

Eigenvalues of Semi-classical Neumann Magnetic Laplacian and comparison with Robin Laplacian

Nicolas POPOFF

IMB

Semi-classical analysis and magnetic fields, Labex Lebesgues, may 2015

[First term for general domains](#page-8-0)

- [corner domains](#page-9-0)
- [Tangent problems](#page-13-0)
- [The energy function](#page-16-0)
- [Asymptotic estimates](#page-17-0)

[More terms, more eigenvalues](#page-18-0)

- [Survey](#page-19-0)
- [The income of conical points](#page-21-0)
- **[Comparison with Robin Laplacians](#page-23-0)**

[Conclusion](#page-28-0)

The geometry:

- $\mathbf{B}:\mathbb{R}^3\mapsto\mathbb{R}^3$ a regular magnetic field.
- $\mathbf{A} : \mathbb{R}^3 \mapsto \mathbb{R}^3$ a magnetic potential satisfying curl $\mathbf{A} = \mathbf{B}$.
- Ω a simply connected subset of \mathbb{R}^3 .

Semiclassical Magnetic Laplacian:

 $H(\mathbf{A}, \Omega)[h] := (-i h \nabla - \mathbf{A})^2$ on Ω with $h > 0$.

• Magnetic Neumann boundary conditions:

$$
\mathbf{n} \cdot (-i\hbar \nabla - \mathbf{A})u = 0 \text{ on } \partial \Omega.
$$

- Associated quadratic form: $u \mapsto \int_{\Omega} |(-i\hbar \nabla \mathbf{A})u|^2 dx$.
- *H*(**A**, Ω)[*h*] is positive self-adjoint.
- If Ω is Lipschitz and bounded, the form domain is $H^1(Ω)$, and *H*(**A**, Ω)[*h*] has compact resolvent.

Gauge invariance:

- The spectrum depends only on $B = \text{curl } A$.
- $\lambda_h(\mathbf{B}, \Omega)$ the first eigenvalue.

Behavior of λ_h (**B**, Ω) when *h* goes to 0:

- The influence of the geometry of Ω and the magnetic field **B**.
- **•** The localization of the eigenfunctions associated with $\lambda_h(\mathbf{B}, \Omega)$ when *h* goes to 0.

Link with the spectrum for large magnetic fields:

 $H(\mathbf{A}, \Omega)[h] = h^2 H(\frac{\mathbf{A}}{h}, \Omega)$ avec $H(\breve{\mathbf{A}}, \Omega) := (-i\nabla - \breve{\mathbf{A}})^2$

Application to surface superconductivity.

S. FOURNAIS AND B. HELFFER. Spectral methods in surface superconductivity. *Progress in Nonlinear Differential Equations and their Applications* (2010)

Standard elementary example:

- $\Omega = \mathbb{R}^3$ et **B** = $(0, b, 0)$.
- Let ${\sf A}(x_1, x_2, x_3) := b(\frac{x_3}{2}, 0, -\frac{x_1}{2})$ satisfying curl ${\sf A} = (0, b, 0)$. $H(A, \mathbb{R}^{3})[h] = \left(-i h \partial_{x_{1}} - b \frac{x_{3}}{2}\right)$ 2 $\int_0^2 - h^2 \partial_{x_2}^2 + (-ih\partial_{x_3} + b\frac{x_1}{2})$ 2 \int^{2} sur \mathbb{R}^{3} .
- "Semiclassical" scaling :

$$
X=\frac{1}{\sqrt{h}}\,x
$$

We find

$$
H(\mathbf{A},\mathbb{R}^3)[h] \simeq hH(\mathbf{A},\mathbb{R}^3).
$$

• Valid for any conical domain.

B a scalar non-vanishing magnetic field. Let

$$
b=\inf_{x\in\Omega}|B(x)|\quad\text{and}\quad b'=\inf_{x\in\partial\Omega}|B(x)|\quad\text{with}\quad b\neq 0\,.
$$

Asymptotic expansion in dimension 2 [Lu-Pan 99], [Bonnaillie 2005]

Regular case:
$$
\lambda_h(B, \Omega) \underset{h \to 0}{\sim} h \min \left\{ b, b' \Theta_0 \right\}.
$$

 $\textsf{Polygonal case} \; : \; \; \lambda_h(B, \Omega) \underset{h \rightarrow 0}{\sim} h\, \textsf{min} \left\{ b, \; b' \Theta_0, \textsf{min} \left| B(\mathbf{v}) \right| \mu(\alpha(\mathbf{v})) \right\}$

with $\mathbf{v} \in \overline{\Omega}$ the vertices of opening $\alpha(\mathbf{v})$

- $\Theta_0 \approx 0.5901$ bottom of the spectrum of a model problem on a half-plane \mathbb{R}^2_+ (de Gennes 62).
- \bullet $\mu(\alpha) \leq \Theta_0$ bottom of the spectrum of a model problem on the infinite sector \mathcal{S}_{α} of opening α .

Magnetic fields in 3d regular domains

Let $\sigma(\theta)$ be the ground energy of the model operator $H(\mathbf{A}_{\theta}, \mathbb{R}^3_+)$) with

- $\mathbb{R}^{3}_{+} = \{ (x_{1}, x_{2}, x_{3}), \ x_{1} > 0 \}$ the model half-space.
- **curl** $\mathbf{A}_{\theta} = \mathbf{B}_{\theta} := (\sin \theta, \cos \theta, 0)$ **makes an angle** θ **with the boundary.**

Theorem [Lu–Pan 2000, Helffer-Morame, 2004]

Let Ω be a regular domain. For $x \in \partial \Omega$, let $\theta(x)$ the angle between $\partial \Omega$ and **B** at *x*.

$$
\lambda_h(\mathbf{B},\Omega) \underset{h\to 0}{\sim} h \min \left\{ \inf_{x\in \Omega} |\mathbf{B}(x)|, \inf_{x\in \partial \Omega} |\mathbf{B}(x)| \sigma(\theta(x)) \right\}
$$

- $\theta \mapsto \sigma(\theta)$ is increasing on $[0, \frac{\pi}{2}]$ with $\sigma(0) = \Theta_0$ and $\sigma(\frac{\pi}{2}) = 1$.
- Corollary: if **B** is constant, the minimum is Θ_0 and corresponds to the point of $Ω$ at which the magnetic field is tangent.

Theorem: Cuboid [Pan 02]

Let $\mathcal C$ be a cuboid. Then there exists an octant Π such that:

 $\lambda_h(\mathbf{B}, \mathcal{C}) \underset{h \to 0}{\sim} hE(\mathbf{B}, \Pi)$ with $E(\mathbf{B}, \Pi) < \Theta_0$.

Objectives of this talk:

• Find the first term of the asymptotics for general domains and understand the hierarchy of model problems:

 $\lambda_h(\mathbf{B}, \Omega) = h\mathscr{E}(\Omega, \mathbf{B}) + O(h^{\kappa})$

Find more terms in the asymptotics, study the higher eigenvalues λ_h^k and the structure of the spectrum:

$$
\lambda_h^k(\mathbf{B},\Omega)=h\mathscr{E}(\Omega,\mathbf{B})+\sum_j\gamma_{j,k}h^{\kappa_j}.
$$

Give sufficient geometrical conditions to see the influence of *k*?

• Compare with the analysis of Robin Laplacians:

$$
\begin{cases}\n-\Delta u = \lambda u \text{ on } \Omega \\
\partial_n u - \alpha u = 0 \text{ on } \partial \Omega\n\end{cases} \text{ with } \alpha \to +\infty.
$$

Plan

[Introduction](#page-1-0)

- [corner domains](#page-9-0)
- [Tangent problems](#page-13-0)
- [The energy function](#page-16-0)
- [Asymptotic estimates](#page-17-0)

[More terms, more eigenvalues](#page-18-0)

- [Survey](#page-19-0)
- [The income of conical points](#page-21-0)
- **[Comparison with Robin Laplacians](#page-23-0)**

[Conclusion](#page-28-0)

Corner domains and tangent cones in dimension 3

With each point $x \in \overline{\Omega}$ is associated its tangent cone Π_x whose section by \mathbb{S}^2 is a curvilinear polygon.

- Ω polyhedral: all the tangent cones are straight (no curvature).
- • In general corner domains: the tangent cones have curvature (unbounded). Example: circular cone.

Examples

Figure: Domains with conical points

Figure: Domains with edges

Figure: Domains with corners and edges

• For all $x \in \overline{\Omega}$ define the constant magnetic field $\mathbf{B}_x := \mathbf{B}(x)$. Choose a linear potential \mathbf{A}_x such that curl $\mathbf{A}_x = \mathbf{B}_x$.

Definition: Tangent operator

We define the tangent operator at $x \in \overline{\Omega}$ as $H(\mathbf{A}_x, \Pi_x)$.

 \bullet Scaling: $H(\mathbf{A}_x, \Pi_x)[h] \simeq hH(\mathbf{A}_x, \Pi_x)$.

Definition: Local ground energy

We define the local energy of $x \in \overline{\Omega}$ as

 $E(\mathbf{B}_x, \Pi_x)$ the ground energy of $H(\mathbf{A}_x, \Pi_x)$.

Examples with unitary magnetic field: $(|\mathbf{B}| = 1)$

- Full space: $E(\mathbf{B}, \mathbb{R}^3) = 1$.
- Half-space: $E(\mathbf{B}, \mathbb{R}^3_+) = \sigma(\theta)$ with θ the angle between **B** and $\partial \mathbb{R}^3_+$.
- • Wedges W_{α} with **B** along the edge: $E(\mathbf{B}, W_{\alpha}) = E(1, S_{\alpha}) = \mu(\alpha)$.

Tangent substructures and second energy level

Definition: Ground energy along higher singular chains

We define

$$
\mathscr{E}^*(\mathbf{B},\Pi_x):=\inf_{\Pi_x\neq\Pi_x}E(\mathbf{B},\Pi_{\mathbb{X}})
$$

where the infimum is taken over tangent substructure.

Example: Take a 3d cone C whose section has one vertex of opening α and **B** a constant unitary magnetic field.

Tangent substructures: $\sqrt{ }$ \int \mathcal{L} One wedge \mathcal{W}_α A continuous family of half-spaces Π_θ The full space \mathbb{R}^3

 θ is the angle between a half-space and **B**. Here

$$
\mathscr{E}^*(\mathbf{B}, \mathfrak{C}) = \inf (E(\mathbf{B}, \mathcal{W}_\alpha), \inf_{\theta} \sigma(\theta), 1)
$$

Interpretation of the second energy level

• In general

$$
E(\textbf{B},\Pi)\leq \mathscr{E}^*(\textbf{B},\Pi).
$$

Theorem (Essential spectrum on 3d cones) [Bonnaillie-Noël, Dauge, P. 14]

Let $\mathfrak C$ be a 3d cone and **B** a constant magnetic feld. Then

The bottom of the essential spectrum of $H(\mathbf{A}, \mathfrak{C})$ is $\mathcal{E}^*(\mathbf{B}, \mathfrak{C})$.

- Consequence: if $E(B, \mathfrak{C}) < \mathscr{E}^*(B, \mathfrak{C})$, we have an eigenfunction with exponential decay for $H(\mathbf{A}, \mathfrak{C})$.
- For wedges and half-planes, $\mathscr{E}^*(\mathbf{B}, \Pi)$ is a threshold in the spectrum. It is explicit using the function $\theta \mapsto \sigma(\theta)$.

Partition of $\overline{\Omega}$ using *strata* (interior-faces-edges-vertices) :

Ω = Ω ∪ {**f**} ∪ {**e**} ∪ {**v**}

- \bullet On Ω : $E(\mathbf{B}_x, \Pi_x) = |\mathbf{B}_x|$ is continuous.
- On a face: $E(\mathbf{B}_x, \Pi_x) = |\mathbf{B}_x| \sigma(\theta_x)$ is continuous.

Lemma [P. 13]

The function $(\mathbf{B}, \alpha) \mapsto E(\mathbf{B}, \mathcal{W}_\alpha)$ is $\frac{1}{3}$ -Hölder on $\mathbb{S}^2 \times (0, 2\pi)$.

- Define a partial order and a topology on the singular chains.
- See the local energy as a continuous and monotonous function on singular chains:

Theorem [Bonnaillie-Noël, Dauge, P. 14]

The function $x \mapsto E(\mathbf{B}_x, \Pi_x)$ is lower semi-continuous on $\overline{\Omega}$.

• Consequence: $x \mapsto E(B_x, \Pi_x)$ reaches its infimum over $\overline{\Omega}$.

Convergence in corner domains Ω

- Let **B** be a magnetic field with inf_{Q} $|\mathbf{B}| \neq 0$.
- Let $\mathscr{E}(\mathsf{B}, \Omega) := \inf_{x \in \overline{\Omega}} E(\mathsf{B}_x, \Pi_x)$.

• Lower semi-continuity and strict diamagnetic inequality: $\mathscr{E}(\mathbf{B}, \Omega) > 0$.

Theorem Bonnaillie-Noël, Dauge, P. 14]

Let Ω be a corner domain ($n = 2, 3$) and **B** be a regular magnetic field. Let **A** be an associated magnetic potential with $A \in W^{2,\infty}(\Omega)$. Then

$$
|\lambda_h(\mathbf{B},\Omega)-h\mathscr{E}(\mathbf{B},\Omega)|\leq C(\Omega)(1+\|\mathbf{A}\|_{W^{2,\infty}(\Omega)}^2)h^{\kappa},
$$

- Ω polyhedral: $\kappa = 5/4$,
- Ω general: $\kappa = 11/10$.

Proof based on

- Use of minimizer for local energies and generalized eigenfunctions.
- Recursive estimates combined with multiscale analysis.

General estimates in dimension *n*:

 $\lambda_h(\mathbf{B}, \Omega) \ge h\mathscr{E}(\mathbf{B}, \Omega) + O(h^{1+1/(3 \cdot 2^{n-1}-2)})$ and $\lim_{h \to 0}$ $\frac{\lambda_h(\mathbf{B}, \Omega)}{h} = \mathscr{E}(\mathbf{B}, \Omega).$

[Introduction](#page-1-0)

- [First term for general domains](#page-8-0)
	- [corner domains](#page-9-0)
	- [Tangent problems](#page-13-0)
	- [The energy function](#page-16-0)
	- [Asymptotic estimates](#page-17-0)

³ [More terms, more eigenvalues](#page-18-0)

- [Survey](#page-19-0)
- [The income of conical points](#page-21-0)
- **[Comparison with Robin Laplacians](#page-23-0)**

[Conclusion](#page-28-0)

Influence of the curvature in 2d

Theorem [Helffer-Morame 01]

Assume that $B=1$ and $\Omega\subset\mathbb{R}^2$ is regular, with $\kappa_{\sf max}>0$ the maximum of the curvature of the boundary. Then there exists $M_0 > 0$:

$$
\lambda_h(\mathbf{B},\Omega)=h\Theta_0-M_0\kappa_{\max}h^{3/2}+O(h^{5/3}),
$$

The eigenfunctions are localized near the points with maximal curvature.

Similar results for variable magnetic fields, see Raymond [09].

Theorem [Fournais-Helffer 06]

Assume moreover that the the curvature admits a unique non-degerate maximum, then there exists $M_1 > 0$:

$$
\lambda_h^k(\mathbf{B},\Omega) = h\Theta_0 - M_0 \kappa_{\text{max}} h^{3/2} + M_1 (2k-1) h^{7/4} + h^{15/8} \sum_{j\geq 0} \gamma_{j,n} h^{j/8}
$$

Central tool: Agmon estimates for phase-space localization of the eigenfunctions.

Theorem [Helffer-Morame 04]

Assume that **B** is constant and unitary, and that $\Omega \subset \mathbb{R}^3$ satisfies additional geometrical conditions:

 $\exists \gamma(\Omega,\mathbf{B})>0 \quad \lambda_h(\mathbf{B},\Omega)=h\Theta_0+\gamma(\Omega,\mathbf{B})h^{4/3}+O(h^{4/3+\eta}),\ \eta>0$

Theorem [P.-Raymond 13]

Assume that **B** is constant and Ω is a lens, whose opening admits a unique non degenerate maximum at **v**₀. Make some hypotheses on the tangent operator at **v**₀. Then

$$
\lambda_h^k(\mathbf{B},\Omega)=hE(\mathbf{B},\Pi_{\mathbf{v}_0})+h^{3/2}\!\!\!\sum_{j\geq 0}\gamma_{j,k}h^{j/2}
$$

Theorem [Generalization of Bonnaillie-Dauge [06]

Let $\Omega \subset \mathbb{R}^n$ ($n = 2, 3$) be a corner domain such that the local energy reaches its infimum at a corner **v** and that the corresponding energy is an isolated eigenvalue: $E(\mathbf{B_v},\Pi_{\mathbf{v}})<\mathscr{E}^*(\mathbf{B_v},\Pi_{\mathbf{v}}).$ Then there exists K and energies *E k* such that

$$
\forall 1 \leq k \leq K, \quad \lambda_h^k(\mathbf{B}, \Omega) = hE^k + h^{3/2} \sum_{j \geq 0} \gamma_{j,k} h^{j/2}, \quad E^1 = E(\mathbf{B}_v, \Pi_v).
$$

Moreove, the *K* first eigenfunctions concentrate near corners of Ω.

2d corner of opening $\alpha\colon E(1,\mathcal{S}_\alpha)=\mu(\alpha)$ and $\mathscr{E}^*(1,\mathcal{S}_\alpha)=\Theta_0.$

- $\mu(\alpha)\sim\frac{\alpha}{\sqrt{3}}$ as $\alpha\to 0$ ([Bonnaillie 04]).
- $\bullet \ \alpha \mapsto \mu(\alpha)$ increasing is still open!
- \bullet $\mu(\alpha) < \Theta_0$ iff $\alpha \in (0, \pi)$ is still open!

Challenge: Sufficient and necessary condition for a 3d cone Π. We focus on sufficient conditions.

A sufficient condition: the sharp cones

Theorem [Bonnaillie-Dauge-P.-Raymond 15]

For a planar bounded domain ω , we define Π_{ω} the 3d cone whose section along a fixed plane is ω . Define the planar moments

$$
m_p := \frac{1}{|\omega|} \int_{\omega} x_1^p x_2^{2-p} dx_1 dx_2, \quad p \in \{0, 1, 2\}
$$

and $N_\omega(\mathbf{B}) = (B_3^2 \frac{m_0 m_2 - m_1^2}{m_0 + m_2} + B_2^2 m_2 + B_1^2 m_1 - 2B_1 B_2 m_1)^{1/2}$. Then $\forall \epsilon > 0$, $E(\mathbf{B}, \Pi_{\epsilon \omega}) \leq \epsilon N_{\omega}(\mathbf{B}),$

and $\mathbf{B} \mapsto N_{\omega}(\mathbf{B})$ is a norm. Moreover, for ϵ small enough, $E(\mathbf{B}, \Pi_{\epsilon \omega})$ is a discrete eigenvalue for the operator $H(\mathbf{A}, \Pi_{\epsilon\omega})$.

Upper bound sharp for a circular cone, see [Bonnaillie-Noël Raymond 14].

Corollary: Corner concentration happens naturally for corner domain with accute vertices.

Plan

[Introduction](#page-1-0)

- [First term for general domains](#page-8-0)
	- [corner domains](#page-9-0)
	- [Tangent problems](#page-13-0)
	- [The energy function](#page-16-0)
	- [Asymptotic estimates](#page-17-0)

[More terms, more eigenvalues](#page-18-0)

- [Survey](#page-19-0)
- [The income of conical points](#page-21-0)

⁴ [Comparison with Robin Laplacians](#page-23-0)

[Conclusion](#page-28-0)

The Robin Laplacian

- The Laplacian with mixed boundary condition $\partial_n u \alpha u = 0$ on $\partial \Omega$.
- Quadratic form:

$$
u\mapsto \int_{\Omega}|\nabla u|^2-\alpha\int_{\partial\Omega}|u|^2\mathrm{d}S\quad u\in H^1(\Omega).
$$

• Let $\mu_{\alpha}(\Omega)$ the bottom of the spectrum For Ω bounded let $\mu^k_\alpha(\Omega)$ the *k*-th eigenvalue.

Recent problematics:

- Clearly $\mu_{\alpha}(\Omega) \rightarrow -\infty$ as $\alpha \rightarrow +\infty$. Find refined Asymptotics, depending on Ω. It is a semi-classical problem!
- Study the spectral gap as $\alpha \to +\infty$.

Assume that Ω is a corner domain with the uniform interior cone property. Then [Levintin-Parnovski 08]:

$$
\mu_{\alpha}(\Omega) = \alpha^2 \mathscr{E}^H(\Omega) + o(\alpha^2) \quad \text{with} \begin{cases} \mathscr{E}^H(\Omega) = \inf_{x \in \overline{\Omega}} E^H(\Pi_x), \\ E^H(\Pi_x) = \mu_1(\Pi_x) \end{cases}
$$

As for the magnetic case! But the energies may be more explicit:

$$
E^{R}(\mathbb{R}_{+}^{n}) = -1 \quad \text{and} \quad E^{R}(\mathcal{S}_{\alpha}) = \begin{cases} \n-\sin^{-2} \frac{\alpha}{2} & \text{if } \alpha \in (0, \pi] \\ \n-1 & \text{if } \alpha \in [\pi, 2\pi) \n\end{cases}
$$

For $\Omega \subset \mathbb{R}^n$ regular: $\mathscr{E}^R(\Omega) = -1$.

- Corner concentrations and tunneling effect in polygons (Hellfer Pankrashkin 14]).
- Two side estimates for the energy on cones included in a half-space ([Levintin Parnovski 08]). This involves that $E^R(\Pi_{\epsilon \omega})$ goes to $-\infty$ for sharp cones ($\epsilon \to 0$).

Let $\Omega \subset \mathbb{R}^2$ regular, then [Pankrashkin 13], [Exner Minakov Parnovski 14]:

$$
\mu_{\alpha}^k(\Omega) = -\alpha^2 - \alpha \kappa_{\text{max}} + O(\alpha^{2/3})
$$

Theorem ([Helffer Kachmar 14])

Assume that $\Omega \subset \mathbb{R}^2$ is \mathcal{C}^∞ and that the curvature κ has a unique non degenerate maximum at $s_0 \in \partial\Omega$, then for all $k \geq 1$,

$$
\mu_{\alpha}^{k}(\Omega) = \sum_{\alpha \to +\infty} -\alpha^{2} - \alpha \kappa_{\max} + (2k - 1)\sqrt{\frac{|\kappa''(\mathbf{s}_{0})|}{2}}\alpha^{1/2} + \sum_{j\geq 0} \gamma_{k,j}\alpha^{-\frac{j}{2}}
$$

Theorem [Pankrashkin P. 14]

Let $\Omega \subset \mathbb{R}^n$ be a \mathcal{C}^2 bounded domain and denote by *H* the mean curvature:

$$
\forall k \geq 1, \quad \mu_{\alpha}^k(\Omega) = -\alpha^2 - \max_{\partial \Omega} H \alpha + o(\alpha), \quad H_{\text{max}} = \max_{\partial \Omega} H.
$$

Reduction to the boundary for the regular case

Theorem [Pankrashkin P. 15]

Let $\Omega \subset \mathbb{R}^n$ be a \mathcal{C}^2 domain with compact boundary, and H the mean curvature of the boundary. Let −∆*^S* be the Laplace-Beltrami operator on ∂Ω and

 $\lambda_{\alpha}^{k}(\partial\Omega)$ the *k*-th eigenvalue of the operator $-\Delta^{S}-\alpha(n-1)H$.

Then for all $k > 1$:

$$
\mu_\alpha^k(\Omega) \underset{\alpha \to +\infty}{=} -\alpha^2 + \lambda_\alpha^k(\partial\Omega) + O(\log \alpha).
$$

Moreover, if the boundary is C^3 , the remainder is improved to $O(1)$.

• The theorem is still valid if $\partial\Omega$ is non compact, provided geometrical assumptions at infinity.

The reduced operator:

- **It is semi-classical and the mean curvature acts as a potential.**
- Three terms asymptotics in case of "mean curvature wells".

[Introduction](#page-1-0)

- [First term for general domains](#page-8-0)
	- [corner domains](#page-9-0)
	- [Tangent problems](#page-13-0)
	- [The energy function](#page-16-0)
	- [Asymptotic estimates](#page-17-0)

[More terms, more eigenvalues](#page-18-0)

- [Survey](#page-19-0)
- [The income of conical points](#page-21-0)
- **[Comparison with Robin Laplacians](#page-23-0)**

[Conclusion](#page-28-0)

Recapitulative of analogies

