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The magnetic Laplacian

The geometry:

B : R3 7→ R3 a regular magnetic field.

A : R3 7→ R3 a magnetic potential satisfying curl A = B.

Ω a simply connected subset of R3.

Semiclassical Magnetic Laplacian:

H(A,Ω)[h] := (−ih∇− A)2 on Ω with h > 0.

Magnetic Neumann boundary conditions:

n · (−ih∇− A)u = 0 on ∂Ω.

Associated quadratic form: u 7→
∫

Ω
|(−ih∇− A)u|2dx .

H(A,Ω)[h] is positive self-adjoint.

If Ω is Lipschitz and bounded, the form domain is H1(Ω), and
H(A,Ω)[h] has compact resolvent.
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Goals

Gauge invariance:

The spectrum depends only on B = curl A.

λh(B,Ω) the first eigenvalue.

Behavior of λh(B,Ω) when h goes to 0:

The influence of the geometry of Ω and the magnetic field B.

The localization of the eigenfunctions associated with λh(B,Ω) when
h goes to 0.

Link with the spectrum for large magnetic fields:

H(A,Ω)[h] = h2H
(

A
h ,Ω

)
avec H

(
Ă,Ω

)
:= (−i∇− Ă)2

Application to surface superconductivity.

S. FOURNAIS AND B. HELFFER.
Spectral methods in surface superconductivity.
Progress in Nonlinear Differential Equations and their Applications
(2010)
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Natural scaling

Standard elementary example:

Ω = R3 et B = (0, b, 0).

Let A(x1, x2, x3) := b( x3
2 , 0,−

x1
2 ) satisfying curl A = (0, b, 0).

H(A,R3)[h] =
(
−ih∂x1 − b

x3

2

)2
− h2∂2

x2
+
(
−ih∂x3 + b

x1

2

)2
sur R3 .

“Semiclassical” scaling :

X =
1√
h

x

We find
H(A,R3)[h] ' hH(A,R3) .

Valid for any conical domain.



Introduction First term for general domains More terms, more eigenvalues Comparison with Robin Laplacians Conclusion

Results in dimension 2

B a scalar non-vanishing magnetic field. Let

b = inf
x∈Ω
|B(x)| and b′ = inf

x∈∂Ω
|B(x)| with b 6= 0 .

Asymptotic expansion in dimension 2 [Lu-Pan 99], [Bonnaillie 2005]

Regular case : λh(B,Ω) ∼
h→0

h min
{

b, b′Θ0

}
.

Polygonal case : λh(B,Ω) ∼
h→0

h min
{

b, b′Θ0,min
v
|B(v)|µ(α(v))

}
with v ∈ Ω the vertices of opening α(v)

Θ0 ≈ 0.5901 bottom of the spectrum of a model problem on a
half-plane R2

+ (de Gennes 62).

µ(α) ≤ Θ0 bottom of the spectrum of a model problem on the infinite
sector Sα of opening α.
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Magnetic fields in 3d regular domains

Let σ(θ) be the ground energy of the model operator H(Aθ,R3
+)) with

R3
+ = {(x1, x2, x3), x1 > 0} the model half-space.

curl Aθ = Bθ := (sin θ, cos θ, 0) makes an angle θ with the boundary.

Theorem [Lu–Pan 2000, Helffer-Morame, 2004]

Let Ω be a regular domain. For x ∈ ∂Ω, let θ(x) the angle between ∂Ω and
B at x .

λh(B,Ω) ∼
h→0

h min
{

inf
x∈Ω
|B(x)|, inf

x∈∂Ω
|B(x)|σ(θ(x))

}
θ 7→ σ(θ) is increasing on [0, π2 ] with σ(0) = Θ0 and σ(π2 ) = 1.
Corollary: if B is constant, the minimum is Θ0 and corresponds to the
point of Ω at which the magnetic field is tangent.

Theorem: Cuboid [Pan 02]

Let C be a cuboid. Then there exists an octant Π such that:

λh(B, C) ∼
h→0

hE(B,Π) with E(B,Π) < Θ0 .
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Objective

Objectives of this talk:

Find the first term of the asymptotics for general domains and
understand the hierarchy of model problems:

λh(B,Ω) = hE (Ω,B) + O(hκ)

Find more terms in the asymptotics, study the higher eigenvalues λk
h

and the structure of the spectrum:

λk
h(B,Ω) = hE (Ω,B) +

∑
j

γj,k hκj .

Give sufficient geometrical conditions to see the influence of k?

Compare with the analysis of Robin Laplacians:{
−∆u = λu on Ω

∂nu − αu = 0 on ∂Ω
with α→ +∞.



Introduction First term for general domains More terms, more eigenvalues Comparison with Robin Laplacians Conclusion

Plan

1 Introduction

2 First term for general domains
corner domains
Tangent problems
The energy function
Asymptotic estimates

3 More terms, more eigenvalues
Survey
The income of conical points

4 Comparison with Robin Laplacians

5 Conclusion



Introduction First term for general domains More terms, more eigenvalues Comparison with Robin Laplacians Conclusion

Corner domains and tangent cones in dimension 3

With each point x ∈ Ω is associated its tangent cone Πx whose section by
S2 is a curvilinear polygon.

Situation of x ∈ Ω Model geometry Πx

Interior point Space R3

Regular boundary Half-space R3
+

Edge Infinite wedge Wα := Sα × R

Corner 3d cone C

Ω polyhedral: all the tangent cones are straight (no curvature).

In general corner domains: the tangent cones have curvature
(unbounded). Example: circular cone.
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Examples

Figure: Domains with conical points
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Examples

Figure: Domains with edges
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Examples

Figure: Domains with corners and edges
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Tangent operator and first energy level

For all x ∈ Ω define the constant magnetic field Bx := B(x). Choose
a linear potential Ax such that curl Ax = Bx .

Definition: Tangent operator

We define the tangent operator at x ∈ Ω as H(Ax ,Πx ).

Scaling: H(Ax ,Πx )[h] ' hH(Ax ,Πx ).

Definition: Local ground energy

We define the local energy of x ∈ Ω as

E(Bx ,Πx ) the ground energy of H(Ax ,Πx ) .

Examples with unitary magnetic field: (|B| = 1)

Full space: E(B,R3) = 1.

Half-space: E(B,R3
+) = σ(θ) with θ the angle between B and ∂R3

+.

WedgesWα with B along the edge: E(B,Wα) = E(1,Sα) = µ(α).
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Tangent substructures and second energy level

Definition: Ground energy along higher singular chains

We define
E ∗(B,Πx ) := inf

ΠX 6=Πx

E(B,ΠX)

where the infimum is taken over tangent substructure.

Example: Take a 3d cone C whose section has one vertex of opening α
and B a constant unitary magnetic field.

Tangent substructures:


One wedgeWα

A continuous family of half-spaces Πθ

The full space R3

θ is the angle between a half-space and B. Here

E ∗(B,C) = inf(E(B,Wα), inf
θ
σ(θ), 1)
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Interpretation of the second energy level

In general
E(B,Π) ≤ E ∗(B,Π).

Theorem (Essential spectrum on 3d cones) [Bonnaillie-Noël, Dauge, P. 14]

Let C be a 3d cone and B a constant magnetic feld. Then

The bottom of the essential spectrum of H(A,C) is E ∗(B,C) .

Consequence: if E(B,C) < E ∗(B,C), we have an eigenfunction with
exponential decay for H(A,C).

For wedges and half-planes, E ∗(B,Π) is a threshold in the spectrum.
It is explicit using the function θ 7→ σ(θ).
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Continuity of the energy

Partition of Ω using strata (interior-faces-edges-vertices) :

Ω = Ω ∪ {f} ∪ {e} ∪ {v}

On Ω: E(Bx ,Πx ) = |Bx | is continuous.
On a face: E(Bx ,Πx ) = |Bx |σ(θx ) is continuous.

Lemma [P. 13]

The function (B, α) 7→ E(B,Wα) is 1
3 -Hölder on S2 × (0, 2π).

Define a partial order and a topology on the singular chains.
See the local energy as a continuous and monotonous function on
singular chains:

Theorem [Bonnaillie-Noël, Dauge, P. 14]

The function x 7→ E(Bx ,Πx ) is lower semi-continuous on Ω.

Consequence: x 7→ E(Bx ,Πx ) reaches its infimum over Ω.
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Convergence in corner domains Ω

Let B be a magnetic field with infΩ |B| 6= 0.

Let E (B,Ω) := infx∈Ω E(Bx ,Πx ) .

Lower semi-continuity and strict diamagnetic inequality: E (B,Ω) > 0.

Theorem Bonnaillie-Noël, Dauge, P. 14]

Let Ω be a corner domain (n = 2, 3) and B be a regular magnetic field. Let
A be an associated magnetic potential with A ∈ W 2,∞(Ω). Then

|λh(B,Ω)− hE (B,Ω)| ≤ C(Ω)(1 + ‖A‖2
W 2,∞(Ω))hκ,

Ω polyhedral: κ = 5/4,

Ω general: κ = 11/10.

Proof based on
Use of minimizer for local energies and generalized eigenfunctions.
Recursive estimates combined with multiscale analysis.

General estimates in dimension n:

λh(B,Ω) ≥ hE (B,Ω) + O(h1+1/(3·2n−1−2)) and lim
h→0

λh(B,Ω)
h = E (B,Ω).
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Influence of the curvature in 2d

Theorem [Helffer-Morame 01]

Assume that B = 1 and Ω ⊂ R2 is regular, with κmax > 0 the maximum of
the curvature of the boundary. Then there exists M0 > 0:

λh(B,Ω) = hΘ0−M0κmaxh3/2 + O(h5/3),

The eigenfunctions are localized near the points with maximal curvature.

Similar results for variable magnetic fields, see Raymond [09].

Theorem [Fournais-Helffer 06]

Assume moreover that the the curvature admits a unique non-degerate
maximum, then there exists M1 > 0:

λk
h(B,Ω) = hΘ0 −M0κmaxh3/2 + M1(2k − 1)h7/4 + h15/8

∑
j≥0

γj,nhj/8

Central tool: Agmon estimates for phase-space localization of the
eigenfunctions.
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Dimension 3

Theorem [Helffer-Morame 04]

Assume that B is constant and unitary, and that Ω ⊂ R3 satisfies additional
geometrical conditions:

∃γ(Ω,B) > 0 λh(B,Ω) = hΘ0 + γ(Ω,B)h4/3 + O(h4/3+η), η > 0

Theorem [P.-Raymond 13]

Assume that B is constant and Ω is a lens, whose opening admits a unique
non degenerate maximum at v0. Make some hypotheses on the tangent
operator at v0. Then

λk
h(B,Ω) = hE(B,Πv0 ) + h3/2

∑
j≥0

γj,k hj/2
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Corner concentration

Theorem [Generalization of Bonnaillie-Dauge [06]

Let Ω ⊂ Rn (n = 2, 3) be a corner domain such that the local energy
reaches its infimum at a corner v and that the corresponding energy is an
isolated eigenvalue: E(Bv,Πv) < E ∗(Bv,Πv). Then there exists K and
energies Ek such that

∀1 ≤ k ≤ K , λk
h(B,Ω) = hEk + h3/2

∑
j≥0

γj,k hj/2, E1 = E(Bv,Πv).

Moreove, the K first eigenfunctions concentrate near corners of Ω.

2d corner of opening α: E(1,Sα) = µ(α) and E ∗(1,Sα) = Θ0.

µ(α) ∼ α√
3

as α→ 0 ([Bonnaillie 04]).

α 7→ µ(α) increasing is still open!

µ(α) < Θ0 iff α ∈ (0, π) is still open!

Challenge: Sufficient and necessary condition for a 3d cone Π. We focus
on sufficient conditions.
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A sufficient condition: the sharp cones

Theorem [Bonnaillie-Dauge-P.-Raymond 15]

For a planar bounded domain ω, we define Πω the 3d cone whose section
along a fixed plane is ω. Define the planar moments

mp :=
1
|ω|

∫
ω

xp
1 x2−p

2 dx1dx2, p ∈ {0, 1, 2}

and Nω(B) = (B2
3

m0m2−m2
1

m0+m2
+ B2

2m2 + B2
1m1 − 2B1B2m1)1/2. Then

∀ε > 0, E(B,Πεω) ≤εNω(B),

and B 7→ Nω(B) is a norm. Moreover, for ε small enough, E(B,Πεω) is a
discrete eigenvalue for the operator H(A,Πεω).

Upper bound sharp for a circular cone, see [Bonnaillie-Noël Raymond 14].

Corollary: Corner concentration happens naturally for corner domain with
accute vertices.
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The Robin Laplacian

The Robin Laplacian

The Laplacian with mixed boundary condition ∂nu − αu = 0 on ∂Ω.

Quadratic form:

u 7→
∫

Ω

|∇u|2 − α
∫
∂Ω

|u|2dS u ∈ H1(Ω).

Let µα(Ω) the bottom of the spectrum
For Ω bounded let µk

α(Ω) the k -th eigenvalue.

Recent problematics:

Clearly µα(Ω)→ −∞ as α→ +∞. Find refined Asymptotics,
depending on Ω.
It is a semi-classical problem!

Study the spectral gap as α→ +∞.
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Corner domains

Assume that Ω is a corner domain with the uniform interior cone property.
Then [Levintin-Parnovski 08]:

µα(Ω) = α2E R(Ω)+o(α2) with

E R(Ω) = inf
x∈Ω

ER(Πx ),

ER(Πx ) = µ1(Πx )

As for the magnetic case! But the energies may be more explicit:

ER(Rn
+) = −1 and ER(Sα) =

{
− sin−2 α

2 if α ∈ (0, π]

− 1 if α ∈ [π, 2π)

For Ω ⊂ Rn regular: E R(Ω) = −1.

Corner concentrations and tunneling effect in polygons ([Hellfer
Pankrashkin 14]).

Two side estimates for the energy on cones included in a half-space
([Levintin Parnovski 08]).
This involves that ER(Πεω) goes to −∞ for sharp cones (ε→ 0).
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Influence of the curvature

Let Ω ⊂ R2 regular, then [Pankrashkin 13], [Exner Minakov Parnovski 14]:

µk
α(Ω) = −α2 − ακmax + O(α2/3)

Theorem ([Helffer Kachmar 14])

Assume that Ω ⊂ R2 is C∞ and that the curvature κ has a unique non
degenerate maximum at s0 ∈ ∂Ω, then for all k ≥ 1,

µk
α(Ω) =

α→+∞
−α2 − ακmax + (2k − 1)

√
|κ′′(s0)|

2 α1/2 +
∑
j≥0

γk,jα
− j

2

Theorem [Pankrashkin P. 14]

Let Ω ⊂ Rn be a C2 bounded domain and denote by H the mean curvature:

∀k ≥ 1, µk
α(Ω) = −α2 −max

∂Ω
H α + o(α), Hmax = max

∂Ω
H.
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Reduction to the boundary for the regular case

Theorem [Pankrashkin P. 15]

Let Ω ⊂ Rn be a C2 domain with compact boundary, and H the mean
curvature of the boundary. Let −∆S be the Laplace-Beltrami operator on
∂Ω and

λk
α(∂Ω) the k -th eigenvalue of the operator −∆S − α(n − 1)H.

Then for all k ≥ 1:

µk
α(Ω) =

α→+∞
−α2 + λk

α(∂Ω) + O(logα).

Moreover, if the boundary is C3, the remainder is improved to O(1).

The theorem is still valid if ∂Ω is non compact, provided geometrical
assumptions at infinity.

The reduced operator:
It is semi-classical and the mean curvature acts as a potential.
Three terms asymptotics in case of “mean curvature wells”.
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Recapitulative of analogies

Magnetic Laplacian
h→ 0

Robin Laplacian
α→∞

Equivalent for corner
domains

λh(B,Ω) ∼ hE (B,Ω)
With remainder if n ≤ 3

µα(Ω) ∼ α2E R(Ω)

Regularity of local
energies

Continuity on strata
Global semi-continuity

?

Discrete spectrum for
sharp cones Cε

Valid for n = 2, 3
E(Cε,B)→ 0 as ε→ 0

Valid for all n
ER(Cε)→ −∞ as ε→ 0

Influence of the curvature
in regular cases

Localization in (magnetic)
curvature wells (n ≤ 3)

Localization in mean
curvature wells

Global Reduction to the
boundary in regular case

? Effective Hamiltonan:
−α2 −∆S − α(n − 1)H
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