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Random walks in random environments in the literature

Recurrence Invariance principles
Models and transience annealed quenched

Percolation cluster [Berger, Biskup; ’07],
and random [Grimmett et al.; ’93] [De Masi et al.; ’89] [Biskup, Prescott; ’07],

conductances in Zd ...

Complete graph
generated by

point proc. in Rd , [Caputo et al.; ’09] [Faggionato et al.; ’06] [Caputo et al.; ’13],
transition probab.
↘ with distance

Delaunay ([Addario-Berry, Sarkar; ’05]) [Ferrari et al.; ’12],
triangulation (d = 2)

generated by PPP
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Model
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Quenched invariance principle

Notations:
I

(
X ξn

)
n∈N

: simple nearest neighbor random walk on DT(ξ)

I Pξx : law of
(
X ξn

)
n∈N

starting at x ∈ ξ

I Bξε (t) = ε
(
X ξbε−2tc +

(
ε−2t − bε−2tc

) (
X ξbε−2tc+1

− X ξbε−2tc

))
, t ≥ 0

Theorem [R.; ’15]

For all T > 0, for a.e. ξ, for all x ∈ ξ, the law of
(
Bξε (t)

)
0≤t≤T

induced by Pξx on C([0,T ]; Rd )

converges weakly, as ε → 0, to the law of a Brownian motion
(
Bξt

)
0≤t≤T

starting at x with

covariance matrix σ2 Id where σ2 is positive and does not depend on ξ.
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Martingale decomposition

For a.e. ξ, for x ∈ ξ, we want to write:

X ξ
n = Mξ

n + Rξn

with (
Mξ

n

)
n∈N

: Pξx -martingale

↪→ converges to a BM by Lindeberg-Feller functional CLT

and (
Rξn

)
n∈N

: corrector

↪→ negligible at the diffusive scale: lim
n→∞

Rξn√
n

= 0 a.s.
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A martingale
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Harmonic deformation of a Delaunay triangulation

Figure: From Harmonic deformation of Delaunay triangulations by P. A. Ferrari, R.M. Grisi and P. Groisman.
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Construction of the martingale (1/3)

Let µ be the measure on N0 × Rd defined by:∫
f dµ =

∫
N0

∑
x∼
ξ0

0

(f (x)− f (0))P0(d ξ0),

where P0 denotes the Palm measure associated with the PPP.

Weil decomposition of L2(µ)

L2(µ) = L2
pot(µ)

⊥
⊕ L2

sol(µ)

with

L2
pot(µ): closure of the space of gradients of bounded meas. functions
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Construction of the martingale (2/3)

Consider the projection
p : (ξ0, x) 7−→ x .

Note that it is in L2(µ) since∫
|p|2 dµ =

∫
N0

∑
x∼
ξ0

0

|x |2P0(d ξ0)

≤
∫
N0

degξ0 (0) max
x∼
ξ0

0
|x |2P0(d ξ0)

≤
(∫
N0

degξ0 (0)2P0(d ξ0)

) 1
2

∫
N0

max
x∼
ξ0

0
|x |4P0(d ξ0)

 1
2

<∞.

So, we can write
p = χ

∈L2
pot(µ)

+ ϕ
∈L2

sol
(µ)

.
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Construction of the martingale (3/3)

Since ϕ ∈ L2
sol(µ) is antisymmetric∑

x∼
ξ0

0

ϕ
(
ξ0, x

)
= 0, for P0-a.e. ξ0,

and actually ∑
y∼
ξ
x

ϕ (τxξ, y − x) = 0, for all x ∈ ξ, for P-a.e. ξ.

Thus,

Mξ
n =

n−1∑
i=0

ϕ

(
τ
X

ξ
i
ξ,X ξi+1 − X ξi

)
= ϕ

(
τ
X

ξ
0
ξ,X ξn − X ξ0

)
is a Pξx -martingale.
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The corrector

Rξn = X ξn −Mξ
n = χ

(
τ
X

ξ
0
ξ,X ξn − X ξ0

)

It remains to prove that

lim
n→+∞

max
y∈ξ∩[−n,n]d

|χ(τxξ, y − x)|
n

= 0 a.s..

By the maximum principle, it suffices to show that

lim
n→+∞

max
y∈G∞(ξ)∩[−n,n]d

|χ(τxξ, y − x)|
n

= 0 a.s.

where G∞(ξ) is an infinite connected subgraph of DT(ξ) such that each connected component of
DT(ξ) \ G∞(ξ) is finite.
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Sublinearity of the corrector in G∞(ξ) ‘à la [Biskup, Prescott, ’07]’ (1/3)

Sublinearity on average:

∀ε > 0, lim
n→+∞

1

nd

∑
y∈G∞(ξ)∩[−n,n]d

1|χ(τxξ,y−x)|≥εn = 0

I ergodicity arguments

I directional sublinearity

I extension dimension by dimension
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Sublinearity of the corrector in G∞(ξ) ‘à la [Biskup, Prescott, ’07]’ (2/3)

Polynomial growth:

∃θ > 0, lim
n→∞

max
y∈G∞(ξ)∩[−n,n]d

|χ(τxξ, y − x)|
nθ

= 0

I analytic properties of χ
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Sublinearity of the corrector in G∞(ξ) ‘à la [Biskup, Prescott, ’07]’ (3/3)

Diffusive bounds:

Define T1 = inf{j ≥ 1 : X ξj ∈ G∞(ξ)}.

The random walk (Y ξt )t≥0 with generator(
Lξf

)
(y) =

∑
y′∈G∞(ξ)

Pξy
[
X ξT1

= y ′
](
f (y ′)− f (y)

)
satisfies

sup
n≥1

max
y∈G∞(ξ)∩[−n,n]d

sup
t≥n

max
(
t−

1
2 Eξy

[
|Y ξt − y |

]
, t−

d
2 Pξy

[
Y ξt = y

])
< +∞ a.s.

I distance comparison

I isoperimetric inequalities

I heat kernel estimates for (Y ξt )t≥0 (see [Morris, Peres; ’05])
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Construction of G∞(ξ) (1/3)

We part Rd into boxes Bz of side K , z ∈ Zd , and
subdivise each box into sub-boxes of side αdK .

We say that Bz is good if:

I each sub-box of side αdK included in
Bz =

⋃
|z′−z|≤1

Bz′ contains at least a point of ξ,

I #
(
ξ ∩ Bz

)
≤ D.

If K and D are well chosen, the process of the good boxes stochastically dominates an indep.
percolation process with parameter p ∈ (1− pc (Zd ), 1).
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Construction of G∞(ξ) (2/3)

G∞ = ‘the infinite cluster of percolation’

GL = ‘the maximal connected component of G∞ ∩ [−L, L]d ’
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Construction of G∞(ξ) (3/3)

G∞(ξ) = {x ∈ ξ : ∃z ∈ G∞ s.t. Vorξ(x) ∩ Bz 6= ∅}

GL(ξ) = {x ∈ ξ : ∃z ∈ GL s.t. Vorξ(x) ∩ Bz 6= ∅}
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Isoperimetric inequality in GL(ξ) (1/5)

For A ⊂ GL(ξ), define

I L,ξA =

∑
x∈A

∑
y∈Ac 1x∼y in DT(ξ)

degL(A)

where Ac = GL(ξ) \ A and degL(A) =
∑

x∈A degL(x).

Claim

There exists c > 0 such that a.s. for L large enough

I L,ξA ≥ c min

 1

degL(A)
1
d

,
1

log(L)
d

d−1


for every A ⊂ GL(ξ) with degL(A) ≤ 1

2
degL(GL(ξ)).
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Isoperimetric inequality in GL(ξ) (2/5)

For A ⊂ GL(ξ), define

L(A) =
{

z ∈ GL : ∃x ∈ A s.t. Vorξ(x) ∩ Bz 6= ∅
}
.

Note that
#L(A)

2d
≤ degL(A) ≤ #(A)︸ ︷︷ ︸

≤D#L(A)

max
x∈A

degL(x)︸ ︷︷ ︸
≤D

≤ D2#L(A). (1)

We distinguish the cases whether or not #L(A) >
(

1− 1
2d+2D2

)
#GL.
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Isoperimetric inequality in GL(ξ) (3/5): case #L(A) >
(
1− 1

2d+2D2

)
#GL

Since degL(A) ≤ 1
2

degL(GL(ξ)), we have

#L(Ac ) ≥
#GL

2d+1D2
and # (L(A) ∩ L(Ac )) ≥

#GL

2d+1D2
.

If z ∈ L(A) ∩ L(Ac ), there exists an edge between a point of A and a point of Ac contained in
Bz =

⋃
|z′−z|≤1

Bz′ .
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This implies that ∑
x∈A

∑
y∈Ac

1x∼y ≥
# (L(A) ∩ L(Ac ))

3d
≥

#GL

4× 6d × D2

so that

I L,ξA ≥
1

4× 6d × D4
.
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Isoperimetric inequality in GL(ξ) (4/5): case #L(A) ≤
(
1− 1

2d+2D2

)
#GL

If z ∈ L(A) and z′ ∈ GL \ L(A) are neighbors, there exists an edge between a point of A and a
point of Ac contained in Bz ∪ B′z.

Figure: A box in L(A) and its neighbor in GL \ L(A)
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Besides,

#L(A) ≤
(

1−
1

2d+2D2

)
(#L(A) + # (GL \ L(A))) .

Hence,
degL(A) ≤ D2#L(A) ≤ D2(2d+2D2 − 1)# (GL \ L(A))

and

I L,ξA ≥
δ

D2(2d+2D2 − 1)

# (∂A)

#A

for A = L(A) or GL \ L(A).
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Isoperimetric inequality in GL(ξ) (5/5): case #L(A) ≤
(
1− 1

2d+2D2

)
#GL

By applying

Isoperimetric inequality in GL (see e.g. [Caputo, Faggionato; ’07])

There exists κ > 0 such that almost surely for L large enough, for A ⊂ G(L) with 0 < #(A) ≤
1
2

#(G(L))

#(∂A)

#(A)
≥ κmin

{
1

#(A)
1
d

,
1

log(L)
d

d−1

}
.

and then (1), one finally obtains that

I L,ξA ≥
κδ

D2(2d+2D2 − 1)
min

 1

#(A)
1
d

,
1

log(L)
d

d−1


≥

κδ

2D2(2d+2D2 − 1)
min

 1

degL(A)
1
d

,
1

log(L)
d

d−1

 .
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