

Cointegrated Oscillating Systems

Jacob Østergaard Susanne Ditlevsen Anders Rahbek

University of Copenhagen.

DYNSTOCH, June 9th, 2016 Slide 0/26

Agenda

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring System Slide 1/26

Motivation

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring System Slide 2/26

Motivation: Synchronization in Nature

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring System Slide 2/26

Motivation: Synchronization in Nature

An ubiquitous presence...

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring System Slide 2/26

Cointegration

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring System Slide 3/26

Consider a *p*-dim process

$$x_t = A_1 x_{t-1} + \cdots + A_k x_{t-k} + \varepsilon_t,$$

where $A_i \in \mathbb{R}^{p \times p}$ and $\varepsilon_t \in \mathbb{R}^p$.

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaing Syst Slide 3/26

Consider a *p*-dim process

$$x_t = A_1 x_{t-1} + \cdots + A_k x_{t-k} + \varepsilon_t,$$

where $A_i \in \mathbb{R}^{p \times p}$ and $\varepsilon_t \in \mathbb{R}^p$.

The associated characteristic polynomial for x_t is

$$C(z) = \det(I_p - A_1z - \cdots - A_kz^k), \quad z \in \mathbb{C}.$$

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaine Syst Slide 3/26

Consider a *p*-dim process

$$x_t = A_1 x_{t-1} + \cdots + A_k x_{t-k} + \varepsilon_t,$$

where $A_i \in \mathbb{R}^{p \times p}$ and $\varepsilon_t \in \mathbb{R}^p$.

The associated characteristic polynomial for x_t is

$$C(z) = \det(I_p - A_1z - \cdots - A_kz^k), \quad z \in \mathbb{C}.$$

If $C(z) \neq 0$ for $|z| \leq 1$ the process is *stationary*.

Consider a *p*-dim process

$$x_t = A_1 x_{t-1} + \cdots + A_k x_{t-k} + \varepsilon_t,$$

where $A_i \in \mathbb{R}^{p \times p}$ and $\varepsilon_t \in \mathbb{R}^p$.

The associated characteristic polynomial for x_t is

$$C(z) = \det(I_p - A_1z - \cdots - A_kz^k), \quad z \in \mathbb{C}.$$

If $C(z) \neq 0$ for $|z| \leq 1$ the process is *stationary*.

If C(z) = 0 for |z| = 1, the process contains a *unit root*, and it is *nonstationary*.

1D example: simple random walk

$$x_t = x_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, \sigma)$$

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaing Syst Slide 4/26

1D example: simple random walk

$$x_t = x_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, \sigma)$$

Since the charateristic polynomial for x_t

$$C(z) = 1 - z, z \in \mathbb{C}$$

has a root |z| = 1, x_t has a unit root of multiplicity 1, it is thus integrated of order 1: I(1) and we say that x_t has a stochastic trend.

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaine Syst Slide 4/26

1D example: simple random walk

$$x_t = x_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, \sigma)$$

Since the charateristic polynomial for x_t

$$C(z) = 1 - z, z \in \mathbb{C}$$

has a root |z| = 1, x_t has a unit root of multiplicity 1, it is thus integrated of order 1: I(1) and we say that x_t has a stochastic trend.

A process with a unit root of multiplicity d is I(d).

For x_t an I(d) process, Δx_t is I(d-1) thus $\Delta^d x_t$ is I(0).

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaria Sys. Slide 4/26

Assume $x_t \in \mathbb{R}^p$ is I(1) and rewrite

$$x_t = A_1 x_{t-1} + \cdots + A_k x_{t-k} + \varepsilon_t,$$

as

$$\Delta x_t = \Pi x_{t-1} + \Gamma_1 \Delta x_{t-1} + \dots + \Gamma_{k-1} \Delta x_{t-k+1} + \varepsilon_t,$$

where

$$\Pi = -(I_p - A_1 - \cdots - A_k)$$

$$\Gamma_j = -(A_{j+1} + \cdots + A_k), \quad j = 1, \dots, k-1.$$

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaing Syst Slide 5/26

Assume $x_t \in \mathbb{R}^p$ is I(1) and rewrite

$$x_t = A_1 x_{t-1} + \cdots + A_k x_{t-k} + \varepsilon_t,$$

as

$$\Delta x_t = \Pi x_{t-1} + \Gamma_1 \Delta x_{t-1} + \dots + \Gamma_{k-1} \Delta x_{t-k+1} + \varepsilon_t,$$

where

$$\Pi = -(I_p - A_1 - \cdots - A_k)$$

$$\Gamma_j = -(A_{j+1} + \cdots + A_k), \quad j = 1, \dots, k-1.$$

If x_t is I(1) then Δx_t is I(0) and thus $\prod x_{t-1}$ must be I(0)!

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaria Sy Slide 5/26

- 3 possibilities for rank(Π) = *r*:
 - Π has full rank p.
 - Π has reduced rank 0 < r < p.
 - Π has rank 0.

- 3 possibilities for rank(Π) = *r*:
 - Π has full rank p.
 - Π has reduced rank 0 < r < p.
 - Π has rank 0.
- $r = p \Rightarrow$ that x_t must be I(0).
- $r = 0 \Rightarrow$ no stationary relations of x_t .

 $0 < r < p \Rightarrow r$ stationary combinations of x_t variables. We then say that x_t is a *cointegrated* process.

If Π has rank 0 < r < p, then

$$\Pi = \alpha \beta',$$

where $\alpha, \beta \in \mathbb{R}^{p \times r}$ and rank r < p.

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaing Syst Slide 7/26

If Π has rank 0 < r < p, then

$$\Pi = \alpha \beta',$$

where $\alpha, \beta \in \mathbb{R}^{p \times r}$ and rank r < p.

We then have

$$(\alpha'\alpha)^{-1}\alpha'\Pi x_t = (\alpha'\alpha)^{-1}\alpha'\alpha\beta' x_t = \beta' x_t$$

is I(0).

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaing Syst Slide 7/26

If Π has rank 0 < r < p, then

$$\Pi = \alpha \beta',$$

where $\alpha, \beta \in \mathbb{R}^{p \times r}$ and rank r < p.

We then have

$$(\alpha'\alpha)^{-1}\alpha'\Pi x_t = (\alpha'\alpha)^{-1}\alpha'\alpha\beta' x_t = \beta' x_t$$

is *I*(0).

Hence the *r* linearly independent columns of β correspond to *r* stationary linear combinations of x_t .

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaing Syst Slide 7/26

If Π has rank 0 < r < p, then

$$\Pi = \alpha \beta',$$

where $\alpha, \beta \in \mathbb{R}^{p \times r}$ and rank r < p.

We then have

$$(\alpha'\alpha)^{-1}\alpha'\Pi x_t = (\alpha'\alpha)^{-1}\alpha'\alpha\beta' x_t = \beta' x_t$$

is *I*(0).

Hence the *r* linearly independent columns of β correspond to *r* stationary linear combinations of x_t .

Note also that α and β are not uniquely identified! This implies only linear restrictions as hypotheses.

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaine Syst Slide 7/26

Cointegration: Dissection of Trends

Consider the simple example

$$x_t = (x_{1t}, x_{2t})'$$
$$\Delta x_t = \alpha \beta' x_{t-1} + \varepsilon_t$$
$$\beta = (1, -1)',$$

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaing Syst Slide 8/26

Cointegration: Dissection of Trends

Consider the simple example

$$\begin{aligned} x_t &= (x_{1t}, x_{2t})' \\ \Delta x_t &= \alpha \beta' x_{t-1} + \varepsilon_t \\ \beta &= (1, -1)', \end{aligned}$$

Here $\beta_{\perp} = (1, 1)'$ is the orthogonal complement to β , such that $\beta' \beta_{\perp} = 0$.

Same concept for α_{\perp} .

 $\alpha'_{\perp} \sum_{i=1}^{t} \varepsilon_i$ are stochastic trends, $\beta' x_t$ are stationary trends.

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaing Syst Slide 8/26

Cointegration: Dissection of Trends

Consider the simple example

$$\begin{aligned} x_t &= (x_{1t}, x_{2t})' \\ \Delta x_t &= \alpha \beta' x_{t-1} + \varepsilon_t \\ \beta &= (1, -1)', \end{aligned}$$

Here $\beta_{\perp} = (1, 1)'$ is the orthogonal complement to β , such that $\beta' \beta_{\perp} = 0$.

Same concept for α_{\perp} .

 $\alpha'_{\perp} \sum_{i=1}^{t} \varepsilon_i$ are stochastic trends, $\beta' x_t$ are stationary trends.

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaing Syst Slide 8/26

Consider the diffusions

$$dx_t = \Pi x_t dt + dW_t$$
$$d\tilde{x}_t = \widetilde{\Pi} \tilde{x}_t dt + d\widetilde{W}_t$$

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscill ing Syster Slide 9/26

Consider the diffusions

$$dx_t = \Pi x_t dt + dW_t$$
$$d\tilde{x}_t = \widetilde{\Pi} \tilde{x}_t dt + d\widetilde{W}_t.$$

An example from [Kessler & Rahbek, 2001] show that with

$$\Pi = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \qquad \qquad \widetilde{\Pi} = \begin{pmatrix} 0 & -2\pi/\delta \\ 2\pi/\delta & 0 \end{pmatrix},$$

then

$$\exp(\Pi\delta)=\exp(\widetilde{\Pi}\delta)=I_2,\quad\delta\in\mathbb{R}.$$

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaing Syst Slide 9/26

Consider the diffusions

$$dx_t = \Pi x_t dt + dW_t$$
$$d\tilde{x}_t = \widetilde{\Pi} \tilde{x}_t dt + d\widetilde{W}_t.$$

An example from [Kessler & Rahbek, 2001] show that with

$$\Pi = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \qquad \qquad \widetilde{\Pi} = \begin{pmatrix} 0 & -2\pi/\delta \\ 2\pi/\delta & 0 \end{pmatrix},$$

then

$$\exp(\Pi\delta) = \exp(\widetilde{\Pi}\delta) = I_2, \quad \delta \in \mathbb{R}.$$

And also that the diffusion terms for x_t and \tilde{x}_t are indistinguishable.

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring Sy Slide 9/26

Hence, the sampling frequency of the data, can affect whether we can conclude on a model with $rank(\Pi) = 0$ or $rank(\Pi) = 2$.

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillating Syst Slide 10/26

Hence, the sampling frequency of the data, can affect whether we can conclude on a model with $rank(\Pi) = 0$ or $rank(\Pi) = 2$.

However for reduced rank matrices $\Pi=\alpha\beta'$ and $\widetilde{\Pi}=ab',$ they conclude that

$$sp(\alpha) = sp(a)$$

 $sp(\beta) = sp(b).$

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaing Syst Slide 10/26

Hence, the sampling frequency of the data, can affect whether we can conclude on a model with $rank(\Pi) = 0$ or $rank(\Pi) = 2$.

However for reduced rank matrices $\Pi = \alpha \beta'$ and $\widetilde{\Pi} = ab'$, they conclude that

$$sp(\alpha) = sp(a)$$

 $sp(\beta) = sp(b).$

Thus we use *Johansens* method for determining rank(Π), then β and simultaneously provides MLE for the remaining parameters.

Oscillators

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring System Slide 11/26

Oscillators: A Definition

Assume a bivariate process $z_t = (x_t, y_t)'$, such that we observe something like this

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring Syste Slide 11/26

Oscillators: A Definition

Assume a bivariate process $z_t = (x_t, y_t)'$, such that we observe something like this

We define the *phase process* $\phi_t \in \mathbb{R}$ through the SDE

 $d\phi_t = \mu_t dt + \sigma dW_t.$

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillating Syste Slide 11/26

Oscillators: A Definition

Assume a bivariate process $z_t = (x_t, y_t)'$, such that we observe something like this

We define the *phase process* $\phi_t \in \mathbb{R}$ through the SDE

 $d\phi_t = \mu_t dt + \sigma dW_t.$

We can now define z_t as

 $x_t = \gamma_t \cos(\phi_t)$ $y_t = \gamma_t \sin(\phi_t),$

for some none-negative amplitude process $\gamma_t.$

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscilling Syste Slide 11/26

Oscillators: Multivariate Phase Process

We generalize to a system of p oscillators, with phase/amplitude-processes $\phi_t, \gamma_t \in \mathbb{R}^p$:

$$d\phi_t = (f(\phi_t) + \mu_t)dt + \Sigma dW_t, \qquad (1)$$

with $f(\phi_t) : \mathbb{R}^p \to \mathbb{R}^p$, $\mu_t \in \mathbb{R}^p$, $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_p)$ and dW_t a *p*-dimensional Wiener process.

Oscillators: Multivariate Phase Process

We generalize to a system of p oscillators, with phase/amplitude-processes $\phi_t, \gamma_t \in \mathbb{R}^p$:

$$d\phi_t = (f(\phi_t) + \mu_t)dt + \Sigma dW_t, \qquad (1)$$

with $f(\phi_t) : \mathbb{R}^p \to \mathbb{R}^p$, $\mu_t \in \mathbb{R}^p$, $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_p)$ and dW_t a *p*-dimensional Wiener process.

Compare with the Kuramoto model, a classical model of coupled phases:

$$d\phi_{it} = \left(rac{lpha_i}{p}\sum_{j=1}^p \sin(\phi_{jt}-\phi_{it})+\mu_i
ight)dt + \sigma_i dW_{it}, i=1,\ldots,p.$$

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaine Syst Slide 12/26
Oscillators: Multivariate Phase Process

We generalize to a system of p oscillators, with phase/amplitude-processes $\phi_t, \gamma_t \in \mathbb{R}^p$:

$$d\phi_t = (f(\phi_t) + \mu_t)dt + \Sigma dW_t, \qquad (1)$$

with $f(\phi_t) : \mathbb{R}^p \to \mathbb{R}^p$, $\mu_t \in \mathbb{R}^p$, $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_p)$ and dW_t a *p*-dimensional Wiener process.

Compare with the Kuramoto model, a classical model of coupled phases:

$$d\phi_{it} = \left(rac{lpha_i}{
ho}\sum_{j=1}^{
ho}\sin(\phi_{jt}-\phi_{it})+\mu_i
ight)dt + \sigma_i dW_{it}, i=1,\ldots,p.$$

• Eq. (1) covers Kuramoto!

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscilling Syste Slide 12/26

Oscillators: Multivariate Phase Process

We generalize to a system of p oscillators, with phase/amplitude-processes $\phi_t, \gamma_t \in \mathbb{R}^p$:

$$d\phi_t = (f(\phi_t) + \mu_t)dt + \Sigma dW_t, \qquad (1)$$

with $f(\phi_t) : \mathbb{R}^p \to \mathbb{R}^p$, $\mu_t \in \mathbb{R}^p$, $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_p)$ and dW_t a *p*-dimensional Wiener process.

Compare with the Kuramoto model, a classical model of coupled phases:

$$d\phi_{it} = \left(\frac{\alpha_i}{p}\sum_{j=1}^p \sin(\phi_{jt}-\phi_{it})+\mu_i\right)dt + \sigma_i dW_{it}, i=1,\ldots,p.$$

• Eq. (1) covers Kuramoto!

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaine Syst Slide 12/26

 \mathbf{r}

Oscillators: Multivariate Phase Process

We generalize to a system of p oscillators, with phase/amplitude-processes $\phi_t, \gamma_t \in \mathbb{R}^p$:

$$d\phi_t = (f(\phi_t) + \mu_t)dt + \Sigma dW_t, \qquad (1)$$

with $f(\phi_t) : \mathbb{R}^p \to \mathbb{R}^p$, $\mu_t \in \mathbb{R}^p$, $\Sigma = \text{diag}(\sigma_1, \dots, \sigma_p)$ and dW_t a *p*-dimensional Wiener process.

Compare with the Kuramoto model, a classical model of coupled phases:

$$d\phi_{it} = \left(\frac{\alpha_i}{p}\sum_{j=1}^p \sin(\phi_{jt} - \phi_{it}) + \mu_i\right)dt + \sigma_i dW_{it}, i = 1, \dots, p.$$

- Eq. (1) covers Kuramoto!
- We must restrict to a linear $f(\phi_t) = \Pi \phi_t$ for now...

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillating Syste Slide 12/26

 \mathbf{r}

(:`)

Oscillators: Multivariate Phase Process

We generalize to a system of p oscillators, with phase/amplitude-processes $\phi_t, \gamma_t \in \mathbb{R}^p$:

$$d\phi_t = (f(\phi_t) + \mu_t)dt + \Sigma dW_t, \qquad (1)$$

with $f(\phi_t) : \mathbb{R}^p \to \mathbb{R}^p$, $\mu_t \in \mathbb{R}^p$, $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_p)$ and dW_t a *p*-dimensional Wiener process.

Compare with the Kuramoto model, a classical model of coupled phases:

$$d\phi_{it} = \left(\frac{\alpha_i}{p}\sum_{j=1}^p \sin(\phi_{jt} - \phi_{it}) + \mu_i\right)dt + \sigma_i dW_{it}, i = 1, \dots, p.$$

- Eq. (1) covers Kuramoto!
- We must restrict to a linear $f(\phi_t) = \Pi \phi_t$ for now...

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillating Syste Slide 12/26

Oscillating Systems: Cointegrated Phases

So we make the following assumption

$$f(\phi_t) = \Pi \phi_t = \alpha \beta' \phi_t$$

where rank(Π) = r < p, such that $\alpha, \beta \in \mathbb{R}^{p \times r}$ have full column rank.

Oscillating Systems: Cointegrated Phases

So we make the following assumption

$$f(\phi_t) = \Pi \phi_t = \alpha \beta' \phi_t$$

where rank(Π) = r < p, such that $\alpha, \beta \in \mathbb{R}^{p \times r}$ have full column rank.

With this assumption, ϕ_t is a *cointegrated process* and we derive the data generating process

$$dz_{it} = \begin{pmatrix} \frac{-\sigma_i^2}{2} & -(g(z_t)_i + \mu_i) \\ g(z_t)_i + \mu_i & \frac{-\sigma_i^2}{2} \end{pmatrix} z_{it} dt + \begin{pmatrix} 0 & -\sigma_i \\ \sigma_i & 0 \end{pmatrix} z_{it} dW_{it} + z_{it} \frac{d\gamma_{it}}{\gamma_{it}},$$

where dW_{it} and $d\gamma_{it}$ are uni-variate processes, and

$$g(z_t) = f(\phi_t) = \alpha \beta' \phi_t$$
 is $p \times 1$

such that $g(z_t)_i$ denotes the *i*'th component of $g(z_t)$.

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillating Syste Slide 13/26

Simulation

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring System Slide 14/26

Simulation: Unwrapped phases

We solve for z_t numerically, then obtain ϕ_t as

$$\phi_{it} = \mathsf{atan2}(y_{it}, x_{it}) + 2\pi k_{it},$$

with k_{it} the number of rotations at time t for z_{it} , and $atan2(y_{it}, x_{it}) \in [0, 2\pi)$.

This way we get the *unwrapped* phases $\phi_t \in \mathbb{R}^p$.

Simulation: Models

Four different systems

$$\begin{split} \Pi_0 &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} & \Pi_1 = \begin{pmatrix} -0.5 & 0.5 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ \Pi_2 &= \begin{pmatrix} -0.5 & 0.5 & 0 \\ 0.5 & -0.5 & 0 \\ 0 & 0 & 0 \end{pmatrix} & \Pi_3 = \begin{pmatrix} -0.5 & 0.25 & 0.25 \\ 0.25 & -0.5 & 0.25 \\ 0.25 & 0.25 & -0.5 \end{pmatrix} \end{split}$$

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring System Slide 15/26

Simulation: Models

Four different systems

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillating Syster Slide 15/26 Simulation: Phases

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring System Slide 16/26

Simulation: Rank tests for rank(Π)

Johansen rank tests.

Model	H _r	Test values	<i>p</i> -value
По	<i>r</i> = 0	14.94	0.751
	$r \leq 1$	6.73	0.519
	$r \leq 2$	0.17	0.635
Π_1	<i>r</i> = 0	52.50	0.000
	$r \leq 1$	5.61	0.489
	$r \leq 2$	0.78	0.306
Π ₂	<i>r</i> = 0	64.78	0.000
	$r \leq 1$	6.57	0.305
	$r \leq 2$	0.00	0.983
П ₃	<i>r</i> = 0	77.39	0.000
	$r \leq 1$	33.24	0.000
	$r \leq 2$	0.01	0.899

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring System Slide 17/26

Simulation: Rank tests for rank(Π)

Johansen rank tests.

Model	H _r	Test values	<i>p</i> -value
По	<i>r</i> = 0	14.94	0.751
	$r \leq 1$	6.73	0.519
	$r \leq 2$	0.17	0.635
Π_1	<i>r</i> = 0	52.50	0.000
	$r \leq 1$	5.61	0.489
	$r \leq 2$	0.78	0.306
П2	<i>r</i> = 0	64.78	0.000
	$r \leq 1$	6.57	0.305
	$r \leq 2$	0.00	0.983
П ₃	<i>r</i> = 0	77.39	0.000
	$r \leq 1$	33.24	0.000
	$r \leq 2$	0.01	0.899

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring System Slide 17/26

Fitted model Π_1 with unrestricted α, β :

Para-	True	Ur	restricted α ,	β
meter	value	Estimate	Std. Error	p value
α_1	-0.5	-0.471	0.072	< 0.001
α_2	0	0.074	0.075	0.329
α_3	0	-0.121	0.077	0.117
β_1	1	1		
β_2	-1	-1.028		
β_3	0	0.031		
μ_1	6	6.321	0.214	< 0.001
μ_2	5	4.810	0.224	< 0.001
μ_{3}	5	5.209	0.230	< 0.001

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring System Slide 18/26

Fitted model Π_1 with unrestricted α, β :

Para-	True	Ur	restricted α ,	β
meter	value	Estimate	Std. Error	p value
α_1	-0.5	-0.471	0.072	< 0.001
α_2	0	0.074	0.075	0.329
α_3	0	-0.121	0.077	0.117
β_1	1	1		
β_2	-1	-1.028		
β_3	0	0.031		
μ_1	6	6.321	0.214	< 0.001
μ_2	5	4.810	0.224	< 0.001
μ_{3}	5	5.209	0.230	< 0.001

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring System Slide 18/26

Fitted model Π_1 with unrestricted α, β :

Para-	True	Unrestricted α, β		
meter	value	Estimate	Std. Error	p value
α_1	-0.5	-0.471	0.072	< 0.001
α_2	0	0.074	0.075	0.329
α_3	0	-0.121	0.077	0.117
β_1	1	1		
β_2	-1	-1.028		
β_3	0	0.031		
μ_1	6	6.321	0.214	< 0.001
μ_2	5	4.810	0.224	< 0.001
μ_{3}	5	5.209	0.230	< 0.001

$$egin{aligned} \mathcal{H}_{lpha,eta} &: & lpha = A\psi, ext{ with } A = (1,0,0)' \ & eta = B\xi, ext{ with } B = (1,-1,0)' \end{aligned}$$

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring System Slide 18/26

Fitted model Π_1 under $H_{\alpha,\beta}$ (*p*-value is 0.365):

Para-	True	Restricted α, β		
meter	value	Estimate	Std. Error	p value
α_1	-0.5	-0.469	0.072	< 0.001
α_2	0	0		
α_3	0	0		
β_1	1	1		
β_2	-1	-1		
β_3	0	0		
μ_1	6	6.066	0.180	< 0.001
μ_2	5	5.006	0.188	< 0.001
μ_{3}	5	4.886	0.193	< 0.001

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring System Slide 19/26

Fitted model Π_1 under $H_{\alpha,\beta}$ (*p*-value is 0.365):

Para-	True	Restricted α, β		
meter	value	Estimate	Std. Error	p value
α_1	-0.5	-0.469	0.072	< 0.001
α_2	0	0		
α_3	0	0		
β_1	1	1		
β_2	-1	-1		
β_3	0	0		
μ_1	6	6.066	0.180	< 0.001
μ_2	5	5.006	0.188	< 0.001
μ_{3}	5	4.886	0.193	< 0.001

Conclusion: We recover the correct uni-directional coupling structure.

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillating Syste Slide 19/26

Fitted model Π_2 with unrestricted α, β :

Para-	True	Unrestricted α, β		
meter	value	Estimate	Std. Error	p value
α_1	-0.5	-0.437	0.103	< 0.001
α_2	0.5	0.593	0.105	< 0.001
α_3	0	-0.190	0.110	0.083
β_1	1	1		
β_2	-1	-0.989		
β_3	0	-0.012		
μ_1	6	6.160	0.164	< 0.001
μ_2	5	4.777	0.167	< 0.001
μ_{3}	5	5.134	0.176	< 0.001

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring Syster Slide 20/26

Fitted model Π_2 with unrestricted α, β :

Para-	True	Unrestricted α, β		
meter	value	Estimate	Std. Error	p value
α_1	-0.5	-0.437	0.103	< 0.001
α_2	0.5	0.593	0.105	< 0.001
α_3	0	-0.190	0.110	0.083
β_1	1	1		
β_2	-1	-0.989		
β_3	0	-0.012		
μ_1	6	6.160	0.164	< 0.001
μ_2	5	4.777	0.167	< 0.001
μ_{3}	5	5.134	0.176	< 0.001

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring System Slide 20/26

Fitted model Π_2 with unrestricted α, β :

Para-	True	Unrestricted α, β		
meter	value	Estimate	Std. Error	p value
α_1	-0.5	-0.437	0.103	< 0.001
α_2	0.5	0.593	0.105	< 0.001
α_3	0	-0.190	0.110	0.083
β_1	1	1		
β_2	-1	-0.989		
β_3	0	-0.012		
μ_1	6	6.160	0.164	< 0.001
μ_2	5	4.777	0.167	< 0.001
μ_{3}	5	5.134	0.176	< 0.001

$$egin{aligned} \mathcal{H}_{lpha,eta} &: lpha = A\psi, ext{ with } A = (1,-1,0)' \ eta &= B\xi, ext{ with } B = (1,-1,0)' \end{aligned}$$

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring System Slide 20/26

Fitted model Π_2 under $H_{\alpha,\beta}$ (*p*-value is 0.187):

Para-	True	Unrestricted α, β		
meter	value	Estimate	Std. Error	p value
α_1	-0.5	-0.497	0.101	< 0.001
α_2	0.5	0.497	0.103	< 0.001
α_3	0	0		
β_1	1	1		
β_2	-1	-1		
β_3	0	0		
μ_1	6	6.129	0.144	< 0.001
μ_2	5	5.013	0.148	< 0.001
μ_{3}	5	4.886	0.155	< 0.001

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring Syster Slide 21/26

Fitted model Π_2 under $H_{\alpha,\beta}$ (*p*-value is 0.187):

Para-	True	Unrestricted α, β		
meter	value	Estimate	Std. Error	p value
α_1	-0.5	-0.497	0.101	< 0.001
α_2	0.5	0.497	0.103	< 0.001
α_3	0	0		
β_1	1	1		
β_2	-1	-1		
β_3	0	0		
μ_1	6	6.129	0.144	< 0.001
μ_2	5	5.013	0.148	< 0.001
μ_{3}	5	4.886	0.155	< 0.001

Conclusion: We recover the correct bi-directional coupling structure.

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring Syste Slide 21/26

Fitted model Π_3 with unrestricted α, β :

Para-	True	ι	Unrestricted β	
meter	value	Estimate	Std. Error	p value
α_{11}	-0.50	-0.248	0.074	0.001
α_{21}	0.25	0.374	0.064	< 0.001
α_{31}	0.25	0.184	0.076	0.015
α_{12}	0.25	0.226	0.065	0.001
α_{22}	-0.50	-0.033	0.078	0.673
α_{32}	0.25	-0.301	0.067	< 0.001
β_{11}	1	1		
β_{21}	0	-1.409		
β_{31}	-1	0.410		
β_{12}	0	-0.865		
β_{22}	1	0.344		
β_{32}	-1	1.209		
μ_1	6	6.196	0.194	< 0.001
μ_2	5	4.712	0.199	< 0.001
μ_2	5	5.152	0.204	< 0.001

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring System Slide 22/26

Fitted model Π_3 with unrestricted α, β :

Para-	True	ι	Jnrestricted β	
meter	value	Estimate	Std. Error	p value
α_{11}	-0.50	-0.248	0.074	0.001
α_{21}	0.25	0.374	0.064	< 0.001
α_{31}	0.25	0.184	0.076	0.015
α_{12}	0.25	0.226	0.065	0.001
α_{22}	-0.50	-0.033	0.078	0.673
α_{32}	0.25	-0.301	0.067	< 0.001
β_{11}	1	1		
β_{21}	0	-1.409		
β_{31}	-1	0.410		
β_{12}	0	-0.865		
β_{22}	1	0.344		
β_{32}	-1	1.209		
μ_1	6	6.196	0.194	< 0.001
μ_2	5	4.712	0.199	< 0.001
μ_2	5	5.152	0.204	< 0.001

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring System Slide 22/26

Look at the estimated $\hat{\Pi}$:

$$\hat{\Pi} = \hat{\alpha}\hat{\beta}' = \begin{pmatrix} -0.444 & 0.272 & 0.171\\ 0.346 & -0.539 & 0.193\\ 0.076 & 0.363 & -0.439 \end{pmatrix}$$

VS

$$\Pi_3 = \begin{pmatrix} -0.5 & 0.25 & 0.25 \\ 0.25 & -0.5 & 0.25 \\ 0.25 & 0.25 & -0.5 \end{pmatrix}$$

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring System Slide 23/26

Look at the estimated $\hat{\Pi}:$

$$\hat{\Pi} = \hat{\alpha}\hat{\beta}' = \begin{pmatrix} -0.444 & 0.272 & 0.171\\ 0.346 & -0.539 & 0.193\\ 0.076 & 0.363 & -0.439 \end{pmatrix}$$

VS

$$\Pi_3 = \begin{pmatrix} -0.5 & 0.25 & 0.25 \\ 0.25 & -0.5 & 0.25 \\ 0.25 & 0.25 & -0.5 \end{pmatrix}$$

•
$$\sum_{j=1}^{3} \hat{\Pi}_{ij} \approx 0.$$

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring System Slide 23/26

Look at the estimated $\hat{\Pi}$:

$$\hat{\Pi} = \hat{\alpha}\hat{\beta}' = \begin{pmatrix} -0.444 & 0.272 & 0.171\\ 0.346 & -0.539 & 0.193\\ 0.076 & 0.363 & -0.439 \end{pmatrix}$$

VS

$$\Pi_3 = \begin{pmatrix} -0.5 & 0.25 & 0.25 \\ 0.25 & -0.5 & 0.25 \\ 0.25 & 0.25 & -0.5 \end{pmatrix}$$

•
$$\sum_{j=1}^{3} \hat{\Pi}_{ij} \approx 0.$$

• Identification of α, β can be problematic...

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillating Sys Slide 23/26

Simulation: Conclusions

Cointegration analysis findings:

Model	Description	Conclusion
По	Independent	Independent oscillators.
Π_1	Uni-directional coupling	Uni-directional coupling.
Π_2	Bi-directional coupling	Bi-directional coupling, equal coupling strength.
П ₃	Fully coupled	Unclear*.

*: We cannot identify the true parameters for the model fit, but the data does admit a restriction to the true proportions of the parameter matrices.

Outlook

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring System Slide 25/26

Outlook: Challenges

• Interpret cointegration models for coupled oscillators.

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring Sys Slide 25/26

Outlook: Challenges

- Interpret cointegration models for coupled oscillators.
- Derive a non-linear cointegration mechanism to model Kuramoto.

Outlook: Challenges

- Interpret cointegration models for coupled oscillators.
- Derive a non-linear cointegration mechanism to model Kuramoto.
- Derive a framework with non-linear deterministic trends for the model.

Outlook: Piecewise Linear Cointegration

To replicate the Kuramoto model, we consider a piecewise linear approximation (in 2-dim systems).

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring Sys Slide 25/26

Outlook: Piecewise Linear Cointegration

To replicate the Kuramoto model, we consider a piecewise linear approximation (in 2-dim systems).

From a practical perspective, it is easier to approximate sin(x) for $x \in \left[-\frac{\pi}{2}, \frac{3\pi}{2}\right)$, since then

$$\sin(x) \approx \begin{cases} x & \text{for } x \le \frac{\pi}{2} \\ -x + \pi & \text{for } x > \frac{\pi}{2} \end{cases}$$

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaing Syst Slide 25/26

Outlook: Piecewise Linear Cointegration

To replicate the Kuramoto model, we consider a piecewise linear approximation (in 2-dim systems).

From a practical perspective, it is easier to approximate sin(x) for $x \in \left[-\frac{\pi}{2}, \frac{3\pi}{2}\right)$, since then

$$\sin(x) pprox egin{cases} x & ext{for } x \leq rac{\pi}{2} \ -x + \pi & ext{for } x > rac{\pi}{2} \end{cases}$$

Wrapping $\beta' \phi_t$ onto $\left[-\frac{\pi}{2}, \frac{3\pi}{2}\right)$ yields two cointegration regimes:

$$\alpha \sin(\beta' \phi_t) \approx \begin{cases} \alpha \beta' \phi_t & \text{for } \beta' \phi_t \leq \frac{\pi}{2} \\ -\alpha \beta' \phi_t + \alpha \pi & \text{for } \beta' \phi_t > \frac{\pi}{2} \end{cases}$$

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaria Syst. Slide 25/26
Outlook: Piecewise Linear Cointegration

To replicate the Kuramoto model, we consider a piecewise linear approximation (in 2-dim systems).

From a practical perspective, it is easier to approximate sin(x) for $x \in \left[-\frac{\pi}{2}, \frac{3\pi}{2}\right)$, since then

$$\sin(x) pprox egin{cases} x & ext{for } x \leq rac{\pi}{2} \ -x + \pi & ext{for } x > rac{\pi}{2} \end{cases}$$

Wrapping $\beta' \phi_t$ onto $\left[-\frac{\pi}{2}, \frac{3\pi}{2}\right)$ yields two cointegration regimes:

$$\alpha \sin(\beta' \phi_t) \approx \begin{cases} \alpha \beta' \phi_t & \text{for } \beta' \phi_t \leq \frac{\pi}{2} \\ -\alpha \beta' \phi_t + \alpha \pi & \text{for } \beta' \phi_t > \frac{\pi}{2} \end{cases}$$

This is work in progress to derive the necessary assumptions and technicalities!

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaing Syste Slide 25/26

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring System Slide 26/26

Thank you!

Jacob Østergaard

ostergaard@math.ku.dk

Jacob Østergaard Susanne Ditlevsen Anders Rahbek (University of Copenhagen.) — Cointegrated Oscillaring Syster Slide 26/26