Introduction	First term for general domains	More terms, more eigenvalues	Comparison with Robin Laplacians	Conclusion

Eigenvalues of Semi-classical Neumann Magnetic Laplacian and comparison with Robin Laplacian

Nicolas POPOFF

IMB

Semi-classical analysis and magnetic fields, Labex Lebesgues, may 2015

Introduction	First term for general domains	More terms, more eigenvalues	Comparison with Robin Laplacians	Conclusion

Plan

Introduction

- Pirst term for general domains
 - corner domains
 - Tangent problems
 - The energy function
 - Asymptotic estimates

More terms, more eigenvalues

- Survey
- The income of conical points
- 4 Comparison with Robin Laplacians

5 Conclusion

Introduction	First term for general domains	More terms, more eigenvalues	Comparison with Robin Laplacians	Conclusion
00000				
The ma	agnetic Laplaci	ian		

The geometry:

- $\mathbf{B}: \mathbb{R}^3 \mapsto \mathbb{R}^3$ a regular magnetic field.
- $\mathbf{A} : \mathbb{R}^3 \mapsto \mathbb{R}^3$ a magnetic potential satisfying curl $\mathbf{A} = \mathbf{B}$.
- Ω a simply connected subset of \mathbb{R}^3 .

Semiclassical Magnetic Laplacian:

 $H(\mathbf{A}, \Omega)[h] := (-ih\nabla - \mathbf{A})^2$ on Ω with h > 0.

• Magnetic Neumann boundary conditions:

$$\mathbf{n} \cdot (-i\mathbf{h}\nabla - \mathbf{A})u = 0 \text{ on } \partial\Omega.$$

- Associated quadratic form: $u \mapsto \int_{\Omega} |(-ih\nabla \mathbf{A})u|^2 dx$.
- $H(\mathbf{A}, \Omega)[h]$ is positive self-adjoint.
- If Ω is Lipschitz and bounded, the form domain is H¹(Ω), and H(A, Ω)[h] has compact resolvent.

Introduction	First term for general domains	More terms, more eigenvalues	Comparison with Robin Laplacians	Conclusion
00000				
Goals				

Gauge invariance:

- The spectrum depends only on $\mathbf{B} = \operatorname{curl} \mathbf{A}$.
- $\lambda_h(\mathbf{B},\Omega)$ the first eigenvalue.

<u>Behavior</u> of $\lambda_h(\mathbf{B}, \Omega)$ when *h* goes to 0:

- The influence of the geometry of Ω and the magnetic field ${\bf B}.$
- The localization of the eigenfunctions associated with $\lambda_h(\mathbf{B}, \Omega)$ when h goes to 0.

Link with the spectrum for large magnetic fields:

 $H(\mathbf{A},\Omega)[\mathbf{h}] = \mathbf{h}^2 H\left(\frac{\mathbf{A}}{\mathbf{h}},\Omega\right) \text{ avec } H\left(\mathbf{\breve{A}},\Omega\right) := (-i\nabla - \mathbf{\breve{A}})^2$

Application to surface superconductivity.

S. FOURNAIS AND B. HELFFER. Spectral methods in surface superconductivity. Progress in Nonlinear Differential Equations and their Applications (2010)

Introduction	First term for general domains	More terms, more eigenvalues	Comparison with Robin Laplacians	Conclusion
000000				
Natural	scaling			

Standard elementary example:

- $\Omega = \mathbb{R}^3$ et **B** = (0, *b*, 0).
- Let $\mathbf{A}(x_1, x_2, x_3) := b(\frac{x_3}{2}, 0, -\frac{x_1}{2})$ satisfying curl $\mathbf{A} = (0, b, 0)$. $H(\mathbf{A}, \mathbb{R}^3)[h] = (-ih\partial_{x_1} - b\frac{x_3}{2})^2 - h^2\partial_{x_2}^2 + (-ih\partial_{x_3} + b\frac{x_1}{2})^2$ sur \mathbb{R}^3 .
 - "Semiclassical" scaling :

$$X = \frac{1}{\sqrt{h}}x$$

We find

$$H(\mathbf{A},\mathbb{R}^3)[h]\simeq hH(\mathbf{A},\mathbb{R}^3).$$

• Valid for any conical domain.

Introduction	First term for general domains	More terms, more eigenvalues	Comparison with Robin Laplacians	Conclusion
000000				
Results	in dimension 2	2		

B a scalar non-vanishing magnetic field. Let

$$b = \inf_{x \in \Omega} |B(x)|$$
 and $b' = \inf_{x \in \partial \Omega} |B(x)|$ with $b \neq 0$.

Asymptotic expansion in dimension 2 [Lu-Pan 99], [Bonnaillie 2005]

Regular case :
$$\lambda_h(B,\Omega) \underset{h\to 0}{\sim} h\min\left\{b, b'\Theta_0\right\}$$
.

Polygonal case : $\lambda_h(B,\Omega) \underset{b\to 0}{\sim} h \min \left\{ b, b' \Theta_0, \min |B(\mathbf{v})| \mu(\alpha(\mathbf{v})) \right\}$

with $\mathbf{v} \in \overline{\Omega}$ the vertices of opening $\alpha(\mathbf{v})$

- $\Theta_0 \approx 0.5901$ bottom of the spectrum of a model problem on a half-plane \mathbb{R}^2_+ (de Gennes 62).
- μ(α) ≤ Θ₀ bottom of the spectrum of a model problem on the infinite sector S_α of opening α.

Introduction	First term for general domains	More terms, more eigenvalues Comparison with Robin Laplacians	Conclusion	
000000				

Magnetic fields in 3d regular domains

Let $\sigma(\theta)$ be the ground energy of the model operator $H(\mathbf{A}_{\theta}, \mathbb{R}^3_+)$ with

- $\mathbb{R}^3_+ = \{(x_1, x_2, x_3), x_1 > 0\}$ the model half-space.
- curl $\mathbf{A}_{\theta} = \mathbf{B}_{\theta} := (\sin \theta, \cos \theta, 0)$ makes an angle θ with the boundary.

Theorem [Lu-Pan 2000, Helffer-Morame, 2004]

Let Ω be a regular domain. For $x \in \partial \Omega$, let $\theta(x)$ the angle between $\partial \Omega$ and **B** at *x*.

$$\lambda_{h}(\mathbf{B},\Omega) \underset{h \to 0}{\sim} h \min \left\{ \inf_{x \in \Omega} |\mathbf{B}(x)|, \inf_{x \in \partial\Omega} |\mathbf{B}(x)| \, \sigma(\theta(x)) \right\}$$

- $\theta \mapsto \sigma(\theta)$ is increasing on $[0, \frac{\pi}{2}]$ with $\sigma(0) = \Theta_0$ and $\sigma(\frac{\pi}{2}) = 1$.
- Corollary: if B is constant, the minimum is Θ₀ and corresponds to the point of Ω at which the magnetic field is tangent.

Theorem: Cuboid [Pan 02]

Let C be a cuboid. Then there exists an octant Π such that:

 $\lambda_h(\mathbf{B},\mathcal{C}) \underset{h \to 0}{\sim} hE(\mathbf{B},\Pi) \quad \text{with} \quad E(\mathbf{B},\Pi) < \Theta_0 \,.$

Introduction	First term for general domains	More terms, more eigenvalues	Comparison with Robin Laplacians	Conclusion O
Objectiv	е			

Objectives of this talk:

• Find the first term of the asymptotics for general domains and understand the hierarchy of model problems:

 $\lambda_h(\mathbf{B},\Omega) = h\mathscr{E}(\Omega,\mathbf{B}) + O(h^{\kappa})$

 Find more terms in the asymptotics, study the higher eigenvalues λ^k_h and the structure of the spectrum:

$$\lambda^{k}_{h}(\mathsf{B},\Omega)=h\mathscr{E}(\Omega,\mathsf{B})+\sum_{j}\gamma_{j,k}h^{\kappa_{j}}.$$

Give sufficient geometrical conditions to see the influence of k?

• Compare with the analysis of Robin Laplacians:

$$\begin{cases} -\Delta u = \lambda u \text{ on } \Omega\\ \partial_n u - \alpha u = 0 \text{ on } \partial \Omega \end{cases} \quad \text{with } \alpha \to +\infty.$$

Introduction	First term for general domains	More terms, more eigenvalues	Comparison with Robin Laplacians	Conclusion

Plan

Introduction

Pirst term for general domains

- corner domains
- Tangent problems
- The energy function
- Asymptotic estimates

3 More terms, more eigenvalues

- Survey
- The income of conical points
- 4 Comparison with Robin Laplacians

5 Conclusion

First term	for general domains
0000	00

More terms, more eigenvalues

Comparison with Robin Laplacian

Corner domains and tangent cones in dimension 3

With each point $x \in \overline{\Omega}$ is associated its tangent cone Π_x whose section by \mathbb{S}^2 is a curvilinear polygon.

Situation of $x \in \overline{\Omega}$	Model geometry Π_x
Interior point	Space \mathbb{R}^3
Regular boundary	Half-space \mathbb{R}^3_+
Edge	Infinite wedge $\mathcal{W}_lpha:=\mathcal{S}_lpha imes\mathbb{R}$
Corner	3d cone C

- Ω polyhedral: all the tangent cones are straight (no curvature).
- In general corner domains: the tangent cones have curvature (unbounded). Example: circular cone.

Introduction	First term for general domains	More terms, more eigenvalues	Comparison with Robin Laplacians	Conclusion
	000000			

Examples

Figure: Domains with conical points

Introduction	First term for general domains	More terms, more eigenvalues	Comparison with Robin Laplacians	Conclusion
	000000			
Evample	20			
слатри	50			

Figure: Domains with edges

Introduction	First term for general domains	More terms, more eigenvalues	Comparison with Robin Laplacians	Conclusion

Figure: Domains with corners and edges

Introduction	First term for general domains	More terms, more eigenvalues	Comparison with Robin Laplacians	Conclusio
	000000			

Tangent operator and first energy level

For all x ∈ Ω define the constant magnetic field B_x := B(x). Choose a linear potential A_x such that curl A_x = B_x.

Definition: Tangent operator

We define the tangent operator at $x \in \overline{\Omega}$ as $H(\mathbf{A}_x, \Pi_x)$.

• Scaling: $H(\mathbf{A}_x, \Pi_x)[h] \simeq hH(\mathbf{A}_x, \Pi_x)$.

Definition: Local ground energy

We define the local energy of $x \in \overline{\Omega}$ as

 $E(\mathbf{B}_x, \Pi_x)$ the ground energy of $H(\mathbf{A}_x, \Pi_x)$.

Examples with unitary magnetic field: $(|\mathbf{B}| = 1)$

- Full space: $E(\mathbf{B}, \mathbb{R}^3) = 1$.
- Half-space: $E(\mathbf{B}, \mathbb{R}^3_+) = \sigma(\theta)$ with θ the angle between **B** and $\partial \mathbb{R}^3_+$.
- Wedges \mathcal{W}_{α} with **B** along the edge: $E(\mathbf{B}, \mathcal{W}_{\alpha}) = E(1, \mathcal{S}_{\alpha}) = \mu(\alpha)$.

Introduction First	First term for general domains	More terms, more eigenvalues	Comparison with Robin Laplacians	Conclusion	
	000000				
<u></u>					

Tangent substructures and second energy level

Definition: Ground energy along higher singular chains

We define

$$\mathscr{E}^*(\mathbf{B},\Pi_x) := \inf_{\Pi_{\mathbb{X}}\neq\Pi_x} E(\mathbf{B},\Pi_{\mathbb{X}})$$

where the infimum is taken over tangent substructure.

Example: Take a 3d cone \mathfrak{C} whose section has one vertex of opening α and **B** a constant unitary magnetic field.

Tangent substructures:One wedge W_{α} A continuous family of half-spaces Π_{θ} The full space \mathbb{R}^3

 $\boldsymbol{\theta}$ is the angle between a half-space and $\mathbf{B}.$ Here

$$\mathscr{E}^*(\mathbf{B},\mathfrak{C}) = \inf(E(\mathbf{B},\mathcal{W}_{\alpha}),\inf_{\theta}\sigma(\theta),1)$$

troduction	First term for general domains	More terms, more eigenvalues	Comparison with Robin Laplacians	Conclusion
	0000000			

Interpretation of the second energy level

In general

$$E(\mathbf{B},\Pi) \leq \mathscr{E}^*(\mathbf{B},\Pi).$$

Theorem (Essential spectrum on 3d cones) [Bonnaillie-Noël, Dauge, P. 14]

Let \mathfrak{C} be a 3d cone and ${\bf B}$ a constant magnetic feld. Then

The bottom of the essential spectrum of $H(\mathbf{A}, \mathfrak{C})$ is $\mathscr{E}^*(\mathbf{B}, \mathfrak{C})$.

- Consequence: if *E*(**B**, 𝔅) < 𝔅^{*}(**B**, 𝔅), we have an eigenfunction with exponential decay for *H*(**A**, 𝔅).
- For wedges and half-planes, *ε*^{*}(**B**, Π) is a threshold in the spectrum. It is explicit using the function θ → σ(θ).

Introduction	First term for general domains	More terms, more eigenvalues	Comparison with Robin Laplacians	Conclusion O
Continu	ity of the energy	αv		

Partition of $\overline{\Omega}$ using *strata* (interior-faces-edges-vertices) :

 $\overline{\Omega} = \Omega \cup \{\mathbf{f}\} \cup \{\mathbf{e}\} \cup \{\mathbf{v}\}$

- On Ω : $E(\mathbf{B}_x, \Pi_x) = |\mathbf{B}_x|$ is continuous.
- On a face: $E(\mathbf{B}_x, \Pi_x) = |\mathbf{B}_x|\sigma(\theta_x)$ is continuous.

Lemma [P. 13]

The function $(\mathbf{B}, \alpha) \mapsto E(\mathbf{B}, \mathcal{W}_{\alpha})$ is $\frac{1}{3}$ -Hölder on $\mathbb{S}^2 \times (0, 2\pi)$.

- Define a partial order and a topology on the singular chains.
- See the local energy as a continuous and monotonous function on singular chains:

Theorem [Bonnaillie-Noël, Dauge, P. 14]

The function $x \mapsto E(\mathbf{B}_x, \Pi_x)$ is lower semi-continuous on $\overline{\Omega}$.

• Consequence: $x \mapsto E(\mathbf{B}_x, \Pi_x)$ reaches its infimum over $\overline{\Omega}$.

Introduction	First term for general domains	More terms, more eigenvalues	Comparison with Robin Laplacians	Conclusion
	000000			
<u> </u>				

Convergence in corner domains Ω

- Let **B** be a magnetic field with $\inf_{\Omega} |\mathbf{B}| \neq 0$.
- Let $\mathscr{E}(\mathbf{B},\Omega) := \inf_{x\in\overline{\Omega}} E(\mathbf{B}_x,\Pi_x).$
- Lower semi-continuity and strict diamagnetic inequality:
 ^β(B, Ω) > 0.

Theorem Bonnaillie-Noël, Dauge, P. 14]

Let Ω be a corner domain (n = 2, 3) and **B** be a regular magnetic field. Let **A** be an associated magnetic potential with $\mathbf{A} \in W^{2,\infty}(\Omega)$. Then

$$|\lambda_h(\mathsf{B},\Omega) - h\mathscr{E}(\mathsf{B},\Omega)| \leq C(\Omega)(1 + \|\mathsf{A}\|^2_{W^{2,\infty}(\Omega)})h^\kappa$$

- Ω polyhedral: $\kappa = 5/4$,
- Ω general: $\kappa = 11/10$.

Proof based on

- Use of minimizer for local energies and generalized eigenfunctions.
- Recursive estimates combined with multiscale analysis.

General estimates in dimension n:

 $\lambda_h(\mathbf{B},\Omega) \geq h\mathscr{E}(\mathbf{B},\Omega) + O(h^{1+1/(3\cdot 2^{n-1}-2)}) \text{ and } \lim_{h\to 0} \frac{\lambda_h(\mathbf{B},\Omega)}{h} = \mathscr{E}(\mathbf{B},\Omega).$

Introduction	First term for general domains	More terms, more eigenvalues	Comparison with Robin Laplacians	Conclusion

Plan

Introduction

- Pirst term for general domains
 - corner domains
 - Tangent problems
 - The energy function
 - Asymptotic estimates

More terms, more eigenvalues

- Survey
- The income of conical points
- 4 Comparison with Robin Laplacians

5 Conclusion

Introduction	First term for general domains	More terms, more eigenvalues	Comparison with Robin Laplacians	Conclusion
		● 0 00		

Influence of the curvature in 2d

Theorem [Helffer-Morame 01]

Assume that B = 1 and $\Omega \subset \mathbb{R}^2$ is regular, with $\kappa_{max} > 0$ the maximum of the curvature of the boundary. Then there exists $M_0 > 0$:

$$\lambda_h(\mathbf{B},\Omega) = h\Theta_0 - M_0\kappa_{\max}h^{3/2} + O(h^{5/3}),$$

The eigenfunctions are localized near the points with maximal curvature.

Similar results for variable magnetic fields, see Raymond [09].

Theorem [Fournais-Helffer 06]

Assume moreover that the the curvature admits a unique non-degerate maximum, then there exists $M_1 > 0$:

$$\lambda_{h}^{k}(\mathbf{B},\Omega) = h\Theta_{0} - M_{0}\kappa_{\max}h^{3/2} + M_{1}(2k-1)h^{7/4} + h^{15/8}\sum_{j\geq 0}\gamma_{j,n}h^{j/8}$$

<u>Central tool:</u> Agmon estimates for phase-space localization of the eigenfunctions.

Introduction	First term for general domains	More terms, more eigenvalues	Comparison with Robin Laplacians	Conclusion
		0000		
Dimensi	on 3			

Theorem [Helffer-Morame 04]

Assume that **B** is constant and unitary, and that $\Omega \subset \mathbb{R}^3$ satisfies additional geometrical conditions:

$$\exists \gamma(\Omega, \mathbf{B}) > 0 \quad \lambda_h(\mathbf{B}, \Omega) = h \Theta_0 + \gamma(\Omega, \mathbf{B}) h^{4/3} + O(h^{4/3 + \eta}), \ \eta > 0$$

Theorem [P.-Raymond 13]

Assume that **B** is constant and Ω is a lens, whose opening admits a unique non degenerate maximum at \mathbf{v}_0 . Make some hypotheses on the tangent operator at \mathbf{v}_0 . Then

$$\lambda_h^k(\mathbf{B},\Omega) = h \mathcal{E}(\mathbf{B},\Pi_{\mathbf{v}_0}) + h^{3/2} \sum_{j\geq 0} \gamma_{j,k} h^{j/2}$$

Introduction	First term for general domains	More terms, more eigenvalues	Comparison with Robin Laplacians	Conclusion
		0000		
Corne	r concentration			

Theorem [Generalization of Bonnaillie-Dauge [06]

Let $\Omega \subset \mathbb{R}^n$ (n = 2, 3) be a corner domain such that the local energy reaches its infimum at a corner **v** and that the corresponding energy is an isolated eigenvalue: $E(\mathbf{B}_{\mathbf{v}}, \Pi_{\mathbf{v}}) < \mathscr{E}^*(\mathbf{B}_{\mathbf{v}}, \Pi_{\mathbf{v}})$. Then there exists *K* and energies E^k such that

$$\forall 1 \leq k \leq K, \quad \lambda_h^k(\mathbf{B}, \Omega) = hE^k + h^{3/2} \sum_{j \geq 0} \gamma_{j,k} h^{j/2}, \quad E^1 = E(\mathbf{B}_{\mathbf{v}}, \Pi_{\mathbf{v}}).$$

Moreove, the K first eigenfunctions concentrate near corners of Ω .

2d corner of opening α : $E(1, S_{\alpha}) = \mu(\alpha)$ and $\mathscr{E}^*(1, S_{\alpha}) = \Theta_0$.

- $\mu(\alpha) \sim \frac{\alpha}{\sqrt{3}}$ as $\alpha \to 0$ ([Bonnaillie 04]).
- $\alpha \mapsto \mu(\alpha)$ increasing is still open!
- $\mu(\alpha) < \Theta_0$ iff $\alpha \in (0, \pi)$ is still open!

<u>Challenge:</u> Sufficient and necessary condition for a 3d cone Π . We focus on sufficient conditions.

Introduction First term for general domains	More terms, more eigenvalues	Comparison with Robin Laplacians	Conclusion	
		0000		

A sufficient condition: the sharp cones

Theorem [Bonnaillie-Dauge-P.-Raymond 15]

For a planar bounded domain ω , we define Π_{ω} the 3d cone whose section along a fixed plane is ω . Define the planar moments

$$m_{p} := \frac{1}{|\omega|} \int_{\omega} x_{1}^{p} x_{2}^{2-p} \mathrm{d}x_{1} \mathrm{d}x_{2}, \quad p \in \{0, 1, 2\}$$

and
$$N_{\omega}(\mathbf{B}) = (B_3^2 \frac{m_0 m_2 - m_1^2}{m_0 + m_2} + B_2^2 m_2 + B_1^2 m_1 - 2B_1 B_2 m_1)^{1/2}$$
. Then
 $\forall \epsilon > \mathbf{0}, \quad E(\mathbf{B}, \Pi_{\epsilon \omega}) \leq \epsilon N_{\omega}(\mathbf{B}),$

and $\mathbf{B} \mapsto N_{\omega}(\mathbf{B})$ is a norm. Moreover, for ϵ small enough, $E(\mathbf{B}, \Pi_{\epsilon\omega})$ is a discrete eigenvalue for the operator $H(\mathbf{A}, \Pi_{\epsilon\omega})$.

Upper bound sharp for a circular cone, see [Bonnaillie-Noël Raymond 14].

Corollary: Corner concentration happens naturally for corner domain with accute vertices.

Introduction	First term for general domains	More terms, more eigenvalues	Comparison with Robin Laplacians	Conclusion

Plan

Introduction

- Pirst term for general domains
 - corner domains
 - Tangent problems
 - The energy function
 - Asymptotic estimates

More terms, more eigenvalues

- Survey
- The income of conical points

4 Comparison with Robin Laplacians

5 Conclusion

Introduction	First term for general domains	More terms, more eigenvalues	Comparison with Robin Laplacians	Conclusion
			●000	
The R	obin Laplacian			

The Robin Laplacian

- The Laplacian with mixed boundary condition $\partial_n u \alpha u = 0$ on $\partial \Omega$.
- Quadratic form:

$$u\mapsto \int_{\Omega}|\nabla u|^2-lpha\int_{\partial\Omega}|u|^2\mathrm{d}S\quad u\in H^1(\Omega).$$

Let μ_α(Ω) the bottom of the spectrum
 For Ω bounded let μ^k_α(Ω) the k-th eigenvalue.

Recent problematics:

- Clearly μ_α(Ω) → -∞ as α → +∞. Find refined Asymptotics, depending on Ω.
 It is a semi-classical problem!
- Study the spectral gap as $\alpha \to +\infty$.

Introduction	First term for general domains	More terms, more eigenvalues	Comparison with Robin Laplacians	Conclusion
			0000	
Corno	r domoine			

Assume that Ω is a corner domain with the uniform interior cone property. Then [Levintin-Parnovski 08]:

$$\mu_{\alpha}(\Omega) = \alpha^{2} \mathscr{E}^{R}(\Omega) + o(\alpha^{2}) \quad \text{with} \begin{cases} \mathscr{E}^{R}(\Omega) = \inf_{x \in \overline{\Omega}} E^{R}(\Pi_{x}), \\ E^{R}(\Pi_{x}) = \mu_{1}(\Pi_{x}) \end{cases}$$

As for the magnetic case! But the energies may be more explicit:

$$E^{R}(\mathbb{R}^{n}_{+}) = -1$$
 and $E^{R}(\mathcal{S}_{\alpha}) = \begin{cases} -\sin^{-2}\frac{\alpha}{2} & \text{if } \alpha \in (0,\pi] \\ -1 & \text{if } \alpha \in [\pi, 2\pi) \end{cases}$

For $\Omega \subset \mathbb{R}^n$ regular: $\mathscr{E}^R(\Omega) = -1$.

- Corner concentrations and tunneling effect in polygons ([Hellfer Pankrashkin 14]).
- Two side estimates for the energy on cones included in a half-space ([Levintin Parnovski 08]). This involves that $E^{R}(\Pi_{\epsilon\omega})$ goes to $-\infty$ for sharp cones ($\epsilon \to 0$).

1. 41	e			
			0000	
Introduction	First term for general domains	More terms, more eigenvalues	Comparison with Robin Laplacians	Conclusion

Influence of the curvature

Let $\Omega \subset \mathbb{R}^2$ regular, then [Pankrashkin 13], [Exner Minakov Parnovski 14]:

$$\mu_{\alpha}^{k}(\Omega) = -\alpha^{2} - \alpha \kappa_{\max} + O(\alpha^{2/3})$$

Theorem ([Helffer Kachmar 14])

Assume that $\Omega \subset \mathbb{R}^2$ is \mathcal{C}^{∞} and that the curvature κ has a unique non degenerate maximum at $s_0 \in \partial \Omega$, then for all $k \ge 1$,

$$\mu_{\alpha}^{k}(\Omega) = -\alpha^{2} - \alpha \kappa_{\max} + (2k-1)\sqrt{\frac{|\kappa''(s_{0})|}{2}}\alpha^{1/2} + \sum_{j>0}\gamma_{k,j}\alpha^{-\frac{j}{2}}$$

Theorem [Pankrashkin P. 14]

Let $\Omega \subset \mathbb{R}^n$ be a C^2 bounded domain and denote by *H* the mean curvature:

$$\forall k \geq 1, \quad \mu_{\alpha}^{k}(\Omega) = -\alpha^{2} - \max_{\partial \Omega} H \alpha + o(\alpha), \quad H_{\max} = \max_{\partial \Omega} H.$$

Introduction	First term for general domains	More terms, more eigenvalues	Comparison with Robin Laplacians	Conclusion
000000			0000	

Reduction to the boundary for the regular case

Theorem [Pankrashkin P. 15]

Let $\Omega \subset \mathbb{R}^n$ be a \mathcal{C}^2 domain with compact boundary, and *H* the mean curvature of the boundary. Let $-\Delta^S$ be the Laplace-Beltrami operator on $\partial\Omega$ and

 $\lambda_{\alpha}^{k}(\partial\Omega)$ the *k*-th eigenvalue of the operator $-\Delta^{S} - \alpha(n-1)H$.

Then for all $k \ge 1$:

$$\mu_{\alpha}^{k}(\Omega) \underset{\alpha \to +\infty}{=} -\alpha^{2} + \lambda_{\alpha}^{k}(\partial \Omega) + O(\log \alpha).$$

Moreover, if the boundary is C^3 , the remainder is improved to O(1).

 The theorem is still valid if ∂Ω is non compact, provided geometrical assumptions at infinity.

The reduced operator:

- It is semi-classical and the mean curvature acts as a potential.
- Three terms asymptotics in case of "mean curvature wells".

Introduction	First term for general domains	More terms, more eigenvalues	Comparison with Robin Laplacians	Conclusion

Plan

1 Introduction

- Pirst term for general domains
 - corner domains
 - Tangent problems
 - The energy function
 - Asymptotic estimates

More terms, more eigenvalues

- Survey
- The income of conical points
- 4 Comparison with Robin Laplacians

5 Conclusion

Introduction	First term for general domains	More terms, more eigenvalues	Comparison with Robin Laplacians	Conclusion
				•

Recapitulative of analogies

	Magnetic Laplacian $h \rightarrow 0$	Robin Laplacian $lpha ightarrow \infty$
Equivalent for corner domains	$\lambda_h(\mathbf{B},\Omega) \sim h\mathscr{E}(\mathbf{B},\Omega)$ With remainder if $n \leq 3$	$\mu_{lpha}(\Omega)\sim lpha^2 \mathscr{E}^{R}(\Omega)$
Regularity of local energies	Continuity on strata Global semi-continuity	?
Discrete spectrum for sharp cones \mathfrak{C}_ϵ	Valid for $n = 2, 3$ $E(\mathfrak{C}_{\epsilon}, \mathbf{B}) ightarrow 0$ as $\epsilon ightarrow 0$	Valid for all n $E^{R}(\mathfrak{C}_{\epsilon}) ightarrow -\infty$ as $\epsilon ightarrow 0$
Influence of the curvature in regular cases	Localization in (magnetic) curvature wells ($n \le 3$)	Localization in mean curvature wells
Global Reduction to the boundary in regular case	?	Effective Hamiltonan: $-\alpha^2 - \Delta^S - \alpha(n-1)H$