at** u, i.e.

$$X_u^! \sim$$
 "cond. dist. of $X \setminus \{u\}$ given $u \in X$ ".

• X is (second-order intensity-reweighted) pseudo-stationary if $g(u, v) = g_0(d_{\mathcal{G}}(u, v))$. Then the (inhomogeneous) K-function is

$$K(r) = \int_0^r g_0(t) \,\mathrm{d}t, \quad r \ge 0.$$

• If $\rho(u)$ is locally integrable, then for each $u \in L$ there exists a point process $X_{u}^{!}$ on \mathcal{G} which follows the **reduced Palm distribution at** u, i.e.

$$X_u^! \sim$$
 "cond. dist. of $X \setminus \{u\}$ given $u \in X$ ".

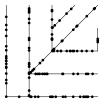
If $\rho(u) \equiv \rho$ and $g(u, v) = g_0(d_{\mathcal{G}}(u, v))$, then for any $u \in L$,

$$\begin{split} \rho \mathcal{K}(r) &= \mathrm{E} \# \{ v \in X_u^! : d_{\mathcal{G}}(u, v) \leq r \} \\ &= \mathrm{E} [\# \{ (X \setminus \{u\}) \cap b_{d_{\mathcal{G}}}(u, r) \} \, | \, u \in X]. \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

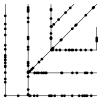
Poisson processes:

- X is a **Poisson process** on \mathcal{G} with (locally integrable) intensity function $\rho: L \mapsto [0, \infty)$, if for any $B \subseteq L$ with $\mu(B) := \int_B \rho(u) \, d\lambda_{\mathcal{G}}(u) < \infty$,
 - $\#(X \cap B) \sim \operatorname{Poisson}(\mu(B)),$
 - cond. on $\#(X \cap B)$, the points in $X \cap B$ are iid with density $\propto \rho$.



Poisson processes:

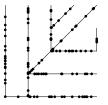
- X is a **Poisson process** on \mathcal{G} with (locally integrable) intensity function $\rho: L \mapsto [0, \infty)$, if for any $B \subseteq L$ with $\mu(B) := \int_B \rho(u) \, d\lambda_{\mathcal{G}}(u) < \infty$,
 - $\#(X \cap B) \sim \operatorname{Poisson}(\mu(B)),$
 - cond. on $\#(X \cap B)$, the points in $X \cap B$ are iid with density $\propto \rho$.



• Then $\rho^{(n)}(u_1, \ldots, u_n) = \rho(u_1) \cdots \rho(u_n)$, so g(u, v) = 1, i.e. X is pseudo-stationary and K(r) = r.

Poisson processes:

- X is a **Poisson process** on \mathcal{G} with (locally integrable) intensity function $\rho: L \mapsto [0, \infty)$, if for any $B \subseteq L$ with $\mu(B) := \int_B \rho(u) \, d\lambda_{\mathcal{G}}(u) < \infty$,
 - $\#(X \cap B) \sim \operatorname{Poisson}(\mu(B)),$
 - cond. on $\#(X \cap B)$, the points in $X \cap B$ are iid with density $\propto \rho$.



• Then $\rho^{(n)}(u_1, \ldots, u_n) = \rho(u_1) \cdots \rho(u_n)$, so g(u, v) = 1, i.e. X is pseudo-stationary and K(r) = r. Moreover, $X_u^! \sim X$ whenever $\rho(u) > 0$.

• X is a LGCP with underlying GRF Z if X|Z is a Poisson process on \mathcal{G} with locally integrable intensity function $\exp(Z(u))$ for $u \in L$.

- 4 個 ト - 4 三 ト - 4 三 ト

• X is a LGCP with underlying GRF Z if X|Z is a Poisson process on \mathcal{G} with locally integrable intensity function $\exp(Z(u))$ for $u \in L$.

• Let m(u) = EZ(u) and c(u, v) = cov(Z(u), Z(v)).

イロト 人間ト イヨト イヨト

• X is a LGCP with underlying GRF Z if X|Z is a Poisson process on \mathcal{G} with locally integrable intensity function $\exp(Z(u))$ for $u \in L$.

• Let m(u) = EZ(u) and c(u, v) = cov(Z(u), Z(v)). Local integrability of exp(Z(u)) is satisfied a.s. if $c(u, v) = c_0(d_{\mathcal{G}}(u, v))$ and c_0 is completely monotonic.

• X is a LGCP with underlying GRF Z if X|Z is a Poisson process on \mathcal{G} with locally integrable intensity function $\exp(Z(u))$ for $u \in L$.

• Let m(u) = EZ(u) and c(u, v) = cov(Z(u), Z(v)). Local integrability of exp(Z(u)) is satisfied a.s. if $c(u, v) = c_0(d_{\mathcal{G}}(u, v))$ and c_0 is completely monotonic.

•
$$\rho(u) = \exp(m(u) + c(u, u)/2), g(u, v) = \exp(c(u, v)),$$

$$\rho^{(n)}(u_1,\ldots,u_n)=\prod_{i=1}^n\rho(u_i)\prod_{i< j}g(u_i,u_j).$$

• X is a LGCP with underlying GRF Z if X|Z is a Poisson process on \mathcal{G} with locally integrable intensity function $\exp(Z(u))$ for $u \in L$.

• Let m(u) = EZ(u) and c(u, v) = cov(Z(u), Z(v)). Local integrability of exp(Z(u)) is satisfied a.s. if $c(u, v) = c_0(d_{\mathcal{G}}(u, v))$ and c_0 is completely monotonic.

•
$$\rho(u) = \exp(m(u) + c(u, u)/2), g(u, v) = \exp(c(u, v)),$$

$$\rho^{(n)}(u_1,\ldots,u_n)=\prod_{i=1}^n\rho(u_i)\prod_{i< j}g(u_i,u_j).$$

So X pseudo-stationary iff c is pseudo-stationary.

・ロト ・四ト ・ヨト ・ヨトー

• X is a LGCP with underlying GRF Z if X|Z is a Poisson process on \mathcal{G} with locally integrable intensity function $\exp(Z(u))$ for $u \in L$.

• Let m(u) = EZ(u) and c(u, v) = cov(Z(u), Z(v)). Local integrability of exp(Z(u)) is satisfied a.s. if $c(u, v) = c_0(d_{\mathcal{G}}(u, v))$ and c_0 is completely monotonic.

•
$$\rho(u) = \exp(m(u) + c(u, u)/2), g(u, v) = \exp(c(u, v)),$$

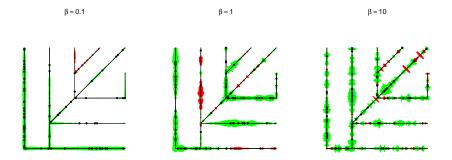
$$\rho^{(n)}(u_1,\ldots,u_n)=\prod_{i=1}^n\rho(u_i)\prod_{i< j}g(u_i,u_j).$$

So X pseudo-stationary iff c is pseudo-stationary.

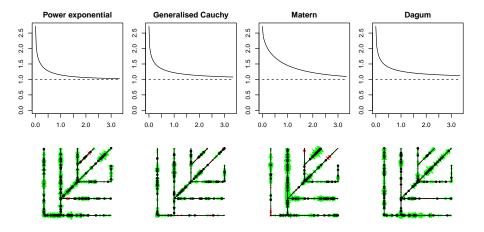
• $X_u^!$ is a LGCP with underlying GRF having mean function $m_u(v) = m(v) + c(u, v)$ and covariance function c.

Simulations of LGCPs using exponential covariance fcts:

Given a realisation of the GRF Z on \mathcal{G} , we simulate a Poisson process with intensity function $\exp(Z)$ to obtain a simulation of the LGCP X on \mathcal{G} .



Simulations of LGCPs using other covariance fcts:



< A

A B A A B A

• We now have a range of pseudo-stationary covariance functions and corresponding GRFs on graphs with Euclidean edges; and LGCPs for modelling clustered point patterns.

.

- We now have a range of pseudo-stationary covariance functions and corresponding GRFs on graphs with Euclidean edges; and LGCPs for modelling clustered point patterns.
- However, they only work on trees, cycles and countable 1-sums of these.

4 1 1 4 1 1 4

- We now have a range of pseudo-stationary covariance functions and corresponding GRFs on graphs with Euclidean edges; and LGCPs for modelling clustered point patterns.
- However, they only work on trees, cycles and countable 1-sums of these.
- For other graphs even something simple like the exponential function is not (necessarily) a covariance function.

A B F A B F

- We now have a range of pseudo-stationary covariance functions and corresponding GRFs on graphs with Euclidean edges; and LGCPs for modelling clustered point patterns.
- However, they only work on trees, cycles and countable 1-sums of these.
- For other graphs even something simple like the exponential function is not (necessarily) a covariance function.
- The covariance functions we have established are all completely monotonic, so they cannot e.g. be negative.

• • = • • = •

• Construct non-completely monotonic cov. fcts.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Construct non-completely monotonic cov. fcts.
- Construct pseudo-stationary shot-noise random fields and shot-noise Cox processes.

A B F A B F

- Construct non-completely monotonic cov. fcts.
- Construct pseudo-stationary shot-noise random fields and shot-noise Cox processes.
- Construct pseudo-stationary weighted determinantal and permanental point processes.

A B M A B M

- Construct non-completely monotonic cov. fcts.
- Construct pseudo-stationary shot-noise random fields and shot-noise Cox processes.
- Construct pseudo-stationary weighted determinantal and permanental point processes.
- Analyze data.

< 注入 < 注入

- Construct non-completely monotonic cov. fcts.
- Construct pseudo-stationary shot-noise random fields and shot-noise Cox processes.
- Construct pseudo-stationary weighted determinantal and permanental point processes.
- Analyze data.

THANK YOU!

▲ 国 トー 4 国 ト