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Outline of this lecture

Ergodicity and mixing properties for random sets
in euclidean space

Poisson hyperplane tessellations

Poisson Voronoi tessellations

STIT tessellations



Motivation

Ergodic and mixing properties

express different levels of weak stochastic dependencies,

express ’long or short distance’ dependencies (in space)

provide sufficient conditions for limit theorems

Intuitive interpretation:
Ergodicity:
’All essential features of a random structure can be observed in a
single realization.’ (if the observation window is large enough)
Tail triviality:
’The behavior of a random structure in its tail does not depend on
its behavior in any bounded part.’
E.g. The event ’There are infinitely many triangles in a
tessellation’ has probability either 1 or 0.
Mixing:
’The dependencies between parts of a random structure in two
distant regions of space vanish with growing distance.’
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Very rough survey

independence ⇒ ... ⇒ β-mixing ⇒ α-mixing ⇒ tail triviality ⇒
ergodic-mixing ⇒ ergodic ⇒ ...

For sequences of random variables:

Bradley, R.C. (2005) Basic Properties of Strong Mixing Conditions.
A Survey and Some Open Questions. Probability Surveys 2,
107–144.

Bradley, R.C. (2007) Introduction to Strong Mixing Conditions.
Vol I–III.
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Ergodicity and mixing in Euclidean Space

Stationary random measure or point process
or stationary random closed set

ergodicity (Nguyen/Zessin for marked PP and Boolean
models, 1979)

ergodic-mixing (Daley/Vere-Jones 1988 for random measures)

tail triviality (Daley/Vere-Jones 1988 for random measures)

β-mixing (Heinrich 1994)

(For more biographical remarks and references see Heinrich et al.
and Schneider/Weil, chapter 9)



Ergodicity and mixing in euclidean space

Consider random closed sets (RACS)

F . . . set of all closed subsets of Rd ,

B(F) . . . (Borel) σ-algebra on F ,

C . . . set of all compact subsets of Rd

Events to be considered:

{T ∈ F : T ∩ C = ∅}, C ∈ C



Ergodicity and mixing in euclidean space

σ-algebras to be considered:

σ-algebra of translation-invariant events Tinv ,

Tinv := {

A ∈ B(F) :

P(

A

4

(A + h)

) = 0

, ∀h ∈ Rd

}

Ttail . . .σ-algebra of terminal events, the tail σ-algebra

pairs T (W ′), T (W c) for windows W ′ ⊂W with

T (W ′) = σ ({{T ∈ F : T ∩ C = ∅} : C ⊂W ′, C ∈ C}) ,

T (W c) = σ ({{T ∈ F : T ∩ C = ∅} : C ⊂W c , C ∈ C})
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Ergodicity and mixing in euclidean space

Events which are determined by the behavior outside a window W .

σ-algebra:

T (W c) = σ ({{T ∈ F : T ∩ C = ∅} : C ⊂W c , C ∈ C}) .



Ergodicity and mixing in euclidean space

T (W c) = σ ({{T ∈ F : T ∩ C = ∅} : C ⊂W c , C ∈ C}) .

Definition:
The tail-σ-algebra (of terminal events) on T is defined as

Ttail =
⋂∞

n=1 T (W c
n )

with Wn = [−n, n]d , n ∈ N. 2

Examples of terminal events:

”there are infinitely many triangles in the tessellation”, or

”there are infinitely many cells in the tessellation with
inradius > 1”
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Ergodicity and mixing in euclidean space

Let Y be a stationary (homogeneous) random closed set in Rd .

Definition: Y is

ergodic, if P(Y ∈ A) ∈ {0, 1}, ∀A ∈ Tinv ,

ergodic-mixing, if ∀C1,C2 ∈ C

lim
||h||→∞

P(Y ∩ C1 = ∅,Y ∩ (C2+h) = ∅)

= P(Yt ∩ C1 = ∅) · P(Yt ∩ C2 = ∅),

tail-trivial, if P(Y ∈ A) ∈ {0, 1}, ∀A ∈ Ttail . 2
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Strong mixing in euclidean space

Behavior inside a window W ′ ⊂W
T (W ′) = σ ({{T ∈ F : T ∩ C = ∅} : C ⊂W ′, C ∈ C}) .

Behavior outside a window W
T (W c) = σ ({{T ∈ F : T ∩ C = ∅} : C ⊂W c , C ∈ C}) .



Strong mixing conditions in euclidean space

Windows W ′ = [−a, a]d , W = [−b, b]d , 0 < a < b.

α(a, b) := sup |P(A ∩ B)− P(A)P(B)|,
A ∈ T (W ′), B ∈ T (W c),

β(a, b) := 1
2 sup

∑I
i=1

∑J
j=1 |P(Ai ∩ Bj)− P(Ai )P(Bj)|,

where the supremum is taken over all pairs of finite partitions of F :
{Ai , i = 1, . . . I} for events Ai ∈ T (W ′)
and
{Bj , j = 1, . . . J} with I , J ∈ N for events Bj ∈ T (W c).

Definition: A stationary (homogeneous) random closed set Y in
Rd is

α-mixing, if ∀a > 0 : lim
b→∞

α(a, b) = 0,

β-mixing/absolutely regular, if ∀a > 0 : lim
b→∞

β(a, b) = 0.
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Strong mixing in euclidean space

Equivalent to β-mixing:

∀ε > 0,∀a > 0 ∃D ∈ T ([−a, a]d) with P(D) ≥ 1− ε, ∃b > a ,
such that

∀A ∈ T ([−a, a]d),∀B ∈ T (([−b, b]d)c) : A ⊆ D, P(A) > 0

⇒ |P(B|A)− P(A)| =
|P(A ∩ B)− P(A)P(B)|

P(A)
≤ ε



Random tessellations

Three reference models

Poisson-Voronoi STIT Poisson line



Ergodicity and mixing in euclidean space

T ... the set of all tessellations of Rd

In this lecture:

A tessellation is considered as the closed set of its cell boundaries.

T ⊂ F



Poisson hyperplane tessellations

Theorem: (Schneider and Weil, Theorem 10.5.3)

A Poisson hyperplane tessellations is ergodic-mixing if the
directional distribution has zero mass on all great subspheres of
Sd−1.

In R2: A Poisson line tessellations is ergodic-mixing if there are a.s.
no pairs of parallel lines.

And an example (p. 519) of a Poisson hyperplane tessellation
where this condition is not fulfilled and which is not ergodic-mixing.

Mart́ınez/N. (2012): For Poisson hyperplane tessellations:
The tail-σ-algebra is not trivial.

Example: For the stationary and isotropic case the event ’There is
a hyperplane that intersects the unit ball B1 centered at 0’ belongs
to the tail-σ-algebra and its probability is neither 0 nor 1.
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Poisson-Voronoi tessellations are strongly mixing

Theorem (Heinrich 1994)

For a stationary point process (PP) in Rd and the generated
Voronoi tessellation (VT)

βVT (a, b) ≤ βPP(a, b) + R(a, b)

where R(a, b) is the probability for a set of certain point
configurations.



Poisson-Voronoi tessellations are strongly mixing

Windows W ′ = [−a, a]d , W = [−b, b]d , 0 < a < b.

Theorem (Heinrich 1994)

For a stationary Poisson point process with intensity λ in Rd and
the generated Poisson-Voronoi tessellation (PVT)

βPVT (a, b) ≤


c1d

(
b−a
a

)d−1
exp

[
−λ(2a)d−1(b − a)/24

]
if b − a > c0a,

c2d
(

a
b−a

)d−1
exp

[
−λ(2/c0)d−1(b − a)d/24

]
if b − a ≤ c0a,

with explicitly given ci (d), i = 0, 1, 2.
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Poisson-Voronoi tessellations

Remarks:

(Heinrich 1994) The upper bound given in the last Theorem
implies limb→∞ βPVT (a, b) = 0 and, moreover, that the decay
of βPVT (a, b) is sufficiently strong to derive a CLT for the
number of nodes and for the total edge length.

Calka and Chenavier (Extremes 2014) consider order statistics
of functionals f (C ), such as inradius, circumradius, area,
volume of the Voronoi flower, for the cells C of
Posson-Voronoi and Poisson-Delaunay tessellations resp. in a
bounded Window W . They formulate (still rather involved
technical and not yet ’standard’ mixing) sufficient conditions
for the convergence (for large W ) of these order statistics.
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STIT tessellations – Construction

Random tessellations generated by sequential cell division
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Construction of STIT tessellations

(Yt , t > 0) . . . STIT process in Rd

determined by

Λ . . . translation invariant measure on (H,H) on the space of
hyperplanes in Rd

Λ = image [γ · `⊗ θ];
γ > 0 . . . intensity,
` . . . Lebesgue measure, distance from the origin,
θ . . . directional distribution

λ(C ) = Λ([C ]) ... parameter of the
exponential life-time distr. of an individual cell C ,
[C ] ... set of hyperplanes that intersect C

Λ[C ] = 1
Λ([C ]) Λ(· ∩ [C ]) ... division rule



Construction of STIT tessellations

(Yt , t > 0) . . . STIT process in Rd

determined by

Λ . . . translation invariant measure on (H,H) on the space of
hyperplanes in Rd

Λ = image [γ · `⊗ θ];
γ > 0 . . . intensity,
` . . . Lebesgue measure, distance from the origin,
θ . . . directional distribution

λ(C ) = Λ([C ]) ... parameter of the
exponential life-time distr. of an individual cell C ,
[C ] ... set of hyperplanes that intersect C

Λ[C ] = 1
Λ([C ]) Λ(· ∩ [C ]) ... division rule



Construction of STIT tessellations

(Yt , t > 0) . . . STIT process in Rd

determined by

Λ . . . translation invariant measure on (H,H) on the space of
hyperplanes in Rd

Λ = image [γ · `⊗ θ];
γ > 0 . . . intensity,
` . . . Lebesgue measure, distance from the origin,
θ . . . directional distribution

λ(C ) = Λ([C ]) ... parameter of the
exponential life-time distr. of an individual cell C ,
[C ] ... set of hyperplanes that intersect C

Λ[C ] = 1
Λ([C ]) Λ(· ∩ [C ]) ... division rule



Ergodic properties of STIT

Theorem (Lachièze-Rey 2010)

For all t > 0, the STIT tessellation Yt is ergodic-mixing in space,
i.e.

for all Borel sets A,B ⊂ Rd , h ∈ Rd

lim
||h||→∞

P(Yt ∩ A = ∅,Yt ∩ (B+h) = ∅)

= P(Yt ∩ A = ∅) · P(Yt ∩ B = ∅)

(Yt as the random closed set of cell boundaries.)



Ergodic-mixing of STIT
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Ergodic-mixing of STIT



Strong mixing of STIT

Idea: With a probability > 1− ε appears an

encapsulation of W ′ inside W (before W ′ is intersected).



Encapsulation for STIT
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STIT is β-mixing

Denote

[C ] ... set of hyperplanes that intersect C ,

ζ(T ∧W ′) =
∑

cells C i in T∧W ′

Λ([C i ]),

If Λ is rotation invariant and d = 2, then
ζ(T ∧W ′) is (up to a constant)
the boundary length of W + 2× the total length of edges of
T ∩W .



STIT is β-mixing

[f ′j |fj ] ... set of hyperplanes that separate facet f ′j of W ′

from parallel facet fj of W ,

L = min{Λ([f ′j |fj ]), j = 1, ..., d}.



STIT is β-mixing

Theorem (Mart́ınez/N., 2014)

Let (Yt , t > 0) be the STIT tessellation process determined by Λ.
For 0 < a < b let W ′ = [−a, a]d ⊂W = [−b, b]d .
Then for a fixed t > 0 and all 0 < s < t, M > 0 we have

β(a, b) <

P(ζ(Yt ∧W ′)≥M) + P(ζ(Yt ∧W ′)<M)×

×
[
2 + esM − e−sM − (1 +e−sM)e−sΛ([W ′])

(
1− e−sL(a,b)

)2d
]
.

This upper bound can now be minimized by choosing appropriate
M > 0 and 0 < s < t.
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STIT is β-mixing

Theorem (Mart́ınez/N., 2014)

For t > 0 let be Yt the state at time t of a STIT tessellation
process determined by the hyperplane measure Λ. Then for
0 < a < b, W ′ = [−a, a]d ⊂W = [−b, b]d and all η ∈ (0, 1) there
exists a constant κ = κ(t, a, η) <∞ such that

β(a, b) ≤ κ b−η,

i.e. STIT is β-mixing.



An Application: Variances for Functionals of STIT

Lemma

(Yoshihara-Heinrich)
For all real valued random variables X ,Y ∈ L2(P) and all δ > 0

|Cov(X ,Y )| ≤ 2
(
E
(
|X |2+δ

)) 1
2+δ
(
E
(
|Y |2+δ

)) 1
2+δ

(β(σ(X ), σ(Y )))
δ

2+δ ,

where σ(X ), σ(Y ) denote the σ-algebras generated by X and Y
respectively.



An Application: Variances for Functionals of STIT

Theorem (Mart́ınez/N., 2015)

Let X be an additive functional such that for some δ > 0 holds
E
(
X ([−1, 1]d ∩ Yt)

2+δ
)
<∞.

Then for all 0 < ε < 1

Var

(
1

(2n)d
X ([−n, n]d ∩ Yt)

)
≤ O

(
n−(1−ε) δ

2+δ

)
as n→∞.

Examples:
X . . . number of vertices in a window, or
X . . . total k-volume of k-dimensional faces of cells inside a window



Earlier Results by Schreiber and Thäle (2010/2012)

Yt stationary and isotropic STIT at time t > 0. Wn = [−n, n]d .

For d = 2: X (Wn ∩ Yt) . . .

number of vertices, or
number of center points of maximal (I−)segments, or
the total length of edges,

then

Var

(
1

(2n)2
X (Wn ∩ Yt)

)
= O

(
n−2 ln n

)
for n→∞.

For d ≥ 3:
X (Wn ∩ Yt) . . . the total surface area of cell boundaries, then

Var

(
1

(2n)d
X (Wn ∩ Yt)

)
= O

(
n−2
)

for n→∞.

Hence, in these cases the asymptotic boundaries for the variance

are considerably smaller than our upper bound O
(
n−(1−ε) δ

2+δ

)
.



Concluding remarks

Open problem: More precise bounds for the decay of β(a, b)
for STIT (cf. Heinrich’s papers).

Open problem: Transfer of results by Calka/Chenavier (order
statistics/extreme values) to STIT?

Conjectures:

STIT ’between’ Poisson hyperplane tessellations and
Poisson-Voronoi tessellations

Mixing properties for dimension d = 2 different from those
ones for d ≥ 3.
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