Large deviations for Markov-modulated diffusion processes with rapid switching

Gang Huang, Michel Mandjes, Peter Spreij

UNIVERSITEIT VAN AMSTERDAM Radboud Universiteit

Dynstoch 2016, Rennes, 8–10 June 2016

Outline

[Introduction](#page-2-0)

[General notions](#page-9-0)

[Main results](#page-15-0)

[Sketch proof of the main theorem](#page-20-0)

[Exponential tightness](#page-24-0)

[Upper bound for the local LDP](#page-28-0)

[Lower bound for the local LDP](#page-38-0) The case $\inf_{i,x}\sigma^2(i,x)>0$ [The general case](#page-43-0)

Outline

[Introduction](#page-2-0)

[General notions](#page-9-0)

[Main results](#page-15-0)

[Sketch proof of the main theorem](#page-20-0)

[Exponential tightness](#page-24-0)

[Upper bound for the local LDP](#page-28-0)

[Lower bound for the local LDP](#page-38-0) The case $\inf_{i,x}\sigma^2(i,x)>0$ [The general case](#page-43-0)

The model

Consider a complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with a filtration $\{\mathcal{F}_t\}_{t\in\mathbb{R}_+}$, where $\mathbb{R}_+:=[0,+\infty).$ \mathcal{F}_0 contains all the $\mathbb{P}\text{-null}$ sets of \mathcal{F} , and $\{\mathcal{F}_t\}_{t\in\mathbb{R}_+}$ is right continuous.

 $X_t, t\geq 0$ is a finite-state time-homogeneous Markov chain with transition intensity matrix Q and state space $\mathbb{S} := \{1, \dots, d\}.$

The Markov-modulated diffusion process is the unique solution to

$$
M_t = M_0 + \int_0^t b(X_s, M_s) \mathrm{d} s + \int_0^t \sigma(X_s, M_s) \mathrm{d} B_s,
$$

where B is a standard Brownian motion. See assumptions.

Assumptions

(A.1) Lipschitz continuity: there is $K > 0$ such that $\forall i \in \mathbb{S}, x, y \in \mathbb{R}$ $|b(i, x) - b(i, y)| + |\sigma(i, x) - \sigma(i, y)| \leq K |x - y|$, . $(A.2)$ Linear growth: there $K > 0$ such that

 $|b(i, x)| + |\sigma(i, x)| \leq K(1 + |x|), \quad \forall i \in \mathbb{S}, \quad x \in \mathbb{R}.$

 $(A.3)$ Irreducibility: the Markov chain X_t is irreducible and has an invariant probability measure $\pi = (\pi(1), \cdots, \pi(d)).$

MM diffusion with slowly jumping chain

MM diffusion with faster jumping chain

Objective: large deviations principle for $\epsilon \to 0$ (LDP)

- Study the above SDE under scaling: Scale Q to $Q/\epsilon =: Q^{\epsilon};$ X_t^ϵ is the Markov chain with transition intensity matrix $Q^\epsilon.$
- \triangleright At the same time small-noise large deviations (Freidlin and Wentzell [\[4\]](#page-45-0)). Scaling of the function $\sigma(\cdot, \cdot)$ to $\sqrt{\epsilon}\sigma(\cdot, \cdot)$. The resulting process M_t^ϵ is the unique strong solution to

$$
M^\epsilon_t=M^\epsilon_0+\int_0^t b(X^\epsilon_s,M^\epsilon_s)\mathrm{d} s+\sqrt{\epsilon}\int_0^t \sigma(X^\epsilon_s,M^\epsilon_s)\mathrm{d} B_s.
$$

We assume $M_0^\epsilon \equiv 0$, whereas X_0^ϵ starts at an arbitrary $x \in \mathbb{S}$.

Investigate the LDP for the joint process $(M^{\epsilon}, \nu^{\epsilon})$, where

$$
\nu^{\epsilon}(\omega; t, i) = \int_0^t \mathbf{1}_{\{X_s^{\epsilon}(\omega) = i\}} ds.
$$

Additional notions

 \blacktriangleright M_T is the space of functions ν on [0, T] \times S satisfying $\nu(t,i) = \int_0^t K_\nu(s,i)\mathrm{d}s$, where $\sum_{i=1}^d K_\nu(s,i) = 1$, $K_\nu(s,i) \geq 0$, and $K_{\nu}(\cdot, i)$ Borel measurable. The metric on $\mathbb{M}_{\mathcal{T}}$ is

$$
d_{\mathcal{T}}(\mu,\nu)=\sup_{0\leq t\leq\mathcal{T},i\in\mathbb{S}}\left|\int_0^t K_{\mu}(s,i)\mathrm{d} s-\int_0^t K_{\nu}(s,i)\mathrm{d} s\right|.
$$

- $\triangleright \mathbb{C}_\mathcal{T} = \{ f \in \mathbb{C}_{[0,\mathcal{T}]}(\mathbb{R}) : f(0) = 0 \}$ with the uniform metric $\rho_\mathcal{T}$.
- **IGUARE:** The product metric $\rho_T \times d_T$ on $\mathbb{C}_T \times \mathbb{M}_T$ is defined by

$$
(\rho_{\mathcal{T}} \times d_{\mathcal{T}})((\varphi, \nu), (\varphi', \nu')) := \rho_{\mathcal{T}}(\varphi, \varphi') + d_{\mathcal{T}}(\nu, \nu').
$$

 $\mathcal{B}(\mathbb{C}_{T}\times \mathbb{M}_{T})$ is the Borel σ -algebra generated by $\rho_{T}\times d_{T}$.

Outline

[Introduction](#page-2-0)

[General notions](#page-9-0)

[Main results](#page-15-0)

[Sketch proof of the main theorem](#page-20-0)

[Exponential tightness](#page-24-0)

[Upper bound for the local LDP](#page-28-0)

[Lower bound for the local LDP](#page-38-0) The case $\inf_{i,x}\sigma^2(i,x)>0$ [The general case](#page-43-0)

Large deviations principle (LDP)

Let X be a Polish space with metric ρ and Borel σ -algebra $\mathcal{B}(\mathbb{X})$. Definition 1 (Varadhan [\[8\]](#page-46-0))

A family of probability measures \mathbb{P}^{ϵ} on $(\mathbb{X},\mathcal{B}(\mathbb{X}))$ is said to obey the LDP with a rate function $I(\cdot): \mathbb{X} \to [0, \infty]$ satisfying:

- 1. There exists $x \in \mathbb{X}$ such that $I(x) < \infty$; I is lsc; for every $c < \infty$ the set $\{x : I(x) \leq c\}$ is compact in X.
- 2. For every closed set $F \subset \mathbb{X}$, $\limsup_{\epsilon \to 0} \epsilon \log \mathbb{P}^{\epsilon}(F) \leq -\inf_{x \in F} I(x).$
- 3. For every open set $O \subset \mathbb{X}$, $\liminf_{\epsilon \to 0} \epsilon \log \mathbb{P}^{\epsilon}(O) \geq -\inf_{x \in O} I(x).$

Exponential tightness

Definition 2 (Den Hollander [\[3\]](#page-45-1), Puhalskii [\[7\]](#page-46-1))

A family of probability measures \mathbb{P}^{ϵ} on $(\mathbb{X},\mathcal{B}(\mathbb{X}))$ is said to be exponentially tight, if for every $L < \infty$, there exists a compact set $K_l \subset \mathbb{X}$ such that

$$
\limsup_{\epsilon\to 0} \epsilon \log \mathbb{P}^\epsilon\big(\mathbb{X}\setminus \mathcal{K}_L\big) \leq -L.
$$

Local LDP

Definition 3 (Puhalskii [\[7\]](#page-46-1), Liptser and Puhalskii [\[5\]](#page-45-2)) A family of probability measures \mathbb{P}^{ϵ} on $(\mathbb{X},\mathcal{B}(\mathbb{X}))$ is said to obey the local LDP with a rate function $I(\cdot)$ if for every $x \in \mathbb{X}$

 $\limsup \limsup \epsilon \log \mathbb{P}^{\epsilon}(\lbrace y \in \mathbb{X} : \rho(x,y) \leq \delta \rbrace) \leq -I(x),$ (1) $\delta \rightarrow 0$ $\epsilon \rightarrow 0$

 $\liminf \liminf \epsilon \log \mathbb{P}^{\epsilon}(\{y \in \mathbb{X} : \rho(x, y) \le \delta\}) \ge -1(x).$ (2) $\delta \rightarrow 0 \qquad \epsilon \rightarrow 0$

LDP and local LDP

Since X is a Polish space, Definition $1(1)$ $1(1)$ implies exponential tightness. Definition $1(2,3)$ $1(2,3)$ $1(2,3)$ guarantee that \mathbb{P}^ϵ satisfies the local LDP. The converse is also valid and is the key for our main result.

Theorem 4 (Puhalskii [\[7\]](#page-46-1), Liptser and Puhalskii [\[5\]](#page-45-2))

If a family of probability measures \mathbb{P}^{ϵ} on $(\mathbb{X}, \mathcal{B}(\mathbb{X}))$ is exponentially tight and obeys the local LDP with a rate function I, then it obeys the LDP with the rate function I.

LDP on a dense subset

A local LDP on a dense subset of X implies the local LDP on X .

Lemma 5 (Borovkov and Mogulskiı̆) [\[2\]](#page-45-3))

(i) If [\(1\)](#page-12-1) is fulfilled for all $\tilde{x} \in \mathbb{X}$, where $\tilde{\mathbb{X}}$ is dense in \mathbb{X} and function $I(x)$ is lower semi-continuous, then it holds for all $x \in \mathbb{X}$. (ii) If for every $x \in \mathbb{X}$ with $I(x) < \infty$ there exists a sequence $\tilde{x}_n \in \mathbb{X}$ converging to x and $I(\tilde{x}_n) \to I(x)$, then [\(2\)](#page-12-2) for $\tilde{x} \in \mathbb{X}$ implies the same for all $x \in \mathbb{X}$.

Outline

[Introduction](#page-2-0)

[General notions](#page-9-0)

[Main results](#page-15-0)

[Sketch proof of the main theorem](#page-20-0)

[Exponential tightness](#page-24-0)

[Upper bound for the local LDP](#page-28-0)

[Lower bound for the local LDP](#page-38-0) The case $\inf_{i,x}\sigma^2(i,x)>0$ [The general case](#page-43-0)

Rate function for the Markov chain

The rate function corresponding to ν^ϵ is defined as

$$
\widetilde{I}_{\mathcal{T}}(\nu) := \int_0^{\mathcal{T}} \sup_{u \in U} \left[- \sum_{i=1}^d \frac{(Qu)(i)}{u(i)} K_{\nu}(s, i) \right] \mathrm{d}s, \quad \nu \in \mathbb{M}_{\mathcal{T}},
$$

where

$$
(Qu)(i) = \sum_{j=1}^d Q_{ij}u(j), \text{ for } i \in \mathbb{S}, U = \mathbb{R}^d_{++}.
$$

NB: $\widetilde{l}_{\mathcal{T}}(\nu)$ is a time varying variation on the usual rate function for large deviations of Markov chains [\[3,](#page-45-1) Theorem IV.14].

Rate function for M^{ϵ}

Let $\mathbb{H}_\mathcal{T} = \{ \varphi \in \mathbb{C}_\mathcal{T} : \varphi(t) = \int_0^t \varphi'(s) \mathrm{d} s, \text{ with } \varphi' \in L^2[0, T] \}$ (Cameron-Martin space).

The rate function corresponding to M^{ϵ} is

$$
I_T(\varphi,\nu) := \begin{cases} \frac{1}{2} \int_0^T \frac{[\varphi'_t - \hat{b}_t(\nu,\varphi_t)]^2}{\hat{\sigma}_t^2(\nu,\varphi_t)} dt & \text{if } \varphi \in \mathbb{H}_T, \\ \infty & \text{otherwise.} \end{cases}
$$

where

$$
\hat{b}_t(\nu, x) := \sum_{i=1}^d b(i, x) K_{\nu}(t, i)
$$

$$
\hat{\sigma}_t(\nu, x) := \left(\sum_{i=1}^d \sigma^2(i, x) K_{\nu}(t, i)\right)^{1/2}.
$$

Main theorem

Let $\mathbb{P} \circ (M^\epsilon,\nu^\epsilon)^{-1}$ denote $\mathbb{P}((M^\epsilon,\nu^\epsilon) \in \cdot),$ a family of probability measures on $(\mathbb{C}_{T} \times \mathbb{M}_{T}, \mathcal{B}(\mathbb{C}_{T} \times \mathbb{M}_{T}))$. The marginals $\mathbb{P} \circ (\mathcal{M}^\epsilon)^{-1}$ and $\mathbb{P} \circ (\nu^\epsilon)^{-1}$ are families of probability measures on $(\mathbb{C}_{T}, \mathcal{B}(\mathbb{C}_{T}))$ and $(\mathbb{M}_{T}, \mathcal{B}(\mathbb{M}_{T}))$ respectively.

Theorem 6

For every $T>0$, the family $\mathbb{P}\circ (M^\epsilon, \nu^\epsilon)^{-1}$ obeys the LDP in $(\mathbb{C}_{T} \times \mathbb{M}_{T}, \rho_{T} \times d_{T})$ with the rate function

 $L_{\mathcal{T}}(\varphi,\nu) = I_{\mathcal{T}}(\varphi,\nu) + \tilde{I}_{\mathcal{T}}(\nu).$

Two corollaries

The following two results are a consequence of the contraction principle.

Corollary 7 The family $\mathbb{P} \circ (M^{\epsilon})^{-1}$ obeys the LDP with the rate function $\inf_{\nu \in \mathbb{M}_T} L_T(\varphi, \nu).$

Corollary 8 The family $\mathbb{P} \circ (\nu^{\epsilon})^{-1}$ obeys the LDP in (\mathbb{M}_T, d_T) with the rate function $\tilde{l}_{\mathcal{T}}(\nu)$.

[Large deviations for MM diffusion processes 21/ 48](#page-0-0) [Sketch proof of the main theorem](#page-20-0)

Outline

[Introduction](#page-2-0)

[General notions](#page-9-0)

[Main results](#page-15-0)

[Sketch proof of the main theorem](#page-20-0)

[Exponential tightness](#page-24-0)

[Upper bound for the local LDP](#page-28-0)

[Lower bound for the local LDP](#page-38-0) The case $\inf_{i,x}\sigma^2(i,x)>0$ [The general case](#page-43-0)

Structure of the proof of the main theorem I

Prove exponential tightness of $\mathbb{P} \circ (M^\epsilon, \nu^\epsilon)^{-1}$, i.e., for every $L < \infty$, there exists a compact set $K_L \subset \mathbb{C}_T \times \mathbb{M}_T$ such that

$$
\limsup_{\epsilon\to 0} \epsilon \log \mathbb{P}\left((M^\epsilon,\nu^\epsilon)\in \mathbb{C}_T\times \mathbb{M}_T\setminus K_L\right)\leq -L.
$$

Steps:

- $\blacktriangleright \ \mathbb{P} \circ (\mathcal{M}^\epsilon, \nu^\epsilon)^{-1}$ is exponentially tight if $\mathbb{P} \circ (\mathcal{M}^\epsilon)^{-1}$ and $\mathbb{P} \circ (\nu^{\epsilon})^{-1}$ are so.
- ► Exponential tightness of $\mathbb{P} \circ (M^{\epsilon})^{-1}$ in Proposition [9](#page-25-0) below.
- For any $\nu \in M_T$, its derivative $K_{\nu}(s, i)$ is bounded by 1, hence M_{τ} is equicontinuous. Moreover, M_{τ} is bounded and closed and the Arzelà-Ascoli theorem implies that M_{τ} is compact. We can take $\bar{K}_L = \mathbb{M}_\mathcal{T}$ for $\mathbb{P} \circ (\nu^\epsilon)^{-1}$.

Structure of the proof of the main theorem II

Show that $\mathbb{P} \circ (\mathcal{M}^\epsilon, \nu^\epsilon)^{-1}$ obeys the local LDP with rate function $L_{\mathcal{T}}(\varphi,\nu)$: for every $(\varphi,\nu)\in\mathbb{C}_{\mathcal{T}}\times\mathbb{M}_{\mathcal{T}}$, the upper bound

 \limsup lim sup ϵ log $\mathbb{P}(\rho_{\mathcal{T}}(M^\epsilon,\varphi)+d_{\mathcal{T}}(\nu^\epsilon,\nu)\leq \delta)\leq -L_{\mathcal{T}}(\varphi,\nu),$ $\delta \rightarrow 0$ $\epsilon \rightarrow 0$

and the lower bound

 \liminf_{ε} lim $\inf_{\varepsilon} \varepsilon \log \mathbb{P}(\rho_T(M^{\varepsilon}, \varphi) + d_T(\nu^{\varepsilon}, \nu) \leq \delta) \geq -L_T(\varphi, \nu).$ $\delta \rightarrow 0$ $\epsilon \rightarrow 0$

Structure of the proof of the main theorem III

Steps for proving the local LDP:

- **Prove the local LDP on a dense subset of** $\mathbb{C}_T \times \mathbb{M}_T$.
- \blacktriangleright Prove the upper bound: Proposition [17.](#page-37-0)
- \blacktriangleright The lower bound is first proved in Proposition [20](#page-42-0) under the condition $\inf_{i,x} \sigma^2(i,x) > 0$.
- \triangleright Then the condition is lifted in Proposition [22](#page-43-1) by a perturbation argument.

Outline

[Introduction](#page-2-0)

[General notions](#page-9-0)

[Main results](#page-15-0)

[Sketch proof of the main theorem](#page-20-0)

[Exponential tightness](#page-24-0)

[Upper bound for the local LDP](#page-28-0)

[Lower bound for the local LDP](#page-38-0) The case $\inf_{i,x}\sigma^2(i,x)>0$ [The general case](#page-43-0)

Exponential tightness of $\mathbb{P} \circ (M^{\epsilon})^{-1}$

Proposition 9

For every $\mathcal{T} > 0$, the family $\mathbb{P} \circ (\mathcal{M}^{\epsilon})^{-1}$ is exponentially tight on $(C_{\tau}, \mathcal{B}(C_{\tau})).$

The technique to prove the proposition borrows elements from Liptser [\[5\]](#page-45-2). We also use two auxiliary results adapted from Aldous and from Liptser and Pukhalskii [\[6\]](#page-46-2), applied to $Y = M^{\epsilon}$.

Auxiliary result I

Let Γ_T be the family of \mathcal{F}_t -stopping times with values in [0, T]. Proposition 10 (Aldous [\[1\]](#page-45-4)) Let, for each $\epsilon > 0$, $Y^{\epsilon} : \Omega \times [0, T] \to \mathbb{R}$ be an $\{\mathcal{F}_{t}\}_{t \leq T}$ -adapted continuous process, so with paths in $\mathbb{C}_{\mathcal{T}}$. If

(i)
$$
\lim_{K' \to \infty} \lim_{\epsilon \to 0} \epsilon \log \mathbb{P} (Y_T^{\epsilon*} \ge K') = -\infty
$$
,

and

$$
\text{\textbf{(ii)}} \lim_{\delta \to 0} \limsup_{\epsilon \to 0} \epsilon \log \sup_{\tau \in \Gamma_T} \mathbb{P}\left(\sup_{t \leq \delta} |Y_{\tau+t}^{\epsilon} - Y_{\tau}^{\epsilon}| \geq \eta\right) = -\infty, \forall \eta > 0,
$$

then $\mathbb{P} \circ (Y^{\epsilon})^{-1}$ is exponentially tight.

Auxiliary result II, needed for (ii)

Lemma 11 (Liptser and Pukhalskii [\[6\]](#page-46-2))

Let $Y = (Y_t)_{t>0}$ be a continuous semimartingale with $Y_0 = 0$, $Y = A + M$, A is the predictable process of locally bounded variation, M the local martingale.

Assume that for $T > 0$ there exists a convex function H with $H(0) = 0$ and a nonnegative random variable ξ such that for all $\lambda \in \mathbb{R}$ and $t \leq T$

$$
\lambda A_t + \lambda^2 \langle M \rangle_t/2 \leq t H(\lambda \xi), \ \text{a.s.}.
$$

Then, for all $c > 0$ and $n > 0$.

$$
\mathbb{P}(Y_T^* \geq \eta) \leq \mathbb{P}(\xi > c) + \exp \left\{-\sup_{\lambda \in R} [\lambda \eta - TH(\lambda c)]\right\}.
$$

[Large deviations for MM diffusion processes 29/ 48](#page-0-0) [Upper bound for the local LDP](#page-28-0)

Outline

[Introduction](#page-2-0)

[General notions](#page-9-0)

[Main results](#page-15-0)

[Sketch proof of the main theorem](#page-20-0)

[Exponential tightness](#page-24-0)

[Upper bound for the local LDP](#page-28-0)

[Lower bound for the local LDP](#page-38-0) The case $\inf_{i,x}\sigma^2(i,x)>0$ [The general case](#page-43-0)

Auxiliary result III

Let $\mathbb{M}_\mathcal{T}^+$ be the subset of $\mathbb{M}_\mathcal{T}$ such that $\mathcal{K}_\nu(s,i)>0$, and $\mathbb{M}_\mathcal{T}^{++}$ be the subset of $\mathbb{M}_\mathcal{T}^+$ such that $\mathcal{K}_\nu(\cdot,i)\in \mathbb{C}_{[0,\mathcal{T}]}^\infty, \forall i\in \mathbb{S}.$

Lemma 12 $\mathbb{M}_\mathcal{T}^{++}$ is dense in $\mathbb{M}_\mathcal{T}.$

Lemma 13 Fix $s \in [0, T]$ and $\nu \in \mathbb{M}^{++}_{\mathcal{T}}$. Then there is an optimizer $u^*(s, \cdot)$ of

$$
\inf_{u\in U}\left[\sum_{i=1}^d\frac{(Qu)(i)}{u(i)}K_{\nu}(s,i)\right]
$$

such that $u^*(\cdot, i) \in \mathbb{C}_{[0,T]}^{\infty}$, for all $i \in \mathbb{S}$.

Step functions

Let $\mathbb{S}_{\mathcal{T}}$ denote the space of all step functions on $[0, T]$ of the form, for $k \in \mathbb{N}$ and real numbers $\lambda_0, \cdots, \lambda_k$,

$$
\lambda(t)=\lambda_0\mathbf{1}_{\{t=0\}}(t)+\sum_{i=0}^k\lambda_i\mathbf{1}_{(t_i,t_{i+1}]}(t), 0=t_0<\cdots
$$

For any $\varphi \in \mathbb{C}_{\mathcal{T}}$, we introduce the following notation

$$
\int_0^T \lambda(s) \mathrm{d}\varphi_s := \sum_{i=0}^k \lambda_i [\varphi_{\mathcal{T} \wedge t_{i+1}} - \varphi_{\mathcal{T} \wedge t_i}].
$$

Stochastic exponential I, first density

Put

$$
\mathcal{N}^\epsilon_t:=\frac{1}{\sqrt{\epsilon}}\int_0^t\lambda(s)\sigma(X^\epsilon_s,\mathcal{M}^\epsilon_s){\mathord{{\rm d}}} B_s,\quad \lambda\in\mathbb{S}_\mathcal{T},
$$

which has the stochastic exponential

$$
\mathcal{E}(\mathcal{N}^\epsilon)_t = \exp\left(\mathcal{N}^\epsilon_t - \frac{1}{2} \langle \mathcal{N}^\epsilon \rangle_t \right).
$$

(Nonrandom) lower bound on the first density

Lemma 14 For every $(\varphi, \nu) \in \mathbb{C}_T \times \mathbb{M}_T$ and every $\lambda \in \mathbb{S}_T$, $\delta > 0$, there exists a positive constant $K_{\lambda,\varphi,T}$ not depending on ϵ or δ such that

$$
\mathcal{E}(N^{\epsilon})_{\mathcal{T}} \ge \exp\left(\frac{1}{\epsilon} \left(\int_0^{\mathcal{T}} \lambda(s) d\varphi_s - \int_0^{\mathcal{T}} \lambda(s) \hat{b}_s(\nu, \varphi_s) ds - \int_0^{\mathcal{T}} \frac{\lambda^2(s)}{2} \hat{\sigma}_s^2(\nu, \varphi_s) ds\right) - \frac{\delta}{\epsilon} K_{\lambda, \varphi, \mathcal{T}}\right)
$$

on the set $\{ \rho_{\mathcal{T}}(M^{\epsilon}, \varphi) + d_{\mathcal{T}}(\nu^{\epsilon}, \nu) \leq \delta \}.$

[Large deviations for MM diffusion processes 34/ 48](#page-0-0) [Upper bound for the local LDP](#page-33-0)

Stochastic exponential II, second density

Let U denote the space of functions on $[0, T] \times \mathbb{S}$ continuously differentiable in $s \in [0, T]$ and $\inf_{s \in [0, T], i \in S} u(s, i) > 0$. For any $u(\cdot, \cdot) \in \mathbb{U}$,

$$
\hat{N}_{t}^{\epsilon} = u(t, X_{t}^{\epsilon}) - u(0, X_{0}^{\epsilon}) - \int_{0}^{t} \frac{\partial}{\partial s} u(s, X_{s}^{\epsilon}) ds - \int_{0}^{t} (Q^{\epsilon} u)(s, X_{s}^{\epsilon}) ds
$$

is a local martingale. We define

$$
\tilde{N}^{\epsilon}_t:=\int_0^t \frac{1}{u(s-,\mathsf{X}^{\epsilon}_{s-})}\mathrm{d}\hat{N}^{\epsilon}_s.
$$

Then

$$
\mathcal{E}(\tilde{N}^{\epsilon})_t = \frac{u(t, X_t^{\epsilon})}{u(0, X_0^{\epsilon})} \exp \left(-\int_0^t \frac{\frac{\partial}{\partial s} u(s, X_s^{\epsilon}) + (Q^{\epsilon} u)(s, X_s^{\epsilon})}{u(s, X_s^{\epsilon})} ds\right).
$$

(Nonrandom) lower bound on the second density

Lemma 15

For every $\nu \in M_T$, every $u \in U$ and every $\gamma, \delta > 0$, there exist positive constants $\mathsf{C}_\mathsf{u},\;\mathsf{C}_\mathsf{u}',\;\mathsf{K}_\mathsf{u}$ and $\mathsf{K}_{\mathsf{Q},\mathsf{u}}$ not depending on ϵ or δ such that

$$
\mathcal{E}(\tilde{N}^{\epsilon})_{\mathcal{T}} \geq K_{u} \exp \bigg(- (C_{u} \delta + \gamma + C'_{u} \mathcal{T} + \frac{1}{\epsilon} (K_{Q,u} \delta + \gamma)) d \\ - \frac{1}{\epsilon} \int_{0}^{\mathcal{T}} \sum_{i=1}^{d} \frac{Qu(s,i)}{u(s,i)} K_{\nu}(s,i) ds \bigg)
$$

on the set $\{ \rho_{\mathcal{T}}(M^{\epsilon}, \varphi) + d_{\mathcal{T}}(\nu^{\epsilon}, \nu) \leq \delta \}.$

Use of the lemmas

As $\mathcal{E}(\tilde{N}^{\epsilon})_{\mathcal{T}}\mathcal{E}(N^{\epsilon})$ is a supermartingale, $\mathbb{E}\mathcal{E}(\tilde{N}^{\epsilon})_{\mathcal{T}}\mathcal{E}(N^{\epsilon})_{\mathcal{T}}\leq 1$. Then Lemmas [12,](#page-29-1) [14,](#page-32-1) [15](#page-34-1) imply

 $\mathbb{P}(\rho_{\,\mathcal{T}}(M^\epsilon,\varphi)+d_{\,\mathcal{T}}(\nu^\epsilon,\nu)\leq\delta)\leq \text{exponential upper bound}.$

Optimizing over $\lambda \in \mathbb{S}_T$ and other parameters lead to the upper bound in the local LDP on $\mathbb{C}_{\mathcal{T}}\times\mathbb{M}_{\mathcal{T}}^{++}.$

[Large deviations for MM diffusion processes 37/ 48](#page-0-0) $\mathsf{L}_{\mathsf{Upper}}$ bound for the local LDP

Auxiliary result IV

Lemma 16
\nLet
$$
\nu^{\eta}, \nu \in \mathbb{M}_{\tau}
$$
 with kernes K_{ν}^{η} and K_{ν} such that
\n $K_{\nu}^{\eta}(\cdot, i) \to K_{\nu}(\cdot, i)$ a.e. as $\eta \to 0$ on [0, T] for each $i \in \mathbb{S}$. Then
\n(i) $\tilde{I}_{\tau}(\nu^{\eta}) \to \tilde{I}_{\tau}(\nu)$ as $\eta \to 0$;
\n(ii) $I_{\tau}(\varphi, \nu^{\eta}) \to I_{\tau}(\varphi, \nu)$ as $\eta \to 0$, $\forall \varphi \in \mathbb{H}_{\tau}$, if
\n $\inf_{i,x} \sigma^2(i,x) > 0$.

Upper bound in the local LDP on $\mathbb{C}_{\mathcal{T}} \times \mathbb{M}_{\mathcal{T}}$

Lemmas [5](#page-14-1) and [16](#page-36-1) and lower semicontinuity of the rate functions then lead to

Proposition 17 For every $(\varphi, \nu) \in \mathbb{C}_{\mathcal{T}} \times \mathbb{M}_{\mathcal{T}}$,

> \limsup lim sup ϵ log $\mathbb{P}(\rho_{\mathcal{T}}(M^\epsilon,\varphi)+d_{\mathcal{T}}(\nu^\epsilon,\nu)\leq \delta)\leq -L_{\mathcal{T}}(\varphi,\nu).$ $\delta \rightarrow 0$ $\epsilon \rightarrow 0$

[Large deviations for MM diffusion processes 39/ 48](#page-0-0) [Lower bound for the local LDP](#page-38-0)

Outline

[Introduction](#page-2-0)

[General notions](#page-9-0)

[Main results](#page-15-0)

[Sketch proof of the main theorem](#page-20-0)

[Exponential tightness](#page-24-0)

[Upper bound for the local LDP](#page-28-0)

[Lower bound for the local LDP](#page-38-0) The case $\inf_{i,x}\sigma^2(i,x)>0$ [The general case](#page-43-0)

[Large deviations for MM diffusion processes 40/ 48](#page-0-0) [Lower bound for the local LDP](#page-39-0) The case $\inf_{i,x} \sigma^2(i,x) > 0$

Stochastic exponential III

Observe:

The rate function $I_T(\varphi, \nu)$ is finite for every $(\varphi, \nu) \in \mathbb{H}_T \times \mathbb{M}_T$ if $\inf_{i,x}\sigma^2(i,x)>0$ (Temporary assumption).

Let $(\varphi, \nu) \in \mathbb{H}_T \times \mathbb{M}_T$ and put

$$
\bar{N}_t^{\epsilon} := \frac{1}{\sqrt{\epsilon}} \int_0^t \frac{\varphi_s' - \hat{b}_s(\varphi_s, \nu)}{\hat{\sigma}(\varphi_s, \nu)} d B_s =: \int_0^t h(s) dB_s.
$$

with stochastic exponential

$$
\mathcal{E}(\bar{N}^\epsilon)_t = \exp\left(\bar{N}^\epsilon_t - \frac{1}{2}\langle \bar{N}^\epsilon \rangle_t\right).
$$

[Large deviations for MM diffusion processes 41/ 48](#page-0-0) [Lower bound for the local LDP](#page-40-0) The case $\inf_{i,x} \sigma^2(i,x) > 0$

Martingale property

Let, as before,

$$
\mathcal{E}(\tilde{N}^{\epsilon})_t = \frac{u(t, X_t^{\epsilon})}{u(0, X_0^{\epsilon})} \exp \left(-\int_0^t \frac{\frac{\partial}{\partial s} u(s, X_s^{\epsilon}) + (Q^{\epsilon} u)(s, X_s^{\epsilon})}{u(s, X_s^{\epsilon})} ds\right)
$$

.

Lemma 18

For every $(\varphi, \nu) \in \mathbb{H}_T \times \mathbb{M}_T$ and $u(\cdot, \cdot) \in \mathbb{U}$, the process $\{\mathcal{E}(\tilde{N}^{\epsilon})_t\mathcal{E}(\bar{N}^{\epsilon})_t\}_{t\in[0,T]}$ is a martingale if $\inf_{i,x}\sigma^2(i,x)>0$. Hence, with a special u^{*} one can define a probability measure $\mathbb{P}_{u^*} \sim \mathbb{P}$ through $d\mathbb{P}_{u^*} = \mathcal{E}_{\mathcal{T}}^{u^*}$ $\mathcal{L}^u_\mathcal{T}^\ast \mathcal{E}(\bar N^\epsilon)_{\mathcal{T}} \mathrm{d} \mathbb{P}, \, \mathcal{E}^{u^\ast} = \mathcal{E}(\tilde N^\epsilon)$ for $u = u^\ast.$ (Nonrandom) lower bound on the reciprocal second density

Lemma 19 For every $\nu \in \mathbb{M}_{\mathcal{T}}$, every $u \in \mathbb{U}$ and every $\gamma, \delta > 0$, there exist positive C_u , C'_u , K'_u and $K_{Q,u}$ not depending on ϵ or δ such that

$$
\begin{aligned} [\mathcal{E}(\tilde{N}^{\epsilon})_{\mathcal{T}}]^{-1} &\geq K_{u}' \exp\bigg(-(C_{u}\delta+\gamma+C_{u}'\mathcal{T}+\frac{1}{\epsilon}(K_{Q,u}\delta+\gamma))d\\ &+\frac{1}{\epsilon}\int_{0}^{\mathcal{T}}\sum_{i=1}^{d}\frac{Qu(s,i)}{u(s,i)}K_{\nu}(s,i)\mathrm{d}s\bigg) \end{aligned}
$$

on the set $\{ \rho_{\mathcal{T}}(M^{\epsilon}, \varphi) + d_{\mathcal{T}}(\nu^{\epsilon}, \nu) \leq \delta \}.$

We will use this for the special, optimal u^* .

[Large deviations for MM diffusion processes 43/ 48](#page-0-0) [Lower bound for the local LDP](#page-42-1) The case $\inf_{i,x} \sigma^2(i,x) > 0$

Lower bound if $\inf_{i,x}\sigma^2(i,x)>0$

By Lemma [18](#page-40-1) one has for $\mathcal{B}_\delta = \{\rho_\mathcal{T}(M^\epsilon, \varphi) + d_\mathcal{T}(\nu^\epsilon, \nu) \leq \delta\}$

$$
\mathbb{P}(B_\delta) = \int_{B_\delta} \left[\mathcal{E}_\mathcal{T}^{\underline{u}^*} \mathcal{E}(\bar{N}^\epsilon)_\mathcal{T} \right]^{-1} \mathrm{d} \mathbb{P}_{u^*}
$$

and then by Lemma [19](#page-41-1)

 $\mathbb{P}(B_\delta) \geq$ exponential lower bound \times \mathbb{P}_{u^*} (some set),

which *eventually* leads to

Proposition 20

For every $(\varphi, \nu) \in \mathbb{H}_T \times \mathbb{M}_T$, if $\mathsf{inf}_{i,x} \sigma^2(i,x) > 0$,

 $\liminf_{\varepsilon} \liminf_{\varepsilon} \varepsilon \log \mathbb{P}(\rho_T(M^{\varepsilon}, \varphi) + d_T(\nu^{\varepsilon}, \nu) \leq \delta) \geq -L_T(\varphi, \nu).$ $\delta \rightarrow 0$ $\epsilon \rightarrow 0$

Perturbed process

Next we drop the assumption inf $_{i,x}\sigma^2(i,x)>0$. Given $\gamma > 0$, we consider the perturbed SDE

$$
M^{\epsilon,\gamma}_t = \int_0^t b(X^\epsilon_s,M^{\epsilon,\gamma}_s)\mathrm{d} s + \sqrt{\epsilon}\int_0^t \sigma(X^\epsilon_s,M^{\epsilon,\gamma}_s)\mathrm{d} B_s + \sqrt{\epsilon}\gamma W_t,
$$

where W_t is a Brownian motion, independent of B_t and X_t^ϵ . $M^{\epsilon,\gamma}$ and M^{ϵ} are 'superexponentially close':

Lemma 21 For every $T > 0$ and $\eta > 0$,

$$
\lim_{\gamma \to 0} \limsup_{\epsilon \to 0} \epsilon \log \mathbb{P} \left(\rho_{\mathcal{T}}(M^{\epsilon,\gamma}, M^{\epsilon}) > \eta \right) = -\infty.
$$

Final lower bound for the local LDP

Combining the case $\inf_{i,x}\sigma^2(i,x)>0$, Proposition [20](#page-42-0) ('true' for the quadratic variation in the perturbed case), Lemma [21](#page-43-2) and letting $\gamma \rightarrow 0$ leads to

Proposition 22

For every $(\varphi, \nu) \in \mathbb{C}_{\mathcal{T}} \times \mathbb{M}$,

 $\liminf_{\delta \to 0} \liminf_{\epsilon \to 0} \epsilon \log \mathbb{P}(\rho_T(M^\epsilon, \varphi) + d_T(\nu^\epsilon, \nu) \le \delta) \ge -L_T(\varphi, \nu).$

References I

- 量 Aldous, D., 1978. Stopping times and tightness. Ann. Probab., 6, 335–340.
- Borovkov, A. A. and Mogulskiı̆, A. A., 2010. On large deviation Ħ principles in metric spaces. Sibirsk. Mat. Zh., 51, 1251–1269.
- E. den Hollander, F., 2000. Large deviations. Fields Institute Monographs 14, American Mathematical Society, Providence, RI.
- H Freidlin, M. I. and Wentzell, A. D., 1998. Random perturbations of dynamical systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 260, Springer-Verlag, New York.
-
- Liptser, R., 1996. Large deviations for two scaled diffusions, Probab. Theory and Related Fields 106, 71–104.

References II

- 量 Liptser, R. SH. and Pukhalskii, A.A., 1992. Limit theorems on large deviations for semimartingales. Stochastics, Stochastics Rep. 38, 201–249.
- 晶 Puhalskii, A., 1991. On functional principle of large deviations. New trends in probability and statistics 1. VSP, Utrecht.
- 量 Varadhan, S. R. S., 1984. Large deviations and applications. CBMS-NSF Regional Conference Series in Applied Mathematics 46, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
- G. Huang, M. Mandjes, P. Spreij. 2016. Large deviations for H. Markov-modulated diffusion processes with rapid switching. Stoch. Proc. Appl. 126, 1785–1818.

[Large deviations for MM diffusion processes 48/ 48](#page-0-0)

[Lower bound for the local LDP](#page-47-0)

 $\mathrel{\mathop{\rule{0pt}{.15pt}}\mathrel{\mathop{\rule{0pt}{.15pt}}\mathrel{\rule{0pt}{.15pt}}\mathrel{\mathop{\rule{0pt}{.15pt}}\mathrel{\rule{0pt}{.15pt}}\mathrel{\rule{0pt}{.15pt}}}}$ [The general case](#page-47-0)

Thank you!