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Introduction

The purpose of my talk is to present how the magnetic ΨDO calculus
developed in collaboration with Viorel Iftimie and Marius Măntoiu, and its
equivalent version of magnetic integral kernels developed by Horia Cornean
and Gheorghe Nenciu allow to obtain a large number of general results
concerning the so-called Peierls-Onsager substitution procedure for a
periodic quantum system in a magnetic field that is not supposed to vanish
at infinity. For the moment we consider only the isolated band situation.
The main features of our analysis are that:

all the formulae and procedures are explicitly gauge covariant;

no adiabatic hypothesis is needed;

no decay at infinity is needed for the magnetic field;

we work only with absolutely convergent expansions and not with
asymptotic ones.
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The framework

The framework

The configuration space: X := Rn with a fixed algebraic basis
{e1, . . . , ed}.
The lattice Γ := ⊕d

j=1Zej , with {e1, . . . , ed} an algebraic basis of X .

It is isomorphic to Zd .

The quotient group X/Γ that is canonically isomorphic to the
d-dimensional torus Td ≡ T.

The elementary cell

E =
{
y =

d∑
j=1

tjej ∈ X | −(1/2) ≤ tj < (1/2), ∀j ∈ {1, . . . , d}
}

.
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The framework

The framework

The dual space X ∗ with the duality map < ., . >: X ∗ ×X → R.

The phase space: Ξ := TT∗X ∼= X × X ∗ with the canonical
symplectic form σ◦

(
(x , ξ), (y , η)

)
:=< ξ, y > − < η, x >.

The dual basis {e∗1 , . . . , e∗d} ⊂ X ∗ defined by < e∗j , ek >= (2π)δjk .

The dual lattice defined as
Γ∗ := {γ∗ ∈ X ∗ |< γ∗, γ >∈ (2π)Z, ∀γ ∈ Γ}.
The dual cell (the Brillouin region):

E∗ =
{
ξ =

d∑
j=1

tje
∗
j ∈ X | −(1/2) ≤ tj < (1/2), ∀j ∈ {1, . . . , d}

}
.
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The framework

The Weyl quantization

The Weyl system

Two strongly continuous unitary representations on H := L2(X ):

X 3 x 7→ U(x) ∈ U(H), [U(x)f ](y) := f (y − x)
X ′ 3 ξ 7→ V (ξ) ∈ U(H), [V (ξ)f ](y) := e−i<ξ,y>f (y)

satisfying the Weyl commutation relations:

U(x)V (ξ) = e i<ξ,x> V (ξ)U(x), x ∈ X , ξ ∈ X ′.

We define
W (x , ξ) := e(i/2)<ξ,x>U(−x)V (ξ).
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The framework

The Weyl quantization - 2

The Weyl operators

Op(φ) := (2π)−d
∫

Ξ
[F−Ξ φ](X )W (X ) dX ∈ B(H)

with [F−Ξ φ](X ) := (2π)−d
∫

Ξ e iσ
◦(X ,Y )φ(Y ) dY .

Explicitly we have

[Op(φ)f ](x) =

∫
X
dz

∫
X ′

dζ e i<ζ,(x−z)>φ

(
x + z

2
, ζ

)
f (z)
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The framework

Hypothesis

For m ∈ R, ρ ∈ [0, 1]
we denote by Sm

ρ (X )Γ the subspace of Γ-periodic symbols in Sm
ρ (X ).

Hypothesis I

We fix some classic Hamiltonian h ∈ Sm
1 (X )Γ with m > 0, elliptic and real.

Theorem

The operator Op(h) is essentially self-adjoint and its closure H is lower
semi-bounded and has the domain

Hm(X ) :=
{
u ∈ L2(X ) | (1l−∆)m/2u ∈ L2(X )

}
.
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The framework

The Bloch-Floquet representation

We consider the linear space

F :=
{
F̂ ∈ L2

loc(X × X ∗) | τγ F̂ = σ−γ F̂ ∀γ ∈ Γ, τγ∗ F̂ = F̂ ∀γ∗ ∈ Γ∗
}

(σγ(ξ) := e−i<ξ,x>, [τγf ](x) := f (x + γ))

with the Hilbertian norm∥∥∥F̂∥∥∥2
:=

∫
E

∫
E∗

∣∣∣F̂ (x , ξ)
∣∣∣2 dξ dx

and the the Bloch-Floquet unitary map

UΓ : L2(X )→ F ,
(
UΓf

)
(x , ξ) =

∑
γ∈Γ

σγ(ξ)f (x + γ)

with its inverse having the explicit form(
U −1

Γ F̂
)

(x0 + γ) = |T∗|−1
∫
T∗
σγ(θ)F̂ (x0, θ)dθ.
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The framework

The Bloch-Floquet representation - 2

We define for any θ ∈ T∗

Fθ :=
{
f ∈ L2

loc(X ) | τγf
}

with the Hilbertian norm ‖f ‖2
Fθ

=
∫
E |f (x)|2dx . Then

F ∼=
∫ ⊕
T∗

Fθ dθ; UΓOp(h)U −1
Γ =

∫ ⊕
T∗

Op(h)|Fθ
dθ.

Theorem

The operator Op(h)|Fθ
is essentially self-adjoint and its closure Ĥ(θ) is

lower semi-bounded, has domain

Fm
θ :=

{
f ∈ Fθ | (1l−∆)m/2f ∈ Fθ

}
and a compact resolvent.
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The framework

The Bloch structure of the spectrum

There exist a family of continuous functions

T∗ 3 θ 7→ λj(θ) ∈ R, ∀j ∈ N∗

such that λj(θ) ≤ λj+1(θ) for any j ∈ N∗ and any θ ∈ T∗ and

σ
(
Ĥ(θ)

)
= ∪

j∈N∗
{λj(θ)}.

Each λj is smooth on any region of constant multiplicity.

There exist a family of measurable functions

T∗ 3 θ 7→ φj(θ) ∈ Fθ, ∀j ∈ N∗

such that Ĥ(θ)φj(θ) = λj(θ)φj(θ) for any j ∈ N∗ and any θ ∈ T∗.
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The isolated spectral band
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The isolated spectral band

The Hypothesis II

There exists a compact interval I ⊂ R such that

σ(H) ∩ I =: σI (H) 6= ∅,
dist(I , σ(H) \ σI (H)) =: d0 > 0.

Then we denote by σ∞(H) := σ(H) \ σI (H) and notice that there exist
j0 ∈ N∗ and N ∈ N∗ such that

σI (H) = ∪
1≤j≤N

{λj0+j

(
T∗
)
}.

We denote by JI := {j0 + 1, . . . , j0 + N} and by F I
θ := Lin{φj(θ), j ∈ JI},

F I :=

∫ ⊕
T∗

F I
θdθ,

◦
πj := U −1

Γ

(∫ ⊕
T∗
|φj(θ)〉〈φj(θ)|dθ

)
UΓ, ∀j ∈ JI .
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The isolated spectral band

The ’band dynamics’

The following equalities are evident:

1 [H,
◦
πj ] = 0, ∀j ∈ JI ,

2 HEI (H) =
∑
j∈JI

Op(λj)
◦
πj

where each λj is considered as a periodic function of the momenta
ξ ∈ X ∗.

Unfortunately, while

T∗ 3 θ 7→
∑
j∈JI

|φj(θ)〉〈φj(θ)| ∈ B
(
F
)

is a smooth rank N projection valued function on the torus,
for each j ∈ JI the map

T∗ 3 θ 7→ |φj(θ)〉〈φj(θ)| ∈ B
(
F
)

may be rather singular.
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The isolated spectral band

The Wannier basis

Hypothesis III

Under Hypothesis II above, there exist N smooth functions

T∗ 3 θ 7→ ψj(θ) ∈ F I
θ , ∀j ∈ N∗

that form an orthonormal basis in F I
θ .

For j ∈ JI we denote by wj := UΓ

(∫ ⊕
T∗ ψj(θ)dθ

)
∈ L2(X ).

Then

1 {Wγ,j := τγwj}(γ,j)∈Γ×JI is an orthonormal basis in HI := U −1
Γ F I ,

2 ∀m ∈ N, sup
x∈X

< x − γ >m |Wγ,j(x)| <∞, ∀γ ∈ Γ.
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The isolated spectral band

The reduced Hamiltonian

Definition

Under Hypothesis III above we define the N × N matrix valued function

T∗ 3 θ 7→ µ(θ) ∈MN,N(C), µjk(θ) := 〈ψj(θ),Hψk(θ)〉Fθ

If Hypothesis I, II and III are true, the following statements are evident:

1 〈Wα,j ,HWβ,k〉L2(X ) = µ̂jk(α− β) := |E∗|−1
∫
T∗ e

−i<θ,α−β>µjk(θ)dθ,

2 the band Hamiltonian HEI (H) is unitary equivalent with the following
Γ-translation invariant matrix valued operator acting on l2(Γ)⊗ CN :(

M(h)α,β
)
jk

:= µ̂jk(α− β).
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The isolated spectral band

Conclusion

[H,
◦
πj ] = 0,

HEI (H) =
∑
j∈JI

Op(λj)
◦
πj ,

〈Wα,j ,HWβ,k〉L2(X ) = µ̂jk(α− β).
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The isolated spectral band in a magnetic field

The isolated spectral band in a magnetic field
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The isolated spectral band in a magnetic field

The magnetic field

The magnetic field is described by a closed 2-form B on X :

B : X → X ∧ X , dB = 0.

To B we may associate in a highly non-unique way a vector potential,
i.e. a 1-form A such that B = dA.

Gauge transformations: A 7→ A′ = A + dΦ; so that B = dA = dA′.

Using the transversal gauge we can define a vector potential Aε such
that Bε = dAε:

Aε,j(x) := −
∑

1≤k≤d
xk

∫ 1

0
Bε,jk(sx)sds.
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The isolated spectral band in a magnetic field

Hypothesis on the magnetic field

Hypothesis IV

We consider a magnetic field of the form Bε := ε
◦
Bε with ε ∈ [0, ε0] for

some small enough ε0 > 0 and with a family of magnetic fields {
◦
Bε}ε∈[0,ε0]

having components in a bounded subset of BC∞(X )

(we implicitly assume that d
◦
Bε = 0 for any ε ∈ [0, ε0]).

We shall fix a family of vector potentials {
◦
Aε}ε∈[0,ε0] having components in

a bounded subset of C∞pol(X ) such that
◦
Bε = d

◦
Aε;

then Bε = dAε for Aε := ε
◦
Aε.

We emphasize that all our constructions will be explicitly gauge covariant.
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The isolated spectral band in a magnetic field

The magnetic Pseudodifferential Calculus

Definition

For any Schwartz test function Φ ∈ S (Ξ) the following oscillating integral
defines a continuous linear operator in S (X ):

(
OpA(Φ)f

)
(x) := (2π)−n/2

∫
Ξ
e i<η,x−y>ΛA(x , y)Φ

(x + y

2
, η
)
f (y)dy dη

ΛA(x , y) := exp
{
− i
∫

[x ,y ] A
}

.

Gauge covariance

A′ = A + dϕ ⇒ OpA
′
(f ) = e iϕ(Q)OpA(f )e−iϕ(Q).

Note that
1 ΛA(x , y)ΛA(y , z) = ΛA(x , z) exp

{
−i
∫
<x,y,z> B

}
≡ ΛA(x , z)ΩB(x , y , z),

2 |ΩB(x , y , z)− 1| ≤ C‖B‖∞|(y − x) ∧ ((z − x)|.
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The isolated spectral band in a magnetic field

The magnetic Pseudodifferential Calculus - 2

Proposition. MP04

The map OpA : S (Ξ)→ B
(
S (X )

)
is an isomorphism of linear topological spaces that extends to an
isomorphism OpA : S ′(Ξ)→ B

(
S (X ); S ′(X )

)
.

Proposition. IMP07

Under our Hypothesis IV, for any symbol F ∈ S0
0 (X )Γ we have that

OpA(F ) ∈ B
(
L2(X )

)
and there exist two constants C > 0 and p ∈ N∗, depending only on the
dimension d ≥ 2 of the configuration space, such that:

‖OpA(F )‖B(L2(X )) ≤ C sup
(x ,ξ)∈Ξ

sup
|a|≤p

sup
|b|≤p
|
(
∂ax∂

b
ξ F
)
(x , ξ)|.

.
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The isolated spectral band in a magnetic field

The magnetic Pseudodifferential Calculus - 3

Definition. MP04

On S (Ξ) we define the following separately continuous bilinear form, that
is gauge independent:

S (Ξ)×S (Ξ) 3 (f , g) 7→ f ]Bg ∈ S (Ξ), OpA(f ]Bg) := OpA(f )OpA(g).

We have the explicit formula:

(
f ]Bg

)
(X ) = (2π)−2d

∫
Ξ

∫
Ξ
e−2iσ◦(Y ,Z)e

−i
∫
T (x,y,z)

B
f (X − Y )g(X − Z)dYdZ ,

with T (x , y , z) having the vertices x − y − z, x + y − z, x − y + z.
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The isolated spectral band in a magnetic field

The magnetic Integral Kernels Calculus (Cornean, Nenciu)

For any symbol F ∈ S ′(Ξ) the Weyl operator Op(F ) has as distribution
kernel KF ∈ S (X × X ) given by

KF (x , y) =
(
WF

)
(x , y) := (2π)−d

∫
X ∗

e i<ξ,(x−y)>F
(
(x + y)/2, ξ

)
dξ.

Proposition

The operator OpA(F ) has the distribution kernel:

KA
F (x , y) = ΛA(x , y)

(
WF

)
(x , y) = ΛA(x , y)KF (x , y).
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The isolated spectral band in a magnetic field

The magnetic Pseudodifferential Calculus - 4

Theorem. IMP07

Under Hypothesis I and IV, OpA(h) is essentially self-adjoint and its closure HA is lower
semi-bounded and has domain

HA(X ) :=
{
u ∈ L2(X ) | (−i∂ − A)au ∈ L2(X ),∀a ∈ Nd , |a| ≤ m

}
.

Remark. MP04

For h0(x , ξ) := ξ2 + V (x), we have

OpA(h0) =
∑

1≤j≤d

(
− i∂j − Aj(x)

)2
+ V (Q) ≡ −∆2

A + V (Q).

Theorem. IMP10

Under Hypothesis I and IV, if z 3 σ(HA), the resolvent in z is given by(
HA − z

)−1
= OpA(rBz (h)) with rBz (h) ∈ S−m

1 (X ) depending on the magnetic field but
not on the choice of gauge.
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The isolated spectral band in a magnetic field

The magnetic Pseudodifferential Calculus - 5

Development of the magnetic product

If f ∈ Sm1
ρ (X ) and g ∈ Sm2

ρ (X ),
then for any n ∈ N∗ there exist the family of symbols
C εk(f , g) ∈ Sm1+m2−2kρ

ρ (X ), for (k, ε) ∈ N× [0, ε0] and

Rεn(f , g) ∈ Sm1+m2−2nρ
ρ (X ), for (n, ε) ∈ N,

uniformly with respect to ε ∈ [0, ε0], such that

f ]εg = f ]0g +
∑

1≤k≤n−1

εkC εk(f , g) + εnRεn(f , g).
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The isolated spectral band in a magnetic field

The magnetic Pseudodifferential Calculus - 6

Development of the magnetic resolvent

1 [IP15, CP12, CP15]There exists ε0 > 0 small enough such that the bounded
interval I ⊂ R in Hypothesis II satisfies the two conditions in the Hypothesis for
Hε with ε ∈ [0, ε0].

2 For any compact set K ⊂ C \ σ(H) there exists ε0 > 0 such that K ⊂ C \ σ(Hε)
for ε ∈ [0, ε0] and the function

K 3 z 7→ r εz (h) ∈ S−m
1 (X )

is continuous for the Fréchet topology uniformly for ε ∈ [0, ε0]. Moreover we have
the following development

r εz (h) = r 0
z (h) +

∑
k∈N∗

εk rk(h; ε, z),

with rk(h; ε, z) ∈ S
−(m+2n)
1 (X ) uniformly for ε ∈ [0, ε0] and the series converging in

the topology induced from B
(
L2(X )

)
by the map Opε for any ε ∈ [0, ε0].
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The main results

The main results
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The main results

Theorem A

Under Hypothesis I, II and IV, there exists ε0 > 0 small enough such that for any ε ∈ [0, ε0] and
for any n ∈ N∗ we have that:

1 HεEI (H
ε) = Opε

(
hI
)

+
∑

1≤k≤n−1
εkOpε

(
vεk
)

+ εnOpε
(
RεI (h; n)

)
with:

1 hI (x , ξ) :=

(2π)d

|E∗|
∫
X e−i<ξ,y>

[∫
T∗

(∑
j∈JI

λj(θ)φj(x + y/2, θ)φj(x − y/2, θ)

)
dθ

]
dy ,

2 v εk := −(2πi)−1
∫
C zrk(h; ε, z)dz,

3 RεI (h; n) := −(2πi)−1
∫
C z

(∑
k≥n

εk rk(h; ε, z)

)
dz.

2 there exists an orthogonal projection PεI ,n in L2(X ) such that

1 ‖EI (H
ε)− PεI ,n‖ ≤ Cnε

n, ‖Hε[EI (H
ε)− PεI ,n]‖ ≤ Cn(h)εn,

2 ‖[Hε,PεI ,n]‖ ≤ Cn(h)εn,
3 for PεI ,n we have a development in powers of ε ∈ [0, ε0] similar to the

one of HεEI (H
ε) at point 1.
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The main results

Corollary

For a N-fold degenerated isolated spectral band λ : T∗ → R we have that

HεEI (H
ε) = Opε(λ)EI (H

ε) +
∑

1≤k≤n−1

εkOpε
(
v εk
)

+ εnOpε
(
RεI (h; n)

)
.
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The main results

Theorem B

Under Hypothesis I, II, III and IV, there exists an orthonormal magnetic
Wannier basis {Wε

γ,j}(γ,j)∈Γ×JI such that:

1 EI (H
ε) =

∑
γ∈Γ

∑
j∈JI
|Wε

γ,j〉〈Wε
γ,j |,

2 sup
x∈X

< x − γ >m |Wε
γ,j | <∞, ∀(γ, j) ∈ Γ× JI ,

3 〈Wε
α,j ,H

εWε
β,k〉L2(X ) = Λε(α, β)µ̂jk(α− β) + Cε

for any (α, β) ∈ Γ× Γ, (j , k) ∈ JI × JI and ε ∈ [0, ε0].
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The main results

The case of constant magnetic field I.

We consider satisfied Hypothesis I and II and a constant magnetic
field B.

We define the unitary mapping
RΓ : L2(X )→ l2

(
Γ; L2(E )

) ∼= l2(Γ)⊗ L2(E )

given by the formula
(
RΓf

)
γ

(x̂) := f (γ + x̂).

We denote by
◦
τ : Γ→ B

(
l2(Γ)

)
the restriction of the translations to

l2(Γ).

We consider the unitary transformation in L2(X ) defined by(
ΥAf

)
(x) := ΛA([x ], x)f (x).
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The main results

The case of constant magnetic field I.

Theorem I

Under the above assumptions we have that

HAEI (H
A) =

(
ΥARΓ

)−1
MB(h)

(
ΥARΓ

)
with

MB(h)α,β := ΛA(α, β)HB
I (α− β)

where HB
I (γ) ∈ B

(
L2(E)

)
is defined by the following integral kernel:

kB
h,I (γ, x̂ , ŷ) := ΦB

γ (x̂ , ŷ)kh,I (γ, x̂ , ŷ)

ΦB
γ (x̂ , ŷ) = exp

{
(−i/2)

(
〈B, γ ∧ (x̂ + ŷ)〉+ 〈B, x̂ ∧ ŷ〉

)}
,

kh,I (γ, x̂ , ŷ) :=

∫
T∗

e−i<θ,γ>

∑
j∈JI

λj(θ)φj(x̂ + ŷ/2, θ)φj(x̂ − ŷ/2, θ)

 dθ.
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The main results

The case of constant magnetic field II.

Theorem II

Under the above assumptions in the transverse gauge representation, we
have the following convolution form for the matrix of the band
Hamiltonian in the modified magnetic Wannier basis:〈
Wε
α,l ,H

εWε
β,m

〉
L2(X )

= Λε(α, β)
〈
Wε
α−β,l ,H

εWε
0,m

〉
L2(X )

≡ Λ̃ε(α, β)Ĥεlm(α− β).
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The main results

Thank you !
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