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0. Aharonov—Bohm effect (AB effect)
We work in two dimensions and denote by

2
H(A) = (—iV — 4)* = § (~i8; - a;)’,

-.H”
the magnetic Schrodinger operator with the potential

A = (ay,a3) : R* —» R

b=V X A=28ia, —a,;: R° > R (magnetic field)
a = (2r)"' [b(x)dez (magnetic flux)

suppb C supp A, suppb # supp A (in general).



The Aharonov—Bohm potential (AB potential)
A = (—xz/|z|* @1 /|2|*) = (—82log ||, B log |z|) , supp A = R?,
defines the solenoid (d-like magnetic field)
b=V x A= (8°+ 8% log|z| =2nd(x), suppb= {0}.

The Aharonov-Bohm effect (the AB effect) says that a vector
potential influences quantum particles, even if they move over a

region where the corresponding magnetic field vanishes.



1. Problem
We consider the scattering system by three solenoids.
Assume that we are given the three centers

d_ = (—k_d,0), do=(0,xd"?), dy=(kd,0),
where k4 > 0 with k_ + k; = 1 and
|dy —d_| =d > 1 (regarded as a large parameter).
We again denotes by A(x) the AB potential and define
Ag(z) = a_A(z —d_) + agA(x — dy) + a A(x — dy),
where real numbers a4, o denote magnetic fluxes.

V X Ag = 27n (a_d6(x — d_) + apd(z — dp) + a d(x —d,)).



We consider magnetic Schrodinger operator
H,= H(A;) in L? = L*(R?).

It acts as a symmetric operator on C;° (R*\ {d_, dy,d,}), but it is
not necessarily essentially self-adjoint. The Friedrichs extension H,
is defined under the boundary conditions

lim |u(z)|] < oo, ec=d_-, dy, dy.

|&—e|—0

We define the resonance of H,. The resolvent
R(C; H,) = (H; — thH : L* — H\u.\. Re( > 0, Im¢ > 0,

is bounded, and it admits the meromorphic extension over the lower
half plane (Im ¢ < 0) as a function with values in operators

R(¢Hy) : L2 — L

comp loc?

L? = {u € L*: suppu is compact}.

comp



The resonance is defined as the pole of the meromorphic function.
For d = |dy —d_| > 1, the resonances are created near the positive
axis by the trajectories trapped between the two centers d_ and d.

® mmn
d_ L] —_— < ® nm+

We study
. how the potential agA(z — dy) associated with the third solenoid

27é(x — dy) influences the location of resonances by the AB effect.

We also discuss

. what happens in the case of four solenoids.



2. Heuristic arguments
The scattering system by one solenoid 27ad(z) is known as a

solvable model in quantum mechanics. We denote by
flw—6;E), w,8€S8', E>O0,

the amplitude for scattering from w to @ at energy E > 0.
The backward amplitude takes the form (independent of w)

%AE — (a3 @v = Awﬂ.vlcm m.-.#EA|HvTL+H mmﬂﬁ.ﬂ.qﬂvm}_\hu

where [a] denotes the Gauss notation (the greatest integer not ex-
ceeding o). We note that f(w — —w; E) = 0 for integer flux a.
We write
fe(w = —w; E)

for the backward amplitude by the solenoid 2wad(x).



We denote by
wo(z;w, E) = mxﬁ@mH\ua rw), wE Sst, E >o.

the plane wave with incident direction w at energy E.
We use the notation: w; = (1,0) and x4y = = — d.

We study the trapping phenomenon between d_ and d,.
We consider the special case & = 0 (dy = (0,0)).

d_. e <+ @ — e dy

We take d_ as the origin and consider the wave @y(z_; —w;, E).
It hits 2mra_d6(x_) and is scattered into direction wj.

e |



The wave is scattered as the spherical wave
f_(—w; = wy; E) exp ?.@H\M_Hl_v lz_|~"? x (AB effect term).
We take d as the origin and calculate
o] = |z —d_| = |dy —d_+z — dy]
= |[dwit+ x| ~vd+wy-zyy, d> 1,
around d,. The spherical wave behaves like the plane wave

exp ?M_E_Hl__v _u,.“l_L_\M ol ﬁmu,m:ua\&:J wo(z 43w, E)

around d..
The scattered wave hits the other solenoid 2w d(x ) as the plane

wave

mmmm:wa\&_hv f_(—w; — wy; E) X (AB effect term) X @o(x4;wi, E).



Recall that dy = (0,0). Consider the AB effect from the potential
Ap(x) = apA(x), V X Ag = 2mapd(x).
The wave function changes the phase factor given by the line integral

I iy Ag(z) - dx = Fagm (Stokes formula).

0.5 X exp(—iagm) + 0.5 X exp(icgm) = cos (™) .

H



The wave scattered by 2wra_d(x_) behaves like the plane wave
(7K1 /1|2 f-(—wr = wi; B) cos(aom)@o(@; w1, B)

around d. and it hits the other solenoid 2mwa d(x ).
The same argument applies to po(x4;wy, E). The wave scattered
by 2ma d(x.) takes a similar form

Amﬂ.m:ua\%\mv fi(wy = —wy; E) cos(apm)po(z—; —wi, E)

around d_.
The first plane wave @o(x_; —wy, E) returns to d_. Then it takes
the form g(FE;d)po(x_; —w;, E), where

= Ammﬁ.mxma\&v f_(—wy = w3 E)fi(w1 = —wy; E) cos® (o).
The trapping phenomenon is described by the series

A m g(E; &v:v po(z_; —wy, E) (< o0), E>0.

n=I()

10



The scattering amplitude
¢+ fe(Fwi = Fwi;C) ~ (const) X ¢4

admits the analytic extension over the lower half plane Im ¢ < 0.

The resonances are approximately specified as solutions to equation

.mmiﬂa

mﬁﬁm_& = Hﬁg .thIE__lvEH.“ O.?Aﬁ_ivlﬂ_m O ncmu?n:ﬁv HH_

where k = ¢'/? (Rek > 0 for Re > 0).
lexp(2ikd)| = exp(—2d (Imk)) > 1, Im(¢ <O0.
The relation makes sense only when cos(agm) # 0 and

fi(Fw, = Fwi;¢) #0 (& a4 is not an integer).



3. Formulation of result (three solenoids)

We discuss the general case & # 0 (do = (0, & d'/?)).
We consider the AB effect for the trajectories from d_ = (—k_-d,0)
to d, = (k4d,0). We define the Fresnel-type integral

1(¢) = (2/m) 2 e /4 [T &2 ds, T(¢) = K (1/k- + 1/ry)/* ¢V
Ly
\\\V\\Hvuw&c/vfr
d. e — ——r o> — e d,

The AB effect term is determined by

m_(¢) = {(1 + I(¢)) /2} exp(iagm) 4+ {(1 — I(C)) /2} exp (—icxoT) .
The AB effect term for the trajectories from d, to d_ is given by
7(¢) = {(1 + I(C)) /2} exp(—iaom) + {(1 — I(C)) /2} exp (icxor) -

12



We fix E; > 0 and take a neighborhood

Dy = {¢: |Re¢ — Eo| < 8Eq, [Im(| < (1 + 26) E}Y? ((log d)/d))|
for 0 < & < 1 small enough. We consider

g(¢;d) = (e**/d) fo(O)m-(O)mi(C)y k= ¢'%, ¢ € Dy,
fo(¢) = f-(—wi = wi; Q) fy (w1 = —wi;()
= (2m)"" ilC?LiaL sin(a_m) sin(a, )¢ V2,
We can take § > 0 so small that
d’ < |exp(2ikd)| /d < d*, d> 1,

on the bottom of Dy (Im¢ = — (1 + 28) E}/* ((log |d|) /|d]))-
This implies that { |g({;d)| =1: |Re( — Ey| < 6Eo} C Dy

]



We consider the equation g(¢{;d) = 1 in D,. The solutions
{¢i(d)}, Rei <Re(z<---< Re (s

are distributed as follows:

e — — — — — — — — — — — —

.

T 9(¢;d)| =1

s, s e— — — — — — — i — — — ——— — | (—

Im¢; ~ —EY?(log d) /d,  Re((jyr — ) ~ Ey/?(2m/d).



Assume that mi(Ep) # 0 at energy Ey > 0 and that
o is not an integer. Then we can take § > 0 in the following way:

Theorem

For any € > 0 small enough, there exists d. > 1 such that for
d > d., H; has the resonances

‘ﬂﬁummr\...ﬁ&vu. ’ Re ﬁnmmhmmmv < Re ﬁqmmquﬁn&v SRR LR S Re h.-.mmﬂzaﬁns

in the neighborhood {¢ € D, : |¢ — ¢;(d)| < €/d}.
Moreover, the resolvent

R(¢;Hy) : L2 — L2

comp loc

is analytic over Dg \ {Cres.1(d)s Cres.2(d), 5 Cres,n,(d) }-



o If || > 1, then the AB effect is not observed (loosely speaking).
Let &£ > 1. The contribution from trajectory [l is neglected.

\\n\\v/

ne

7(¢) = K (1/k-+1/K4)"* ¢V* — oo,
I(¢) ~ (2/m)"/2 e /4 I e /2 ds = 1.
w_(¢) ~ ((1 + I(C)) /2) exp(iapm) ~ exp(icgm),
74(C) ~ exp(—iagm), m_(C)mi(C) ~ 1.

16



4. Four solenoids
Assume that we are given the four centers

de = (Fr+d,0), di = (—kod,51d"?), dy = (—Kod, Kkod'/?),
where 0 < kg < min (K—,K4).
2 &M

d_e . .ﬁm..T
.RH

We use the same notation. We set
Ag(z) = a_A(z—d_) + o A(z — dy) + oAz — dy) + ar A(z —dy)
and consider the self-adjoint operator Hy; = H(A4) under the
boundary conditions

lim |u(z)| < oo, c=d_, dy, dy dy.

|z—c|—0

7



No results in the general case. We discuss the two special cases.
A”_.v horizontal case A_I.; = KRgy = Dv . nm_ - A|I.:_.&a Dv; .nmm - T.ﬂcnm. Dv

d_e ® ® ed,

(2) vertical case (ko = 0) : dy = (0, k1d'/?), dy = (0, kad'/?)

iﬁmm

d_e .m&q_u
..&_,



4.1. Horizontal case
We set
By = az + o, B_ = az — oq.

There are four kinds of trajectories from d_ to d..

The phase factor changes along these trajectories:

(- ++) cos (Bym) + () cos (B).

]



The AB effect term depends on the distances between centers.

d_ e d,

We define the angle wy by
1/2 1/2
K_ —K Ky — K
o el <"
K_ + Ko Ki + Ko

The AB effect term is given by
7o = (1 — wp/m) cos (B47) + (wo/7) cos (B_)

OAEmAqﬂ\N.

COS Wy = ﬁ

for the trajectories from d_ to d,.
A similar relation remains true for the trajectories from d; to d_.

20)



We define
91(¢; d) = (e**/d) fo(¢) g
over D,, where fy((¢) is again defined by

fo(¢) = fF-(—w1 = w13 €) fi (w1 = —wi5C).

Theorem 2 Assume that my # 0 and a4 is not an integer. Then

the resonances are approximately determined by

g1(¢;d) = 1, ¢ € Dy,

as in Theorem 1.

21



4.2. Vertical case
Recall the notation :

Rn... - Acq Eunmuxmv A.w =1, Nvu E+ = o + Q, B- = ay — ay.

Assume that ks > K, (without loss of generality).
There are three kinds of trajectories from d_ to d..

B
d

ﬂ..mwlT

o
- = J./AWH”\U\\

The phase factor changes along these trajectories:

(-+-) exp (iB.m) + (-++) exp (iB_m) + (- - ) exp (—iB47) .



The AB effect term depends on the Fresnel-type integrals.
We define
I;(¢) = (2/m)"/* e/ [i /2 ds,
..J.Aﬁv = %4 (1/k- + .—\E+u:m ﬁ.r?__.u
for 3 = 1, 2.
The AB effect term is given by

p_(¢) = p1(¢) exp (iB4m) + p(C) exp (iB-7) + p2(C) exp (—iB,)

for the trajectories from d_ to d,, where

pr=0+15L())/2 p=0-15LK)/2 p=IAC) - I,(¢)) /2.

For the trajectories from d, to d_, the AB effect term is given by
p(¢) = p1(€) exp (—iBym) + p(¢) exp (—if-m) + p2(C) exp (i8¢ ) .

29



We define
g2(¢; d) = (e**4/d) fo(¢)p-(¢)p+(C)

over D,.
Theorem 3 Assume that pi(Ep) # 0 and ay is not an integer.
Then the resonances are approximately determined by

@mmﬁ.m n&v — H.._ ﬁ = .H.vn__..._

as in Theorem 1.



5. Strategy of proof of Theorem 1 (three solenoids)

5.1. Resolvent kernel for one solenoid

The scattering system by one solenoid is solvable.
We consider the self-adjoint operator

H = mﬁ.\w:ua \P: = Q:Lﬁhﬂwu V X .\.P_u = Mqﬂﬁcﬂmﬁuﬂu,

under the boundary condition _n.__Es lu(x)| < oo at the origin.
x| —

The operator H is expanded as the partial waves

H~ s (-0 + (" - 1/4)r?)@1Id, v=|l—a,
=

on L?(R?) ~ L*(0,00) ® L*(S").

P43



We write
z = (|z|cos 8, |z|sinf), y = (|y|cosw,|y|sinw),

in the polar coordinates.

The resolvent kernel R((; H)(x,y) is expanded as
R((; H)(z,y) = (2/4) Mm:aéu&_ (k(|=| A ly])) Hy ((J2] V |y]))
where H, = H" is the Hankel function of first kind and
k=cY2 o) Alyl = min (2], |y)), |o| V |yl = max (|, |y])-

The kernel grows exponentially for ¢ with Im ¢ < 0.

e One solenoid system has no resonances in C \ {0}.

20



The resolvent kernel admits the decomposition
R(¢; H)(z,y) = Gz, y5C) + Goe(, 95 €)-
e Gi.(z,y; ¢) corresponds to the free trajectory.
A particle goes to = from y directly without being scattered by
the solenoid at the origin.
e G..(z,y; () corresponds to the scattering trajectory.
A particle goes to x from y after scattered by the solenoid at the

origin.




Gi(z,y; () behaves like
G ~ m_mnem:?_ﬂ_a —y|), |®— yl > 1,

where 1 = 0 — w (|¥| < 7). We skip some numerical constants.
We write & = x/|z| for the direction of .

Gy, is singular along forward directions

g=—9 (W=0—-—w==xnw).

Gu(z,y;¢) ~ e *"Hy(k|z — y|) is not continuous.

28



G(z, y; ) behaves like

G.e ~ F(—7 — &;¢)(exp(—ik|y|)/|y|'/?) (exp(ik|a|)/|x|"/?)

where

i([op]4+1) (O4w)
Y com m~ Amn_.Ew__

f(—9 — &;¢) ~ sin(aym) ﬁm u ¢/

denotes the amplitude for scattering from —4 to @ by the solenoid

27apd(x). The denominator
1 — !l =g, Bl =—wn~ —1,

along the forward direction.
The forward amplitude f(—y — —9;() is divergent.

Gec(x,y; €) is also singular along forward directions.



The two singularities are canceled and
R(¢; H) (@, y) ~ cos(aom)Ho(klz — yl), |&—y| > 1,
along forward directions. In particular,
R(¢; H)(dy, d5) ~ cos(aom)Ho(k d).
In the general case when H = H(agA(- — dg)) (k # 0),
R(¢; H)(d+,ds) ~ m(C) Ho(k d),

where 7 (¢) is the AB effect term for the trajectory from d+ to d.
This relation plays a basic role in proving Theorem 1.

30



5.2. Resolvent kernel for two solenoids
By gauge transformations, we separate the two centers from each
other, and we compose the two resolvent kernels for each center.

1111111

immﬁ.

,\....m
/)
724

We control the integral over the intersection by a complex scaling
xs — (some complex variable), |xz3] > d.

This makes Im (k X (new variable)) > 0 even for ¢ with Im¢{ < 0,
and the composition of two kernels is convergent.
o |dy —d_| ~ k_d < d=> no resonances in Dy.

Al



5.3. Resolvent kernel for three solenoids
By composition, the resolvent kernel for three solenoids is con-

structed from resolvent kernels for {d_,dy} and for d,.

1,

Use a complex scaling for |zs| > d. For trapping region |z,| < d'/?,
the asymptotic analysis along the forward direction is used for

R(¢; H)(z,d_), H = H(Aj), Ao(zx)=apA(z— dy).

32



Appendix: semi—classical version
The semi—classical parameter h is regarded as 1/d.
Consider the operator (—thV — B)*, where

B(z) = v-A(z — p-) + v0A(x — pon) + Y+ A(z — Py),
p_ = (—k_,0), pon=(0,ch'?), p;=(k4,0), Ki>0.
Then
(—ihV — B)? ~ H(A4) (unitarily transformed),
Ag(z) = a_A(z —d_) + apA(z — do) + a L Az — dy),
d_ = (—k_d,0), do=(0,cd?), d;=(k4d,0), d=1/h,
ay = (v+/h) — [v&/h], @ = (v/h)—[w/h].

H



