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Outline of this lecture

o Ergodicity and mixing properties for random sets
in euclidean space

o Poisson hyperplane tessellations
o Poisson Voronoi tessellations
o STIT tessellations
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Intuitive interpretation:

Ergodicity:

'All essential features of a random structure can be observed in a
single realization.’ (if the observation window is large enough)
Tail triviality:

"The behavior of a random structure in its tail does not depend on
its behavior in any bounded part.’

E.g. The event 'There are infinitely many triangles in a
tessellation’ has probability either 1 or 0.

Mixing:

"The dependencies between parts of a random structure in two
distant regions of space vanish with growing distance.’
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For sequences of random variables:

Bradley, R.C. (2005) Basic Properties of Strong Mixing Conditions.
A Survey and Some Open Questions. Probability Surveys 2,
107-144.

Bradley, R.C. (2007) Introduction to Strong Mixing Conditions.
Vol I-II1.



Ergodicity and mixing in Euclidean Space

Stationary random measure or point process
or stationary random closed set

e ergodicity (Nguyen/Zessin for marked PP and Boolean
models, 1979)

o ergodic-mixing (Daley/Vere-Jones 1988 for random measures)
o tail triviality (Daley/Vere-Jones 1988 for random measures)
o [-mixing (Heinrich 1994)

(For more biographical remarks and references see Heinrich et al.
and Schneider/Weil, chapter 9)



Ergodicity and mixing in euclidean space

Consider random closed sets (RACS)

F ...set of all closed subsets of R9,
B(F) ...(Borel) o-algebra on F,

C ...set of all compact subsets of RY

Events to be considered:

{TeF: TnC=0}, CecC
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o-algebras to be considered:
@ o-algebra of translation-invariant events 7;,,,
Tiw = {A € B(F): P(AA(A+ h)) =0,Yh € RY}
® Tiair ... o-algebra of terminal events, the tail o-algebra

o pairs T(W'), T(WF€) for windows W' C W with
TW)=c({{TeF: TNnC=0}: Cc W, CeC(}),
TW)=c({{TeF: TNC=0}: Cc W CeC})
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o-algebra:
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TW)=c({{TeF: TNnC=0}: Cc W, CeC}).

Definition:
The tail-o-algebra (of terminal events) on T is defined as

Teait = My T(Wr)

with W, =[-n,n]9, n€N.

Examples of terminal events:

"there are infinitely many triangles in the tessellation”, or

"there are infinitely many cells in the tessellation with
inradius > 1"
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Ergodicity and mixing in euclidean space

Let Y be a stationary (homogeneous) random closed set in RY.
Definition: Y is
e ergodic, if P(Y € A) € {0,1}, VA € Tiny,

o ergodic-mixing, if VC, G eC
lim P(YNGC =0,YN(C+h)=0)

|[hl|—o0

=P(Y:N G =0)-P(Y:NC=0),

o tail-trivial, if P(Y € A) € {0, 1}, VA € Tail. O



Strong mixing in euclidean space

Behavior inside a window W' ¢ W
TW)=c({{TeF: TNC=0}: Cc W, 6 Cec(}).

Behavior outside a window W
TW)=c({{TEF: TNC=0}: CC W, CecC}).
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Strong mixing conditions in euclidean space

Windows W' = [~a,a]?, W = [~b, b], 0 < a < b.
a(a, b) := sup |P(AN B) — P(A)P(B)

Ac T(W, BeT(We),
B(a,b) = Fsup Xy L [P(Ai N B)) — P(A)P(B)),

where the supremum is taken over all pairs of finite partitions of F:
{Ai,i=1,...1} for events A; € T(W')

and

{Bj,j=1,...J} with I, J € N for events B; € T(W¥¢).

Definition: A stationary (homogeneous) random closed set Y in
RY is
e a-mixing, if Va>0: lima(a,b)=0,

b—o0

e [-mixing/absolutely regular, if Va>0: blim B(a, b) = 0.
—00



Strong mixing in euclidean space

Equivalent to 8-mixing:

Ve > 0,Ya> 03D € T([—a,a]?) with P(D) >1—¢, Ib> a,
such that
VYA € T([~a,a]?),VB € T(([-b,b]9)): AC D, P(A) >0

|P(ANn B) — P(A)P(B)|
P(A) =€

= |P(B|A) — P(A)| =



Random tessellations

Three reference models

Poisson line



Ergodicity and mixing in euclidean space

T ... the set of all tessellations of RY

In this lecture:

A tessellation is considered as the closed set of its cell boundaries.

TCF



Poisson hyperplane tessellations

Theorem: (Schneider and Weil, Theorem 10.5.3)

A Poisson hyperplane tessellations is ergodic-mixing if the

directional distribution has zero mass on all great subspheres of
S91.

In R?: A Poisson line tessellations is ergodic-mixing if there are a.s.
no pairs of parallel lines.
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Poisson hyperplane tessellations

Theorem: (Schneider and Weil, Theorem 10.5.3)

A Poisson hyperplane tessellations is ergodic-mixing if the
directional distribution has zero mass on all great subspheres of
S91.

In R?: A Poisson line tessellations is ergodic-mixing if there are a.s.
no pairs of parallel lines.

And an example (p. 519) of a Poisson hyperplane tessellation
where this condition is not fulfilled and which is not ergodic-mixing.

Martinez/N. (2012): For Poisson hyperplane tessellations:
The tail-o-algebra is not trivial.

Example: For the stationary and isotropic case the event 'There is
a hyperplane that intersects the unit ball By centered at 0’ belongs
to the tail-o-algebra and its probability is neither O nor 1.



Poisson-Voronoi tessellations are strongly mixing

Theorem (Heinrich 1994)

For a stationary point process (PP) in R? and the generated
Voronoi tessellation (VT)

Bvt(a, b) < Bpp(a, b) + R(a, b)

where R(a, b) is the probability for a set of certain point
configurations.



Poisson-Voronoi tessellations are strongly mixing
Windows W’ = [~a,a]9, W = [~b,b], 0 < a < b.

Theorem (Heinrich 1994)

For a stationary Poisson point process with intensity A in RY and
the generated Poisson-Voronoi tessellation (PVT)

Bpvt(a, b) <

c1d (852)* exp [-A(22)7 (b - a)/24] if b—a> ca,

d—1
ad (525)° ew[-A2/w)! Hb-a)/24] if b-a<

with explicitly given ¢;j(d), i =0,1,2.



Poisson-Voronoi tessellations are strongly mixing
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Poisson-Voronoi tessellations

Remarks:

@ (Heinrich 1994) The upper bound given in the last Theorem
implies limp_, o BpyT(a, b) = 0 and, moreover, that the decay
of Bpyr(a, b) is sufficiently strong to derive a CLT for the
number of nodes and for the total edge length.



Poisson-Voronoi tessellations

Remarks:

@ (Heinrich 1994) The upper bound given in the last Theorem
implies limp_, o BpyT(a, b) = 0 and, moreover, that the decay
of Bpyr(a, b) is sufficiently strong to derive a CLT for the
number of nodes and for the total edge length.

o Calka and Chenavier (Extremes 2014) consider order statistics
of functionals f(C), such as inradius, circumradius, area,
volume of the Voronoi flower, for the cells C of
Posson-Voronoi and Poisson-Delaunay tessellations resp. in a
bounded Window W. They formulate (still rather involved
technical and not yet 'standard’ mixing) sufficient conditions
for the convergence (for large W) of these order statistics.



STIT tessellations — Construction

Random tessellations generated by sequential cell division

77777777777777777777777777

,,,,,,,,,,,,,,,,,,,,,,,,,,



STIT tessellations — Construction

Random tessellations generated by sequential cell division




STIT tessellations — Construction

Random tessellations generated by sequential cell division




STIT tessellations — Construction

Random tessellations generated by sequential cell division




STIT tessellations — Construction

Random tessellations generated by sequential cell division




STIT tessellations — Construction

Random tessellations generated by sequential cell division




STIT tessellations — Construction

Random tessellations generated by sequential cell division




Construction of STIT tessellations

(Ye, t > 0) ... STIT process in RY

determined by

e A ...translation invariant measure on (7, $)) on the space of
hyperplanes in R?
A = image [y - £ ® 0];
v > 0 ...intensity,
£... Lebesgue measure, distance from the origin,
6 ...directional distribution
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Construction of STIT tessellations

(Ye, t > 0) ... STIT process in RY

determined by

e A ...translation invariant measure on (7, $)) on the space of
hyperplanes in R?
A = image [y - £ ® 0];
v > 0 ...intensity,
... Lebesgue measure, distance from the origin,
6 ...directional distribution

o A\(C) =NA([C]) ... parameter of the
exponential life-time distr. of an individual cell C,
[C] ... set of hyperplanes that intersect C

o Ai¢] = /\([1C]) A(-N[C]) ... division rule



Ergodic properties of STIT

Theorem (Lachieze-Rey 2010)

For all t > 0, the STIT tessellation Y; is ergodic-mixing in space,
i.e.

for all Borel sets A,B C RY, h € RY
lim P(Y:nA=0,Y,n (B+h)=0)
|[hl|—00

(Y: as the random closed set of cell boundaries.)



Ergodic-mixing of STIT
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Strong mixing of STIT

Idea: With a probability > 1—¢ appears an
encapsulation of W’ inside W (before W’ is intersected).
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STIT is S-mixing

Denote

[C] ... set of hyperplanes that intersect C,

(T AW = > AN,

cells Ci in TAW'

If A is rotation invariant and d = 2, then

¢(T AW')is (up to a constant)

the boundary length of W 4 2x the total length of edges of
TNnWw.



STIT is S-mixing

v

A

[f]’|6] ... set of hyperplanes that separate facet 6-’ of W’
from parallel facet f; of W,

L =min{A([F/|£]), j=1,...,d}.



STIT is S-mixing

Theorem (Martinez/N., 2014)

Let (Y, t > 0) be the STIT tessellation process determined by A.
ForO<a<blet W =[-a,a]? C W =[-b,b]°.
Then for a fixed t >0 and all 0 <s < t, M >0 we have

B(a, b) <
P(C(Ye AW')>M) + P({(Y: A W) < M)x

x 2+ eSM _ o—sM _ (1 _i_efsM)efs/\([W’]) (1 _ est(a,b))zd} )



STIT is S-mixing

Theorem (Martinez/N., 2014)

Let (Y, t > 0) be the STIT tessellation process determined by A.
ForO<a<blet W =[-a,a]? C W =[-b,b]°.
Then for a fixed t >0 and all 0 <s < t, M >0 we have

B(a, b) <
P(C(Ye AW')>M) + P({(Y: A W) < M)x
x 2+ eSM _ o—sM _ (1 _i_efsM)efs/\([W’]) (1 _ est(a,b))zd} )

This upper bound can now be minimized by choosing appropriate
M>0and 0 <s<t.



STIT is S-mixing

Theorem (Martinez/N., 2014)

For t > 0 let be Y; the state at time t of a STIT tessellation
process determined by the hyperplane measure A. Then for
0<a<b W =[-a,alC W=][-b,b]? and all n € (0,1) there
exists a constant x = r(t, a,n) < oo such that

B(a,b) < kb ",

i.e. STIT is B-mixing.



An Application: Variances for Functionals of STIT

Lemma

(Yoshihara-Heinrich)
For all real valued random variables X, Y € L?(P) and all § > 0

é

Coux, V)l <2 (B (1X)) ™ (E (1Y) ™ (8((x).o(v)s

where 0(X), o(Y') denote the o-algebras generated by X and Y
respectively.



An Application: Variances for Functionals of STIT

Theorem (Martinez/N., 2015)

Let X be an additive functional such that for some § > 0 holds
E (X([-1,1]9 N Y;)?*T) < co.
Then forall 0 < e <1

Var ((2,17)dX([—n, 9 n Yt)> <0 (,ﬁkeh%)

as n — oQ.

Examples:
X ...number of vertices in a window, or
X ...total k-volume of k-dimensional faces of cells inside a window



Earlier Results by Schreiber and Thale (2010/2012)

Y, stationary and isotropic STIT at time t > 0. W, = [—n, n]“.
o Ford=2: X(WoNYy) ...

e number of vertices, or
o number of center points of maximal (/—)segments, or
o the total length of edges,

then

1 -2
Var <(2n)2X(Wnﬂ Yt)> =0(n?Inn) for n— .

o Ford > 3:
X(W,N'Y:) ... the total surface area of cell boundaries, then

Var <(2,17)dX(W,7 N Yt)> =0 (n_2) for n— oo.

Hence, in these cases the asymptotic boundaries for the variance
)
are considerably smaller than our upper bound O (n_(l_s)?).



Concluding remarks

@ Open problem: More precise bounds for the decay of 3(a, b)
for STIT (cf. Heinrich's papers).

@ Open problem: Transfer of results by Calka/Chenavier (order
statistics/extreme values) to STIT?



Concluding remarks

@ Open problem: More precise bounds for the decay of 3(a, b)
for STIT (cf. Heinrich's papers).

@ Open problem: Transfer of results by Calka/Chenavier (order
statistics/extreme values) to STIT?
Conjectures:
o STIT 'between’ Poisson hyperplane tessellations and
Poisson-Voronoi tessellations

@ Mixing properties for dimension d = 2 different from those
ones for d > 3.



