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Application examples

Graph with edges = dendrite networks of neurons:

The dendrites (green) carry information from other neurons to the cell
body.

How do we model the random field = diameter along this graph with
edges (i.e. all green lines!)?
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Application examples

Point patterns on graphs with edges (i.e. all lines!):
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How do we determine
- clustering in street crimes?
- any evidence of interaction between positions of spider webs on mortar
lines of a brick wall?
- the joint spatial distribution of spines (small protusions) of different
types?
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Application examples

Snow’s (1855) cholera map: Point pattern on a graph with
edges = street network around the Broad Street pump:

Conclusion: cause of the victims’ illness was contamination of the water
from the Broad Street pump.
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Literature

Textbook on ...
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Graphs with Euclidean edges

Definition 1 (more general than seen elsewhere!):

A graph with Euclidean edges G is a triple (V, {ei : i ∈ I}, {ϕi : i ∈ I})
where I is a countable index set with 0 6∈ I and

(a) each ei is a set (an edge) with two associated vertices {ui , vi} ⊆ V
(the adjacent vertices);

(b) (V, {{ui , vi} : i ∈ I}) is a connected graph with no graph loops;

(c) ϕi : ei 7→ (ai , bi ) is a bijection (edge-coordinate).
E.g. ϕ−1

i = natural parametrization of ei .
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Graphs with Euclidean edges

L = index set for random fields/space for point processes on G:

If no overlap (left panel): L = V ∪
⋃

i∈I ei .

If overlap (”bridges/tunnels/multiple roads”; right panel):
L = ({0} × V) ∪

⋃
i∈I ({i} × ei ).

Geodesic distance: dG(u, v) = infimum of length of paths in G
between u, v ∈ L (where ”length” is induced by edge-coordinates and
usual length on the intervals (ai , bi )).
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Graphs with Euclidean edges

(Existing literature consider only the special case of a) linear network:
edges = straight line segments, only meeting at vertices, and ϕi ∼ natural
parametrization, so
dG(u, v) = length of shortest set-connected path between u and v .

(Left and middle panels: linear networks. Right panel: not a linear
network.)
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Graphs with Euclidean edges

Open problems and motivations:

How do we construct covariance functions of the form

c(u, v) = c0(dG(u, v))

for u, v ∈ L? Say then that c is pseudo-stationary.

Study GRFs Z = {Z (u) : u ∈ L} with a pseudo-stationary
covariance function. Then Z restricted to a geodesic path in G is
indistinguishable from a corresponding GRF on a closed interval and
with a stationary covariance function.

How do we construct point processes on L with pair correlation
function of the form

g(u, v) = g0(dG(u, v))

for u, v ∈ L? (Pseudo-stationarity).
So far only the Poisson process is known to be pseudo-stationary.

Jesper Møller (Aalborg University) Random fields and point processes on graphs with edges 10 / 29



Graphs with Euclidean edges

Open problems and motivations:

How do we construct covariance functions of the form

c(u, v) = c0(dG(u, v))

for u, v ∈ L? Say then that c is pseudo-stationary.

Study GRFs Z = {Z (u) : u ∈ L} with a pseudo-stationary
covariance function.

Then Z restricted to a geodesic path in G is
indistinguishable from a corresponding GRF on a closed interval and
with a stationary covariance function.

How do we construct point processes on L with pair correlation
function of the form

g(u, v) = g0(dG(u, v))

for u, v ∈ L? (Pseudo-stationarity).
So far only the Poisson process is known to be pseudo-stationary.

Jesper Møller (Aalborg University) Random fields and point processes on graphs with edges 10 / 29



Graphs with Euclidean edges

Open problems and motivations:

How do we construct covariance functions of the form

c(u, v) = c0(dG(u, v))

for u, v ∈ L? Say then that c is pseudo-stationary.

Study GRFs Z = {Z (u) : u ∈ L} with a pseudo-stationary
covariance function. Then Z restricted to a geodesic path in G is
indistinguishable from a corresponding GRF on a closed interval and
with a stationary covariance function.

How do we construct point processes on L with pair correlation
function of the form

g(u, v) = g0(dG(u, v))

for u, v ∈ L? (Pseudo-stationarity).
So far only the Poisson process is known to be pseudo-stationary.

Jesper Møller (Aalborg University) Random fields and point processes on graphs with edges 10 / 29



Graphs with Euclidean edges

Open problems and motivations:

How do we construct covariance functions of the form

c(u, v) = c0(dG(u, v))

for u, v ∈ L? Say then that c is pseudo-stationary.

Study GRFs Z = {Z (u) : u ∈ L} with a pseudo-stationary
covariance function. Then Z restricted to a geodesic path in G is
indistinguishable from a corresponding GRF on a closed interval and
with a stationary covariance function.

How do we construct point processes on L with pair correlation
function of the form

g(u, v) = g0(dG(u, v))

for u, v ∈ L? (Pseudo-stationarity).

So far only the Poisson process is known to be pseudo-stationary.

Jesper Møller (Aalborg University) Random fields and point processes on graphs with edges 10 / 29



Graphs with Euclidean edges

Open problems and motivations:

How do we construct covariance functions of the form

c(u, v) = c0(dG(u, v))

for u, v ∈ L? Say then that c is pseudo-stationary.

Study GRFs Z = {Z (u) : u ∈ L} with a pseudo-stationary
covariance function. Then Z restricted to a geodesic path in G is
indistinguishable from a corresponding GRF on a closed interval and
with a stationary covariance function.

How do we construct point processes on L with pair correlation
function of the form

g(u, v) = g0(dG(u, v))

for u, v ∈ L? (Pseudo-stationarity).
So far only the Poisson process is known to be pseudo-stationary.

Jesper Møller (Aalborg University) Random fields and point processes on graphs with edges 10 / 29



PART 1: PSEUDO-STATIONARY COVARIANCE
FUNCTIONS AND RANDOM FIELDS

β = 0.1 β = 1 β = 10
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Exponential covariance functions

Definition 2:

• The class of functions

t 7→ exp(−βt), t ≥ 0,

for β > 0 is the class of positive definite exponential functions
(PDEFs)

• A graph with Euclidean edges G is said to support the PDEFs if for
any β > 0,

c(u, v) = exp(−βdG(u, v))

is positive semi-definite for u, v ∈ L.
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Exponential covariance functions

Definition 3:

Suppose G1 = ({V1, {ei : i ∈ I1}, {ϕi : i ∈ I1}) and
G2 = ({V2, {ei : i ∈ I2}, {ϕi : i ∈ I2}) have only one vertex v0 in common,
but no common edges and disjoint index sets I1 and I2.

The 1-sum of G1 and G2 is the graph with Euclidean edges given by
G = (V1 ∪ V2, {ei : i ∈ I1 ∪ I2}, {ϕi : i ∈ I1 ∪ I2}).

● ● ●
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Exponential covariance functions

Graphs with Euclidean edges supporting the exponential
covariance function:

Theorem 1. If G1,G2, . . . support the PDEFs, then the 1-sum of
G1,G2, . . . supports the PDEFs. In fact σ2 exp(−βdG(u, v)) is (strictly)
positive definite for all β, σ2 > 0.

Theorem 2. Cycles and trees support the exponential covariance function,
and so do countable 1-sums of these.
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Exponential covariance functions

Forbidden subgraph:

Theorem 3. Suppose G is a graph with Euclidean edges that has three
paths which have common endpoints but are otherwise pairwise disjoint.

Then there exists a β > 0 s.t.

c(u, v) = exp(−βdG(u, v)), u, v ∈ L,

is not positive semi-definite.
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Exponential covariance functions

Sim. of GRF on G with c(u, v) = σ2 exp(−βdG(u, v))

On a finite collection of n points ⊂ L: ”just” sim. from Nn.

On a tree G: 1) Simulate multivariate normal distribution on V
(can be done sequentially).
2) Exploit Markov property: Simulate conditional independent
Ornstein-Uhlenbeck processes on edges given the values on V.

β = 0.1 β = 1 β = 10
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Extending the class of exponential covariance functions

Completely monotonic covariance functions:

c0 : [0,∞) 7→ [0,∞) is completely monotonic if it is continuous and

(−1)kc
(k)
0 (t) ≥ 0 for all t ∈ (0,∞) and k = 1, 2, . . ..

Theorem 4. If G supports the PDEFs, then c(u, v) = c0(dG(u, v)) is pos.
def. whenever c0 is completely monotonic and non-constant.

Because
c0(t) = σ2E [exp(−tY )]

for some σ2 > 0 and some non-constant r.v. Y ≥ 0.

Distribution of Y = inverse Laplace transform of L(t) = c0(t)/σ2.
If available on closed form, then simulation boils down to simulate

I a realization Y = β
I a GRF with c(u, v) = σ2 exp(−βdG(u, v)).
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Extending the class of exponential covariance functions

Simulations using completely monotonic covariance fcts:
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Extending the class of exponential covariance functions

Examples of completely monotonic covariance functions:

Theorem 5. Suppose G supports the PDEFs. Then for σ2, β > 0, we
have parametric families of pos. def. cov. fcts. c(u, v) = c0(dG(u, v)):

Power exponential covariance function:

c0(s) = σ2 exp (−βsα) , α ∈ (0, 1].

Generalized Cauchy covariance function:

c0(s) = σ2 (βsα + 1)−ξ/α , α ∈ (0, 1], ξ > 0.

The Matérn covariance function:

c0(s) = σ2

(
βs
)α

Kα
(
βs
)

Γ(α)2α−1
, α ∈ (0, 1/2].

The Dagum covariance function:

c0(s) = σ2

[
1−

(
βsα

1 + βsα

)ξ/α]
, α, ξ ∈ (0, 1].
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Extending the class of exponential covariance functions

Forbidden covariance properties:

In Theorem 5:
- Reduced parameter range for α when compared to corresponding
covariance functions on R.
- Same range as for corresponding covariance functions on S1 (cycles).

Theorem 6. For any of the functions c(u, v) given in Theorem 5 but with
α > 0 outside the parameter range given in Theorem 5,

there exists a graph with Euclidean edges G which supports the
PDEFs (and is not necessarily a cycle),

but c(u, v) is not a covariance function.
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PART 2: PSEUDO-STATIONARY POINT
PROCESSES
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Point processes

Definitions for point processes on G:

• A (simple locally finite) point process on G is
a random set X ⊂ L s.t. X ∩ ei is a.s. finite for all i ∈ I .

• Let λG = Lebesgue measure on L (obtained via the edge-coordinates).

• X has nth order intensity function ρ(n) if for small sets B1, . . . ,Bn ⊆ L,

P(X has a point in each of B1, . . . ,Bn) ≈
ρ(n)(u1, . . . , un)dλG (u1) · · · dλG (un) .

• Intensity function: ρ(u) = ρ(1)(u).

• Pair correlation function: g(u, v) = ρ(2)(u, v)/[ρ(u)ρ(v)].
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Point processes

Definitions for point processes on G:

• X is (second-order intensity-reweighted) pseudo-stationary if
g(u, v) = g0(dG(u, v)).

Then the (inhomogeneous) K -function is

K (r) =

∫ r

0
g0(t)dt, r ≥ 0.

• If ρ(u) is locally integrable, then for each u ∈ L there exists a point
process X !

u on G which follows the reduced Palm distribution at u, i.e.

X !
u ∼ ”cond. dist. of X \ {u} given u ∈ X”.

If ρ(u) ≡ ρ and g(u, v) = g0(dG(u, v)), then for any u ∈ L,

ρK (r) = E#{v ∈ X !
u : dG(u, v) ≤ r}

= E[#{(X \ {u}) ∩ bdG (u, r)} | u ∈ X ].

Jesper Møller (Aalborg University) Random fields and point processes on graphs with edges 23 / 29



Point processes

Definitions for point processes on G:

• X is (second-order intensity-reweighted) pseudo-stationary if
g(u, v) = g0(dG(u, v)). Then the (inhomogeneous) K -function is

K (r) =

∫ r

0
g0(t) dt, r ≥ 0.

• If ρ(u) is locally integrable, then for each u ∈ L there exists a point
process X !

u on G which follows the reduced Palm distribution at u, i.e.

X !
u ∼ ”cond. dist. of X \ {u} given u ∈ X”.

If ρ(u) ≡ ρ and g(u, v) = g0(dG(u, v)), then for any u ∈ L,

ρK (r) = E#{v ∈ X !
u : dG(u, v) ≤ r}

= E[#{(X \ {u}) ∩ bdG (u, r)} | u ∈ X ].

Jesper Møller (Aalborg University) Random fields and point processes on graphs with edges 23 / 29



Point processes

Definitions for point processes on G:

• X is (second-order intensity-reweighted) pseudo-stationary if
g(u, v) = g0(dG(u, v)). Then the (inhomogeneous) K -function is

K (r) =

∫ r

0
g0(t) dt, r ≥ 0.

• If ρ(u) is locally integrable, then for each u ∈ L there exists a point
process X !

u on G which follows the reduced Palm distribution at u, i.e.

X !
u ∼ ”cond. dist. of X \ {u} given u ∈ X”.

If ρ(u) ≡ ρ and g(u, v) = g0(dG(u, v)), then for any u ∈ L,

ρK (r) = E#{v ∈ X !
u : dG(u, v) ≤ r}

= E[#{(X \ {u}) ∩ bdG (u, r)} | u ∈ X ].

Jesper Møller (Aalborg University) Random fields and point processes on graphs with edges 23 / 29



Point processes

Definitions for point processes on G:

• X is (second-order intensity-reweighted) pseudo-stationary if
g(u, v) = g0(dG(u, v)). Then the (inhomogeneous) K -function is

K (r) =

∫ r

0
g0(t) dt, r ≥ 0.

• If ρ(u) is locally integrable, then for each u ∈ L there exists a point
process X !

u on G which follows the reduced Palm distribution at u, i.e.

X !
u ∼ ”cond. dist. of X \ {u} given u ∈ X”.

If ρ(u) ≡ ρ and g(u, v) = g0(dG(u, v)), then for any u ∈ L,

ρK (r) = E#{v ∈ X !
u : dG(u, v) ≤ r}

= E[#{(X \ {u}) ∩ bdG (u, r)} | u ∈ X ].

Jesper Møller (Aalborg University) Random fields and point processes on graphs with edges 23 / 29



Point processes

Poisson processes:

• X is a Poisson process on G with (locally integrable) intensity function
ρ : L 7→ [0,∞), if for any B ⊆ L with µ(B) :=

∫
B ρ(u)dλG(u) <∞,

#(X ∩ B) ∼ Poisson(µ(B)),

cond. on #(X ∩ B), the points in X ∩ B are iid with density ∝ ρ.
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• Then ρ(n)(u1, . . . , un) = ρ(u1) · · · ρ(un), so g(u, v) = 1, i.e. X is
pseudo-stationary and K (r) = r . Moreover, X !

u ∼ X whenever ρ(u) > 0.
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pseudo-stationary and K (r) = r .
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Point processes

Log Gaussian Cox processes (LGCPs):

• X is a LGCP with underlying GRF Z if X |Z is a Poisson process on G
with locally integrable intensity function exp(Z (u)) for u ∈ L.

• Let m(u) = EZ (u) and c(u, v) = cov(Z (u),Z (v)). Local integrability of
exp(Z (u)) is satisfied a.s. if c(u, v) = c0(dG(u, v)) and c0 is completely
monotonic.

• ρ(u) = exp(m(u) + c(u, u)/2), g(u, v) = exp(c(u, v)),

ρ(n)(u1, . . . , un) =
n∏

i=1

ρ(ui )
∏
i<j

g(ui , uj).

So X pseudo-stationary iff c is pseudo-stationary.

• X !
u is a LGCP with underlying GRF having mean function

mu(v) = m(v) + c(u, v) and covariance function c .
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Point processes

Simulations of LGCPs using exponential covariance fcts:

Given a realisation of the GRF Z on G, we simulate a Poisson process with
intensity function exp(Z ) to obtain a simulation of the LGCP X on G.

β = 0.1
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Point processes

Simulations of LGCPs using other covariance fcts:
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Conclusions

Summing up:

We now have a range of pseudo-stationary covariance functions and
corresponding GRFs on graphs with Euclidean edges; and LGCPs for
modelling clustered point patterns.

However, they only work on trees, cycles and countable 1-sums of
these.

For other graphs even something simple like the exponential function
is not (necessarily) a covariance function.

The covariance functions we have established are all completely
monotonic, so they cannot e.g. be negative.
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Conclusions

Future:

Construct non-completely monotonic cov. fcts.

Construct pseudo-stationary shot-noise random fields and shot-noise
Cox processes.

Construct pseudo-stationary weighted determinantal and permanental
point processes.

Analyze data.

THANK YOU!
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