Large deviations for Markov-modulated diffusion processes with rapid switching

Gang Huang, Michel Mandjes, Peter Spreij

UNIVERSITEIT VAN AMSTERDAM Radboud Universiteit

Dynstoch 2016, Rennes, 8-10 June 2016

Outline

- Introduction
- General notions
- Main results
- Sketch proof of the main theorem
- Exponential tightness
- Upper bound for the local LDP
- Lower bound for the local LDP The case $\inf_{i,x} \sigma^2(i,x) > 0$ The general case

Outline

Introduction

General notions

Main results

Sketch proof of the main theorem

Exponential tightness

Upper bound for the local LDP

Lower bound for the local LDP The case $\inf_{i,x} \sigma^2(i,x) > 0$ The general case

The model

Consider a complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with a filtration $\{\mathcal{F}_t\}_{t \in \mathbb{R}_+}$, where $\mathbb{R}_+ := [0, +\infty)$. \mathcal{F}_0 contains all the \mathbb{P} -null sets of \mathcal{F} , and $\{\mathcal{F}_t\}_{t \in \mathbb{R}_+}$ is right continuous.

 $X_t, t \ge 0$ is a finite-state time-homogeneous Markov chain with transition intensity matrix Q and state space $\mathbb{S} := \{1, \cdots, d\}$.

The Markov-modulated diffusion process is the unique solution to

$$M_t = M_0 + \int_0^t b(X_s, M_s) \mathrm{d}s + \int_0^t \sigma(X_s, M_s) \mathrm{d}B_s,$$

where B is a standard Brownian motion. See assumptions.

Assumptions

(A.1) Lipschitz continuity: there is K > 0 such that $\forall i \in \mathbb{S}, x, y \in \mathbb{R}$ $|b(i,x) - b(i,y)| + |\sigma(i,x) - \sigma(i,y)| \le K|x - y|$, . (A.2) Linear growth: there K > 0 such that $|b(i,x)| + |\sigma(i,x)| \le K(1 + |x|), \quad \forall i \in \mathbb{S}, x \in \mathbb{R}.$

(A.3) Irreducibility: the Markov chain X_t is irreducible and has an invariant probability measure $\pi = (\pi(1), \dots, \pi(d))$.

MM diffusion with slowly jumping chain

MM diffusion with faster jumping chain

Objective: large deviations principle for $\epsilon \rightarrow 0$ (LDP)

- Study the above SDE under scaling: Scale Q to Q/e =: Q^e; X^e_t is the Markov chain with transition intensity matrix Q^e.
- At the same time small-noise large deviations (Freidlin and Wentzell [4]). Scaling of the function σ(·, ·) to √εσ(·, ·). The resulting process M^ε_t is the unique strong solution to

$$M^{\epsilon}_t = M^{\epsilon}_0 + \int_0^t b(X^{\epsilon}_s, M^{\epsilon}_s) \mathrm{d}s + \sqrt{\epsilon} \int_0^t \sigma(X^{\epsilon}_s, M^{\epsilon}_s) \mathrm{d}B_s.$$

We assume $M_0^\epsilon \equiv 0$, whereas X_0^ϵ starts at an arbitrary $x \in \mathbb{S}$.

• Investigate the *LDP* for the *joint* process $(M^{\epsilon}, \nu^{\epsilon})$, where

$$\nu^{\epsilon}(\omega; t, i) = \int_0^t \mathbf{1}_{\{X_s^{\epsilon}(\omega)=i\}} \mathrm{d}s.$$

Additional notions

• $\mathbb{M}_{\mathcal{T}}$ is the space of functions ν on $[0, \mathcal{T}] \times \mathbb{S}$ satisfying $\nu(t, i) = \int_0^t \mathcal{K}_{\nu}(s, i) ds$, where $\sum_{i=1}^d \mathcal{K}_{\nu}(s, i) = 1$, $\mathcal{K}_{\nu}(s, i) \ge 0$, and $\mathcal{K}_{\nu}(\cdot, i)$ Borel measurable. The metric on $\mathbb{M}_{\mathcal{T}}$ is

$$d_{\mathcal{T}}(\mu,\nu) = \sup_{0 \leq t \leq \mathcal{T}, i \in \mathbb{S}} \left| \int_0^t \mathcal{K}_{\mu}(s,i) \mathrm{d}s - \int_0^t \mathcal{K}_{\nu}(s,i) \mathrm{d}s \right|.$$

- $\mathbb{C}_{\mathcal{T}} = \{ f \in \mathbb{C}_{[0,\mathcal{T}]}(\mathbb{R}) : f(0) = 0 \}$ with the uniform metric $\rho_{\mathcal{T}}$.
- The product metric $\rho_T \times d_T$ on $\mathbb{C}_T \times \mathbb{M}_T$ is defined by

$$(\rho_T \times d_T)((\varphi, \nu), (\varphi', \nu')) := \rho_T(\varphi, \varphi') + d_T(\nu, \nu').$$

 $\mathcal{B}(\mathbb{C}_T \times \mathbb{M}_T)$ is the Borel σ -algebra generated by $\rho_T \times d_T$.

Large deviations for MM diffusion processes 10/ 48 $\hfill\square$ General notions

Outline

Introduction

General notions

Main results

Sketch proof of the main theorem

Exponential tightness

Upper bound for the local LDP

Lower bound for the local LDP The case $\inf_{i,x} \sigma^2(i,x) > 0$ The general case

Large deviations principle (LDP)

Let X be a Polish space with metric ρ and Borel σ -algebra $\mathcal{B}(X)$. Definition 1 (Varadhan [8])

A family of probability measures \mathbb{P}^{ϵ} on $(\mathbb{X}, \mathcal{B}(\mathbb{X}))$ is said to obey the LDP with a rate function $I(\cdot) : \mathbb{X} \to [0, \infty]$ satisfying:

- 1. There exists $x \in \mathbb{X}$ such that $I(x) < \infty$; I is lsc; for every $c < \infty$ the set $\{x : I(x) \le c\}$ is compact in \mathbb{X} .
- 2. For every closed set $F \subset \mathbb{X}$, $\limsup_{\epsilon \to 0} \epsilon \log \mathbb{P}^{\epsilon}(F) \leq -\inf_{x \in F} I(x).$
- 3. For every open set $O \subset \mathbb{X}$, $\liminf_{\epsilon \to 0} \epsilon \log \mathbb{P}^{\epsilon}(O) \ge -\inf_{x \in O} I(x).$

Exponential tightness

Definition 2 (Den Hollander [3], Puhalskii [7])

A family of probability measures \mathbb{P}^{ϵ} on $(\mathbb{X}, \mathcal{B}(\mathbb{X}))$ is said to be exponentially tight, if for every $L < \infty$, there exists a compact set $K_L \subset \mathbb{X}$ such that

$$\limsup_{\epsilon\to 0} \epsilon \log \mathbb{P}^{\epsilon}(\mathbb{X}\setminus K_L) \leq -L.$$

Local LDP

Definition 3 (Puhalskii [7], Liptser and Puhalskii [5]) A family of probability measures \mathbb{P}^{ϵ} on $(\mathbb{X}, \mathcal{B}(\mathbb{X}))$ is said to obey the local LDP with a rate function $I(\cdot)$ if for every $x \in \mathbb{X}$

 $\limsup_{\delta \to 0} \limsup_{\epsilon \to 0} \epsilon \log \mathbb{P}^{\epsilon}(\{y \in \mathbb{X} : \rho(x, y) \le \delta\}) \le -I(x), \quad (1)$

 $\liminf_{\delta \to 0} \liminf_{\epsilon \to 0} \epsilon \log \mathbb{P}^{\epsilon}(\{y \in \mathbb{X} : \rho(x, y) \le \delta\}) \ge -I(x).$ (2)

LDP and local LDP

Since X is a Polish space, Definition 1(1) implies exponential tightness. Definition 1(2,3) guarantee that \mathbb{P}^{ϵ} satisfies the local LDP. The converse is also valid and is the key for our main result.

Theorem 4 (Puhalskii [7], Liptser and Puhalskii [5])

If a family of probability measures \mathbb{P}^{ϵ} on $(\mathbb{X}, \mathcal{B}(\mathbb{X}))$ is exponentially tight and obeys the local LDP with a rate function I, then it obeys the LDP with the rate function I.

LDP on a dense subset

A local LDP on a dense subset of $\mathbb X$ implies the local LDP on $\mathbb X.$

Lemma 5 (Borovkov and Mogulskii [2])

(i) If (1) is fulfilled for all $\tilde{x} \in \tilde{\mathbb{X}}$, where $\tilde{\mathbb{X}}$ is dense in \mathbb{X} and function I(x) is lower semi-continuous, then it holds for all $x \in \mathbb{X}$. (ii) If for every $x \in \mathbb{X}$ with $I(x) < \infty$ there exists a sequence $\tilde{x}_n \in \tilde{\mathbb{X}}$ converging to x and $I(\tilde{x}_n) \to I(x)$, then (2) for $\tilde{x} \in \tilde{\mathbb{X}}$ implies the same for all $x \in \mathbb{X}$. Large deviations for MM diffusion processes 16/48 $_$ Main results

Outline

Introduction

General notions

Main results

Sketch proof of the main theorem

Exponential tightness

Upper bound for the local LDP

Lower bound for the local LDP The case $\inf_{i,x} \sigma^2(i,x) > 0$ The general case

Rate function for the Markov chain

The rate function corresponding to ν^ϵ is defined as

$$\widetilde{l}_{\mathcal{T}}(\nu) := \int_0^{\mathcal{T}} \sup_{u \in U} \left[-\sum_{i=1}^d \frac{(Qu)(i)}{u(i)} K_{\nu}(s,i)
ight] \mathrm{d}s, \quad \nu \in \mathbb{M}_{\mathcal{T}},$$

where

$$(Qu)(i) = \sum_{j=1}^{d} Q_{ij}u(j)$$
, for $i \in \mathbb{S}$, $U = \mathbb{R}^{d}_{++}$.

NB: $\tilde{l}_T(\nu)$ is a time varying variation on the usual rate function for large deviations of Markov chains [3, Theorem IV.14].

Large deviations for MM diffusion processes $\ 18/\ 48$ $\ \ \ \ Main$ results

Rate function for M^{ϵ}

Let $\mathbb{H}_{\mathcal{T}} = \{ \varphi \in \mathbb{C}_{\mathcal{T}} : \varphi(t) = \int_{0}^{t} \varphi'(s) ds$, with $\varphi' \in L^{2}[0, \mathcal{T}] \}$ (Cameron-Martin space).

The rate function corresponding to M^{ϵ} is

$$I_{\mathcal{T}}(\varphi,\nu) := \begin{cases} \frac{1}{2} \int_{0}^{\mathcal{T}} \frac{[\varphi'_{t} - \hat{b}_{t}(\nu,\varphi_{t})]^{2}}{\hat{\sigma}_{t}^{2}(\nu,\varphi_{t})} \mathrm{d}t & \text{if } \varphi \in \mathbb{H}_{\mathcal{T}}, \\ \infty & \text{otherwise.} \end{cases}$$

where

$$egin{aligned} \hat{b}_t(
u,x) &:= \sum_{i=1}^d b(i,x) \mathcal{K}_
u(t,i) \ \hat{\sigma}_t(
u,x) &:= \left(\sum_{i=1}^d \sigma^2(i,x) \mathcal{K}_
u(t,i)
ight)^{1/2}. \end{aligned}$$

Main theorem

Let $\mathbb{P} \circ (M^{\epsilon}, \nu^{\epsilon})^{-1}$ denote $\mathbb{P}((M^{\epsilon}, \nu^{\epsilon}) \in \cdot)$, a family of probability measures on $(\mathbb{C}_{\mathcal{T}} \times \mathbb{M}_{\mathcal{T}}, \mathcal{B}(\mathbb{C}_{\mathcal{T}} \times \mathbb{M}_{\mathcal{T}}))$. The marginals $\mathbb{P} \circ (M^{\epsilon})^{-1}$ and $\mathbb{P} \circ (\nu^{\epsilon})^{-1}$ are families of probability measures on $(\mathbb{C}_{\mathcal{T}}, \mathcal{B}(\mathbb{C}_{\mathcal{T}}))$ and $(\mathbb{M}_{\mathcal{T}}, \mathcal{B}(\mathbb{M}_{\mathcal{T}}))$ respectively.

Theorem 6

For every T > 0, the family $\mathbb{P} \circ (M^{\epsilon}, \nu^{\epsilon})^{-1}$ obeys the LDP in $(\mathbb{C}_T \times \mathbb{M}_T, \rho_T \times d_T)$ with the rate function

 $L_T(\varphi,\nu) = I_T(\varphi,\nu) + \tilde{I}_T(\nu).$

Two corollaries

The following two results are a consequence of the *contraction principle*.

Corollary 7 The family $\mathbb{P} \circ (M^{\epsilon})^{-1}$ obeys the LDP with the rate function $\inf_{\nu \in \mathbb{M}_T} L_T(\varphi, \nu)$.

Corollary 8 The family $\mathbb{P} \circ (\nu^{\epsilon})^{-1}$ obeys the LDP in (\mathbb{M}_T, d_T) with the rate function $\tilde{I}_T(\nu)$. Large deviations for MM diffusion processes $\ 21/$ 48

Sketch proof of the main theorem

Outline

Introduction

General notions

Main results

Sketch proof of the main theorem

Exponential tightness

Upper bound for the local LDP

Lower bound for the local LDP The case $\inf_{i,x} \sigma^2(i,x) > 0$ The general case

Structure of the proof of the main theorem I

Prove exponential tightness of $\mathbb{P} \circ (M^{\epsilon}, \nu^{\epsilon})^{-1}$, i.e., for every $L < \infty$, there exists a compact set $K_L \subset \mathbb{C}_T \times \mathbb{M}_T$ such that

$$\limsup_{\epsilon\to 0} \epsilon \log \mathbb{P}\left((M^{\epsilon}, \nu^{\epsilon}) \in \mathbb{C}_{\mathcal{T}} \times \mathbb{M}_{\mathcal{T}} \setminus K_L \right) \leq -L.$$

Steps:

- $\mathbb{P} \circ (M^{\epsilon}, \nu^{\epsilon})^{-1}$ is exponentially tight if $\mathbb{P} \circ (M^{\epsilon})^{-1}$ and $\mathbb{P} \circ (\nu^{\epsilon})^{-1}$ are so.
- ▶ Exponential tightness of $\mathbb{P} \circ (M^{\epsilon})^{-1}$ in Proposition 9 below.
- For any ν ∈ M_T, its derivative K_ν(s, i) is bounded by 1, hence M_T is equicontinuous. Moreover, M_T is bounded and closed and the Arzelà-Ascoli theorem implies that M_T is compact. We can take K_L = M_T for ℙ ∘ (ν^ε)⁻¹.

Structure of the proof of the main theorem II

Show that $\mathbb{P} \circ (M^{\epsilon}, \nu^{\epsilon})^{-1}$ obeys the local LDP with rate function $L_{\mathcal{T}}(\varphi, \nu)$: for every $(\varphi, \nu) \in \mathbb{C}_{\mathcal{T}} \times \mathbb{M}_{\mathcal{T}}$, the upper bound

 $\limsup_{\delta\to 0}\limsup_{\epsilon\to 0}\epsilon\log \mathbb{P}(\rho_{\mathcal{T}}(M^{\epsilon},\varphi)+d_{\mathcal{T}}(\nu^{\epsilon},\nu)\leq \delta)\leq -L_{\mathcal{T}}(\varphi,\nu),$

and the lower bound

 $\liminf_{\delta\to 0}\liminf_{\epsilon\to 0}\epsilon\log \mathbb{P}(\rho_{\mathcal{T}}(M^{\epsilon},\varphi)+d_{\mathcal{T}}(\nu^{\epsilon},\nu)\leq \delta)\geq -L_{\mathcal{T}}(\varphi,\nu).$

Structure of the proof of the main theorem III

Steps for proving the local LDP:

- Prove the local LDP on a dense subset of $\mathbb{C}_T \times \mathbb{M}_T$.
- Prove the upper bound: Proposition 17.
- The lower bound is first proved in Proposition 20 under the condition inf_{i,x} σ²(i, x) > 0.
- Then the condition is lifted in Proposition 22 by a perturbation argument.

Large deviations for MM diffusion processes 25/ 48 $\hfill \hfill \hfil$

Outline

Introduction

General notions

Main results

Sketch proof of the main theorem

Exponential tightness

Upper bound for the local LDP

Lower bound for the local LDP The case $\inf_{i,x} \sigma^2(i,x) > 0$ The general case

Exponential tightness of $\mathbb{P} \circ (M^{\epsilon})^{-1}$

Proposition 9

For every T > 0, the family $\mathbb{P} \circ (M^{\epsilon})^{-1}$ is exponentially tight on $(\mathbb{C}_T, \mathcal{B}(\mathbb{C}_T))$.

The technique to prove the proposition borrows elements from Liptser [5]. We also use two auxiliary results adapted from Aldous and from Liptser and Pukhalskii [6], applied to $Y = M^{\epsilon}$.

Auxiliary result I

Let Γ_T be the family of \mathcal{F}_t -stopping times with values in [0, T]. Proposition 10 (Aldous [1]) Let, for each $\epsilon > 0$, $Y^{\epsilon} : \Omega \times [0, T] \to \mathbb{R}$ be an $\{\mathcal{F}_t\}_{t \leq T}$ -adapted continuous process, so with paths in \mathbb{C}_T . If

(i)
$$\lim_{K'\to\infty}\limsup_{\epsilon\to 0}\epsilon\log\mathbb{P}\left(Y_T^{\epsilon*}\geq K'\right)=-\infty$$

and

(*ii*)
$$\lim_{\delta \to 0} \limsup_{\epsilon \to 0} \epsilon \log \sup_{\tau \in \Gamma_{\tau}} \mathbb{P}\left(\sup_{t \leq \delta} |Y_{\tau+t}^{\epsilon} - Y_{\tau}^{\epsilon}| \geq \eta \right) = -\infty, \forall \eta > 0,$$

then $\mathbb{P} \circ (Y^{\epsilon})^{-1}$ is exponentially tight.

Auxiliary result II, needed for (ii)

Lemma 11 (Liptser and Pukhalskii [6])

Let $Y = (Y_t)_{t\geq 0}$ be a continuous semimartingale with $Y_0 = 0$, Y = A + M, A is the predictable process of locally bounded variation, M the local martingale.

Assume that for T > 0 there exists a convex function H with H(0) = 0 and a nonnegative random variable ξ such that for all $\lambda \in \mathbb{R}$ and $t \leq T$

$$\lambda A_t + \lambda^2 \langle M \rangle_t / 2 \le t H(\lambda \xi), \text{ a.s..}$$

Then, for all c > 0 and $\eta > 0$,

$$\mathbb{P}(Y_T^* \ge \eta) \le \mathbb{P}(\xi > c) + \exp\left\{-\sup_{\lambda \in R} [\lambda \eta - TH(\lambda c)]\right\}.$$

Large deviations for MM diffusion processes 29/ 48 $_$ Upper bound for the local LDP

Outline

Introduction

General notions

Main results

Sketch proof of the main theorem

Exponential tightness

Upper bound for the local LDP

Lower bound for the local LDP The case $\inf_{i,x} \sigma^2(i,x) > 0$ The general case

Auxiliary result III

Let \mathbb{M}_T^+ be the subset of \mathbb{M}_T such that $K_{\nu}(s, i) > 0$, and \mathbb{M}_T^{++} be the subset of \mathbb{M}_T^+ such that $K_{\nu}(\cdot, i) \in \mathbb{C}_{[0,T]}^{\infty}, \forall i \in \mathbb{S}$.

Lemma 12 \mathbb{M}_T^{++} is dense in \mathbb{M}_T .

Lemma 13 Fix $s \in [0, T]$ and $\nu \in \mathbb{M}_T^{++}$. Then there is an optimizer $u^*(s, \cdot)$ of

$$\inf_{u \in U} \left[\sum_{i=1}^{d} \frac{(Qu)(i)}{u(i)} K_{\nu}(s,i) \right]$$

such that $u^*(\cdot, i) \in \mathbb{C}^{\infty}_{[0,T]}$, for all $i \in \mathbb{S}$.

Step functions

Let $\mathbb{S}_{\mathcal{T}}$ denote the space of all step functions on $[0, \mathcal{T}]$ of the form, for $k \in \mathbb{N}$ and real numbers $\lambda_0, \cdots, \lambda_k$,

$$\lambda(t) = \lambda_0 \mathbf{1}_{\{t=0\}}(t) + \sum_{i=0}^k \lambda_i \mathbf{1}_{(t_i, t_{i+1}]}(t), 0 = t_0 < \cdots < t_{k+1} = T.$$

For any $\varphi \in \mathbb{C}_T$, we introduce the following notation

$$\int_0^T \lambda(s) \mathrm{d}\varphi_s := \sum_{i=0}^k \lambda_i [\varphi_{T \wedge t_{i+1}} - \varphi_{T \wedge t_i}].$$

Stochastic exponential I, first density

Put

$$N^{\epsilon}_t := rac{1}{\sqrt{\epsilon}} \int_0^t \lambda(s) \sigma(X^{\epsilon}_s, M^{\epsilon}_s) \mathrm{d}B_s, \quad \lambda \in \mathbb{S}_T,$$

which has the stochastic exponential

$$\mathcal{E}(N^{\epsilon})_t = \exp\left(N_t^{\epsilon} - \frac{1}{2}\langle N^{\epsilon} \rangle_t\right).$$

(Nonrandom) lower bound on the first density

Lemma 14

For every $(\varphi, \nu) \in \mathbb{C}_T \times \mathbb{M}_T$ and every $\lambda \in \mathbb{S}_T$, $\delta > 0$, there exists a positive constant $K_{\lambda,\varphi,T}$ not depending on ϵ or δ such that

$$egin{aligned} \mathcal{E}(N^\epsilon)_{\mathcal{T}} &\geq \expigg(rac{1}{\epsilon}igl(\int_0^{\mathcal{T}}\lambda(s)\mathrm{d}arphi_s - \int_0^{\mathcal{T}}\lambda(s)\hat{b}_s(
u,arphi_s)\mathrm{d}s \ &-\int_0^{\mathcal{T}}rac{\lambda^2(s)}{2}\hat{\sigma}_s^2(
u,arphi_s)\mathrm{d}sigr) - rac{\delta}{\epsilon}K_{\lambda,arphi,\mathcal{T}}igr) \end{aligned}$$

on the set $\{\rho_T(M^{\epsilon}, \varphi) + d_T(\nu^{\epsilon}, \nu) \leq \delta\}.$

Large deviations for MM diffusion processes 34/48 \Box Upper bound for the local LDP

Stochastic exponential II, second density

Let \mathbb{U} denote the space of functions on $[0, T] \times \mathbb{S}$ continuously differentiable in $s \in [0, T]$ and $\inf_{s \in [0, T], i \in \mathbb{S}} u(s, i) > 0$. For any $u(\cdot, \cdot) \in \mathbb{U}$,

$$\hat{N}_t^{\epsilon} = u(t, X_t^{\epsilon}) - u(0, X_0^{\epsilon}) - \int_0^t \frac{\partial}{\partial s} u(s, X_s^{\epsilon}) \mathrm{d}s - \int_0^t (Q^{\epsilon}u)(s, X_s^{\epsilon}) \mathrm{d}s$$

is a local martingale. We define

$$ilde{N}^{\epsilon}_t := \int_0^t rac{1}{u(s-,X^{\epsilon}_{s-})} \mathrm{d}\hat{N}^{\epsilon}_s$$

Then

$$\mathcal{E}(\tilde{N}^{\epsilon})_{t} = \frac{u(t, X_{t}^{\epsilon})}{u(0, X_{0}^{\epsilon})} \exp\left(-\int_{0}^{t} \frac{\frac{\partial}{\partial s}u(s, X_{s}^{\epsilon}) + (Q^{\epsilon}u)(s, X_{s}^{\epsilon})}{u(s, X_{s}^{\epsilon})} \mathrm{d}s\right).$$

(Nonrandom) lower bound on the second density

Lemma 15

For every $\nu \in \mathbb{M}_T$, every $u \in \mathbb{U}$ and every $\gamma, \delta > 0$, there exist positive constants C_u , C'_u , K_u and $K_{Q,u}$ not depending on ϵ or δ such that

$$egin{aligned} \mathcal{E}(ilde{N}^{\epsilon})_{\mathcal{T}} &\geq \mathcal{K}_u \expigg(-(\mathcal{C}_u\delta+\gamma+\mathcal{C}'_u\mathcal{T}+rac{1}{\epsilon}(\mathcal{K}_{\mathcal{Q},u}\delta+\gamma))d\ &-rac{1}{\epsilon}\int_0^{\mathcal{T}}\sum_{i=1}^drac{\mathcal{Q}u(s,i)}{u(s,i)}\mathcal{K}_
u(s,i)\mathrm{d}s \end{pmatrix} \end{aligned}$$

on the set $\{\rho_T(M^{\epsilon}, \varphi) + d_T(\nu^{\epsilon}, \nu) \le \delta\}.$

Use of the lemmas

As $\mathcal{E}(\tilde{N}^{\epsilon})_{\mathcal{T}}\mathcal{E}(N^{\epsilon})$ is a supermartingale, $\mathbb{E}\mathcal{E}(\tilde{N}^{\epsilon})_{\mathcal{T}}\mathcal{E}(N^{\epsilon})_{\mathcal{T}} \leq 1$. Then Lemmas 12, 14, 15 imply

 $\mathbb{P}(\rho_{\mathcal{T}}(M^{\epsilon},\varphi) + d_{\mathcal{T}}(\nu^{\epsilon},\nu) \leq \delta) \leq \text{exponential upper bound.}$

Optimizing over $\lambda \in \mathbb{S}_{T}$ and other parameters lead to the upper bound in the local LDP on $\mathbb{C}_{T} \times \mathbb{M}_{T}^{++}$.

Large deviations for MM diffusion processes 37/48 \Box Upper bound for the local LDP

Auxiliary result IV

Lemma 16 Let $\nu^{\eta}, \nu \in \mathbb{M}_{T}$ with kernels K_{ν}^{η} and K_{ν} such that $K_{\nu}^{\eta}(\cdot, i) \rightarrow K_{\nu}(\cdot, i)$ a.e. as $\eta \rightarrow 0$ on [0, T] for each $i \in \mathbb{S}$. Then (i) $\tilde{I}_{T}(\nu^{\eta}) \rightarrow \tilde{I}_{T}(\nu)$ as $\eta \rightarrow 0$; (ii) $I_{T}(\varphi, \nu^{\eta}) \rightarrow I_{T}(\varphi, \nu)$ as $\eta \rightarrow 0$, $\forall \varphi \in \mathbb{H}_{T}$, if $\inf_{i,x} \sigma^{2}(i, x) > 0$.

Upper bound in the local LDP on $\mathbb{C}_{\mathcal{T}}\times\mathbb{M}_{\mathcal{T}}$

Lemmas 5 and 16 and lower semicontinuity of the rate functions then lead to

Proposition 17 For every $(\varphi, \nu) \in \mathbb{C}_T \times \mathbb{M}_T$,

 $\limsup_{\delta\to 0}\limsup_{\epsilon\to 0} \epsilon \log \mathbb{P}(\rho_{\mathcal{T}}(M^{\epsilon},\varphi) + d_{\mathcal{T}}(\nu^{\epsilon},\nu) \leq \delta) \leq -L_{\mathcal{T}}(\varphi,\nu).$

Large deviations for MM diffusion processes 39/ 48 $_$ Lower bound for the local LDP

Outline

Introduction

General notions

Main results

Sketch proof of the main theorem

Exponential tightness

Upper bound for the local LDP

Lower bound for the local LDP The case $\inf_{i,x} \sigma^2(i,x) > 0$ The general case Large deviations for MM diffusion processes 40/ 48 Lower bound for the local LDP Lower bound for the local LDP Large case $\inf_{i,x} \sigma^2(i,x) > 0$

Stochastic exponential III

Observe:

The rate function $I_T(\varphi, \nu)$ is finite for every $(\varphi, \nu) \in \mathbb{H}_T \times \mathbb{M}_T$ if $\inf_{i,x} \sigma^2(i,x) > 0$ (*Temporary assumption*).

Let $(\varphi, \nu) \in \mathbb{H}_T \times \mathbb{M}_T$ and put

$$\bar{N}_t^{\epsilon} := \frac{1}{\sqrt{\epsilon}} \int_0^t \frac{\varphi_s' - \hat{b}_s(\varphi_s, \nu)}{\hat{\sigma}(\varphi_s, \nu)} \mathrm{d}B_s =: \int_0^t h(s) \mathrm{d}B_s.$$

with stochastic exponential

$$\mathcal{E}(ar{N}^\epsilon)_t = \exp\left(ar{N}^\epsilon_t - rac{1}{2}\langlear{N}^\epsilon
angle_t
ight).$$

Large deviations for MM diffusion processes 41/48 Lower bound for the local LDP Large case $\inf_{i,x} \sigma^2(i,x) > 0$

Martingale property

Let, as before,

$$\mathcal{E}(\tilde{N}^{\epsilon})_{t} = \frac{u(t, X_{t}^{\epsilon})}{u(0, X_{0}^{\epsilon})} \exp\left(-\int_{0}^{t} \frac{\frac{\partial}{\partial s}u(s, X_{s}^{\epsilon}) + (Q^{\epsilon}u)(s, X_{s}^{\epsilon})}{u(s, X_{s}^{\epsilon})} \mathrm{d}s\right)$$

Lemma 18

For every $(\varphi, \nu) \in \mathbb{H}_T \times \mathbb{M}_T$ and $u(\cdot, \cdot) \in \mathbb{U}$, the process $\{\mathcal{E}(\tilde{N}^{\epsilon})_t \mathcal{E}(\bar{N}^{\epsilon})_t\}_{t \in [0,T]}$ is a martingale if $\inf_{i,x} \sigma^2(i,x) > 0$.

Hence, with a special u^* one can define a probability measure $\mathbb{P}_{u^*} \sim \mathbb{P}$ through $\mathrm{d}\mathbb{P}_{u^*} = \mathcal{E}_T^{u^*} \mathcal{E}(\bar{N}^{\epsilon})_T \mathrm{d}\mathbb{P}$, $\mathcal{E}^{u^*} = \mathcal{E}(\tilde{N}^{\epsilon})$ for $u = u^*$. Large deviations for MM diffusion processes 42/ 48 Lower bound for the local LDP Lower bound for the local LDP Large deviation $\sigma^2(i, x) > 0$

(Nonrandom) lower bound on the reciprocal second density

Lemma 19 For every $\nu \in \mathbb{M}_T$, every $u \in \mathbb{U}$ and every $\gamma, \delta > 0$, there exist positive C_u , C'_u , K'_u and $K_{Q,u}$ not depending on ϵ or δ such that

$$\begin{split} [\mathcal{E}(\tilde{N}^{\epsilon})_{\mathcal{T}}]^{-1} &\geq \mathsf{K}'_{u} \exp\left(-(C_{u}\delta + \gamma + C'_{u}\mathcal{T} + \frac{1}{\epsilon}(\mathsf{K}_{Q,u}\delta + \gamma))d\right. \\ &+ \frac{1}{\epsilon}\int_{0}^{\mathcal{T}}\sum_{i=1}^{d}\frac{Qu(s,i)}{u(s,i)}\mathsf{K}_{\nu}(s,i)\mathrm{d}s\right) \end{split}$$

on the set $\{\rho_T(M^{\epsilon}, \varphi) + d_T(\nu^{\epsilon}, \nu) \leq \delta\}.$

We will use this for the special, optimal u^* .

Large deviations for MM diffusion processes 43/48 Lower bound for the local LDP Lower bound for the local LDP Large deviation $\sigma^2(i, x) > 0$

Lower bound if $\inf_{i,x} \sigma^2(i,x) > 0$

By Lemma 18 one has for $B_{\delta} = \{ \rho_{\mathcal{T}}(M^{\epsilon}, \varphi) + d_{\mathcal{T}}(\nu^{\epsilon}, \nu) \leq \delta \}$

$$\mathbb{P}(B_{\delta}) = \int_{B_{\delta}} \left[\mathcal{E}_{T}^{u^{*}} \mathcal{E}(\bar{N}^{\epsilon})_{T} \right]^{-1} \mathrm{d}\mathbb{P}_{u^{*}}$$

and then by Lemma 19

 $\mathbb{P}(B_{\delta}) \geq \text{exponential lower bound} \times \mathbb{P}_{u^*}(\text{some set}),$

which eventually leads to

Proposition 20

For every $(\varphi, \nu) \in \mathbb{H}_T \times \mathbb{M}_T$, if $\inf_{i,x} \sigma^2(i,x) > 0$,

 $\liminf_{\delta\to 0}\liminf_{\epsilon\to 0}\epsilon\log \mathbb{P}(\rho_{\mathcal{T}}(M^{\epsilon},\varphi)+d_{\mathcal{T}}(\nu^{\epsilon},\nu)\leq \delta)\geq -L_{\mathcal{T}}(\varphi,\nu).$

Perturbed process

Next we drop the assumption $\inf_{i,x} \sigma^2(i,x) > 0$. Given $\gamma > 0$, we consider the perturbed SDE

$$M_t^{\epsilon,\gamma} = \int_0^t b(X_s^{\epsilon}, M_s^{\epsilon,\gamma}) \mathrm{d}s + \sqrt{\epsilon} \int_0^t \sigma(X_s^{\epsilon}, M_s^{\epsilon,\gamma}) \mathrm{d}B_s + \sqrt{\epsilon} \gamma W_t,$$

where W_t is a Brownian motion, independent of B_t and X_t^{ϵ} . $M^{\epsilon,\gamma}$ and M^{ϵ} are 'superexponentially close':

Lemma 21 For every T > 0 and $\eta > 0$,

$$\lim_{\gamma \to 0} \limsup_{\epsilon \to 0} \epsilon \log \mathbb{P}\left(\rho_{\mathcal{T}}(M^{\epsilon,\gamma}, M^{\epsilon}) > \eta\right) = -\infty.$$

└─ The general case

Final lower bound for the local LDP

Combining the case $\inf_{i,x} \sigma^2(i,x) > 0$, Proposition 20 ('true' for the quadratic variation in the perturbed case), Lemma 21 and letting $\gamma \to 0$ leads to

 $\begin{array}{l} {\sf Proposition} \,\, {\sf 22} \\ {\sf For \,\, every} \,\, (\varphi,\nu) \in \mathbb{C}_{{\mathcal T}} \times \mathbb{M}, \end{array}$

 $\liminf_{\delta\to 0}\liminf_{\epsilon\to 0}\epsilon\log\mathbb{P}(\rho_{\mathcal{T}}(M^{\epsilon},\varphi)+d_{\mathcal{T}}(\nu^{\epsilon},\nu)\leq\delta)\geq -L_{\mathcal{T}}(\varphi,\nu).$

References I

- Aldous, D., 1978. Stopping times and tightness. Ann. Probab., 6, 335–340.
- Borovkov, A. A. and Mogulskiĭ, A. A., 2010. On large deviation principles in metric spaces. Sibirsk. Mat. Zh., 51, 1251–1269.
- den Hollander, F., 2000. Large deviations. Fields Institute Monographs 14, American Mathematical Society, Providence, RI.
- Freidlin, M. I. and Wentzell, A. D., 1998. Random perturbations of dynamical systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 260, Springer-Verlag, New York.
- Liptser, R., 1996. Large deviations for two scaled diffusions, Probab. Theory and Related Fields 106, 71–104.

Large deviations for MM diffusion processes $\,$ 47/ 48 $\hfill Lower bound for the local LDP <math display="inline">\,$

└─ The general case

References II

- Liptser, R. SH. and Pukhalskii, A.A., 1992. Limit theorems on large deviations for semimartingales. Stochastics, Stochastics Rep. 38, 201–249.
- Puhalskii, A., 1991. On functional principle of large deviations. New trends in probability and statistics 1. VSP, Utrecht.
- Varadhan, S. R. S., 1984. Large deviations and applications. CBMS-NSF Regional Conference Series in Applied Mathematics 46, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
- G. Huang, M. Mandjes, P. Spreij. 2016. Large deviations for Markov-modulated diffusion processes with rapid switching. Stoch. Proc. Appl. 126, 1785–1818.

Large deviations for MM diffusion processes 48/48

Lower bound for the local LDP

L The general case

Thank you!