Limit Theory for Statistics of Random Geometric **Structures**

Joe Yukich

Lehigh University

Talk is based on joint work with B. Błaszczyszyn and D. Yogeshwaran

Questions pertaining to geometric structures on random input $\mathcal{X} \subset \mathbb{R}^d$ often involve analyzing sums of spatially correlated terms

$$
\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X}),
$$

where the R-valued score function ξ , defined on pairs (x, \mathcal{X}) , represents the interaction of x with respect to \mathcal{X} .

Questions pertaining to geometric structures on random input $\mathcal{X} \subset \mathbb{R}^d$ often involve analyzing sums of spatially correlated terms

$$
\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X}),
$$

where the R-valued score function ξ , defined on pairs (x, \mathcal{X}) , represents the interaction of x with respect to \mathcal{X} .

The sums describe some global feature of the random system in terms of local contributions $\xi(x, \mathcal{X}), x \in \mathcal{X}$.

Questions pertaining to geometric structures on random input $\mathcal{X} \subset \mathbb{R}^d$ often involve analyzing sums of spatially correlated terms

$$
\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X}),
$$

where the R-valued score function ξ , defined on pairs (x, \mathcal{X}) , represents the interaction of x with respect to \mathcal{X} .

The sums describe some global feature of the random system in terms of local contributions $\xi(x, \mathcal{X}), x \in \mathcal{X}$.

Clique counts. $\mathcal{X} \subset \mathbb{R}^d$ finite, $r \in (0, \infty)$.

 \cdot Join two points of $\mathcal X$ iff they are at distance at most r. Vietoris-Rips complex (with parameter r) is simplicial complex whose k-simplices correspond to unordered $(k + 1)$ -tuples of points in X all pairwise within r of each other.

• For
$$
k \in \mathbb{N}
$$
 and $x \in \mathcal{X}$, put $\sigma_k(x, \mathcal{X}) := \frac{\text{number of } k\text{-simplices containing } x}{k+1}$

Clique counts. $\mathcal{X} \subset \mathbb{R}^d$ finite, $r \in (0, \infty)$.

 \cdot Join two points of $\mathcal X$ iff they are at distance at most r. Vietoris-Rips complex (with parameter r) is simplicial complex whose k-simplices correspond to unordered $(k + 1)$ -tuples of points in X all pairwise within r of each other.

- \cdot For $k \in \mathbb{N}$ and $x \in \mathcal{X}$, put $\sigma_k(x, \mathcal{X}) := \frac{\text{number of } k\text{-simplices containing } x}{k+1}$
- \cdot Total number of k -simplices in Vietoris-Rips complex: $\sum_{x \in \mathcal{X}} \sigma_k(x, \mathcal{X})$.

Chatterjee, Decreusefond et al., Eichelsbacher, Lachièze-Rey + Peccati, Reitzner + Schulte, Penrose + Y

Total edge length of graphs. $\mathcal{X} \subset \mathbb{R}^d$ finite. Given $x \in \mathcal{X}$, let x_{NN} be the nearest neighbor of x .

· Undirected nearest neighbor graph on \mathcal{X} : include an edge $\{x, y\}$ if $y = x_{NN}$ and/or $x = y_{NN}$.

 \cdot For $x \in \mathcal{X}$, put

$$
\xi(x, \mathcal{X}) := \begin{cases} \frac{1}{2} ||x - x_{NN}|| & \text{if } x, x_{NN} \text{ are mutual n.n.} \\ ||x - x_{NN}|| & \text{otherwise.} \end{cases}
$$

Total edge length of graphs. $\mathcal{X} \subset \mathbb{R}^d$ finite. Given $x \in \mathcal{X}$, let x_{NN} be the nearest neighbor of x .

· Undirected nearest neighbor graph on X: include an edge $\{x, y\}$ if $y = x_{NN}$ and/or $x = y_{NN}$.

 \cdot For $x \in \mathcal{X}$, put

$$
\xi(x,\mathcal{X}) := \begin{cases} \frac{1}{2}||x - x_{NN}|| & \text{if } x, x_{NN} \text{ are mutual n.n.} \\ ||x - x_{NN}|| & \text{otherwise.} \end{cases}
$$

 \cdot Total edge length of n.n. graph on \mathcal{X} : $\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X})$.

Chatterjee; Last, Peccati, $+$ Schulte; Steele; Penrose $+$ Y

Ex. 2: Germ-grain models

- \cdot $\mathcal{X} \subset \mathbb{R}^d$ a collection of 'germs'.
- $\cdot S_x, x \in \mathcal{X}$, a collection of 'grains' (closed bounded sets).
- · Germ-grain model: $\bigcup_{x \in \mathcal{X}} (x \oplus S_x)$.
- ·Surface area, Euler characteristic, clump count,... may be expressed as $\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X})$ for appropriate ξ . For example, for $x \in \mathcal{X}$ we put

 $\xi_{\mathsf{clump}}(x, \mathcal{X}) := (\mathsf{size} \;\; \mathsf{of} \;\; \mathsf{clump} \;\; \mathsf{of} \;\; \mathsf{germ}\text{-}\mathsf{grain} \;\; \mathsf{model} \;\; \mathsf{containing} \;\; x)^{-1}.$

Ex. 2: Germ-grain models

- \cdot $\mathcal{X} \subset \mathbb{R}^d$ a collection of 'germs'.
- $\cdot S_x, x \in \mathcal{X}$, a collection of 'grains' (closed bounded sets).
- · Germ-grain model: $\bigcup_{x \in \mathcal{X}} (x \oplus S_x)$.
- ·Surface area, Euler characteristic, clump count,... may be expressed as $\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X})$ for appropriate ξ . For example, for $x \in \mathcal{X}$ we put

 $\xi_{\mathsf{clump}}(x, \mathcal{X}) := (\mathsf{size} \;\; \mathsf{of} \;\; \mathsf{clump} \;\; \mathsf{of} \;\; \mathsf{germ}\text{-}\mathsf{grain} \;\; \mathsf{model} \;\; \mathsf{containing} \;\; x)^{-1}.$

- \cdot Clump count in germ-grain model equals $\ \sum_{x \in {\mathcal X}} \xi_{\mathsf{clump}}(x, {\mathcal X}).$
- \cdot Baddeley; Hall; Hug, Last $+$ Schulte; Molchanov; Penrose $+$ Y; Schneider $+$ Weil; Stoyan;...

Ex. 3: Random packing (Random sequential adsorption)

 \cdot $\mathcal{X} \subset \mathbb{R}^d$ finite. Assign elements $x \in \mathcal{X}$ time marks $\tau_x \in [0,1].$

 \cdot Let B_1, B_2, \ldots be a sequence of unit volume d-dimensional Euclidean balls with centers arriving sequentially at points $x \in \mathcal{X}$ and at arrival times τ_x .

 \cdot The first ball B_1 to arrive is packed. Recursively, for $i = 2, 3, ...,$ the *i*th ball is packed if it does not overlap any ball in $B_1, B_2, ..., B_{i-1}$ which has already been packed.

Ex. 3: Random packing (Random sequential adsorption)

 \cdot $\mathcal{X} \subset \mathbb{R}^d$ finite. Assign elements $x \in \mathcal{X}$ time marks $\tau_x \in [0,1].$

 \cdot Let B_1, B_2, \ldots be a sequence of unit volume d-dimensional Euclidean balls with centers arriving sequentially at points $x \in \mathcal{X}$ and at arrival times τ_x .

 \cdot The first ball B_1 to arrive is packed. Recursively, for $i = 2, 3, ...,$ the *i*th ball is packed if it does not overlap any ball in $B_1, B_2, ..., B_{i-1}$ which has already been packed.

• For $x \in \mathcal{X}$ define packing functional

$$
\rho(x,\mathcal{X}) := \begin{cases} 1 & \text{if ball arriving at } x \text{ is packed} \\ 0 & \text{otherwise} \end{cases}
$$

Then total number of packed balls equals $\sum_{x \in \mathcal{X}} \rho(x, \mathcal{X}).$

 \cdot Rényi, Coffman, Dvoretzky $+$ Robbins; Flory, Itoh $+$ Shepp; Torquato,...

- \cdot $\mathcal{X} \subset \mathbb{R}^d$ finite. Let $\text{co}(\mathcal{X})$ denote the convex hull of $\mathcal{X}.$
- \cdot For $x \in \mathcal{X}, k \in \{0, 1, ..., d-1\}$, we put

 $f_k(x, \mathcal{X}) := \frac{1}{k+1}$ (number of k – dimensional faces containing x).

- \cdot $\mathcal{X} \subset \mathbb{R}^d$ finite. Let $\text{co}(\mathcal{X})$ denote the convex hull of $\mathcal{X}.$
- \cdot For $x \in \mathcal{X}, k \in \{0, 1, ..., d-1\}$, we put

 $f_k(x, \mathcal{X}) := \frac{1}{k+1}$ (number of k – dimensional faces containing x).

 \cdot Total number of k -dimensional faces of ${\rm co}({\mathcal X})$ equals $\ \sum_{x\in{\mathcal X}} f_k(x,{\mathcal X}).$

 \cdot Rényi + Sulanke; Bárány; Buchta; Calka, Schreiber + Y; Groeneboom, Reitzner, Vu,...

 \cdot When $\mathcal{X} \subset \mathbb{R}^d$ is a random pt configuration, the sums $\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X})$ describe a global feature of some spatial random system.

- \cdot When $\mathcal{X} \subset \mathbb{R}^d$ is a random pt configuration, the sums $\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X})$ describe a global feature of some spatial random system.
- \cdot Question. What is the distribution of these sums for large pt configurations X ? LLN? CLT?

Goals

 $\mathcal{P} \colon \;$ stationary pt process on \mathbb{R}^d

Restrict to windows: $\mathcal{P}_n := \mathcal{P} \cap [-\frac{n^{1/d}}{2}]$ $\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}$ $\frac{1/a}{2}]^d$.

Goals

 $\mathcal{P} \colon \;$ stationary pt process on \mathbb{R}^d

Restrict to windows: $\mathcal{P}_n := \mathcal{P} \cap [-\frac{n^{1/d}}{2}]$ $\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}$ $\frac{1/a}{2}]^d$.

Goal. Given a score function $\xi(\cdot,\cdot)$ defined on pairs (x,\mathcal{X}) , given a pt process P , we seek the limit theory (LLN, CLT, variance asymptotics) for the total score

$$
\sum_{x \in \mathcal{P}_n} \xi(x, \mathcal{P}_n)
$$

and total measure

$$
\mu_n^{\xi} := \sum_{x \in \mathcal{P}_n} \xi(x, \mathcal{P}_n) \delta_{n^{-1/d}x}.
$$

Tractable problems must be *local* in the sense that points far away from x should not play a role in the evaluation of the score $\xi(x, \mathcal{P}_n)$.

We assume translation invariant scores: $\xi(x, \mathcal{X}) = \xi(0, \mathcal{X} - x)$. Recall $\mathcal{P}_n := \mathcal{P} \cap [-\frac{n^{1/d}}{2}]$ $\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}$ $\left[\frac{1/a}{2}\right]^d$

We assume translation invariant scores: $\xi(x, \mathcal{X}) = \xi(0, \mathcal{X} - x)$. Recall $\mathcal{P}_n := \mathcal{P} \cap [-\frac{n^{1/d}}{2}]$ $\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}$ $\left[\frac{1/a}{2}\right]^d$

Key Definition. ξ is *stabilizing* wrt pt process $\mathcal P$ on $\mathbb R^d$ if for all $x\in\mathcal P$ there is $R:=R^\xi(x,\mathcal{P})<\infty$ a.s. (a 'radius of stabilization') such that

$$
\xi(x,\mathcal{P}\cap B_R(x))=\xi(x,\mathcal{P}\cap B_R(x)\cup(\mathcal{A}\cap B_R^c(x))).
$$

for any locally finite $\mathcal{A}\subset\mathbb{R}^d$. ξ is *exponentially stabilizing* wrt $\mathcal P$ if there is a constant c such that

$$
\sup_{x \in \mathbb{R}^d} \sup_n P[R^\xi(x, \mathcal{P}_n) \ge r] \le c \exp(-\frac{r}{c}), \quad r \in [1, \infty).
$$

$$
\mathcal{P} \colon \text{ a pt process on } \mathbb{R}^d; \ \ \mathcal{P}_n := \mathcal{P} \cap [-\tfrac{n^{1/d}}{2}, \tfrac{n^{1/d}}{2}]^d.
$$

Definition. ξ satisfies the p moment condition wrt P if

$$
\sup_n \sup_{x,y\in\mathbb{R}^d} \mathbb{E} |\xi(x,\mathcal{P}_n\cup\{y\})|^p < \infty.
$$

Weak law of large numbers for Poisson input ${\mathcal H}$

Let $\mathcal H$ be a rate 1 Poisson pt process on $\mathbb R^d;$ $\mathcal H_n:=\mathcal H\cap[\frac{-n^{1/d}}{2}]$ $\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}$ $\frac{1}{2}a\big]$ ^d.

$$
\mu_n^{\xi} := \sum_{x \in \mathcal{H}_n} \xi(x, \mathcal{H}_n) \delta_{n^{-1/d}x}.
$$

Thm (WLLN): If ξ is stabilizing wrt H, if ξ satisfies the p moment condition for some $p\in (1,\infty)$, then for all $f\in B([-\frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}]^d$) we have

$$
|n^{-1}\mathbb{E}\langle\mu_n^{\xi},f\rangle-\mathbb{E}\xi(\mathbf{0},\mathcal{H}\cup\{\mathbf{0}\})\int_{[-\frac{1}{2},\frac{1}{2}]^d}f(x)dx|\leq\epsilon_n.
$$

Weak law of large numbers for Poisson input ${\mathcal H}$

Let $\mathcal H$ be a rate 1 Poisson pt process on $\mathbb R^d;$ $\mathcal H_n:=\mathcal H\cap[\frac{-n^{1/d}}{2}]$ $\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}$ $\frac{1}{2}a\big]$ ^d.

$$
\mu_n^{\xi} := \sum_{x \in \mathcal{H}_n} \xi(x, \mathcal{H}_n) \delta_{n^{-1/d}x}.
$$

Thm (WLLN): If ξ is stabilizing wrt H, if ξ satisfies the p moment condition for some $p\in (1,\infty)$, then for all $f\in B([-\frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}]^d$) we have

$$
|n^{-1}\mathbb{E}\langle\mu_n^{\xi},f\rangle-\mathbb{E}\xi(\mathbf{0},\mathcal{H}\cup\{\mathbf{0}\})\int_{[-\frac{1}{2},\frac{1}{2}]^d}f(x)dx|\leq\epsilon_n.
$$

Penrose and Y (2003): $\epsilon_n = o(1)$.

Schulte $+$ Y (2016): $\;\epsilon_n = O(n^{-1/d})$ if ξ is exponentially stabilizing wrt ${\cal H}.$

Recall
$$
\mu_n^{\xi} := \sum_{x \in \mathcal{H}_n} \xi(x, \mathcal{H}_n) \delta_{n^{-1/d}x}
$$
.

Thm (CLT): Assume ξ is exponentially stabilizing wrt H and that ξ satisfies the p moment condition for some $p\in (5,\infty).$ If $f\in B([-\frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}$]^d) satisfies $\text{Var}\langle \mu_n^\xi,f\rangle = \Omega(n)$, then

$$
\sup_{t\in\mathbb{R}}\left|P\left[\frac{\langle\mu_n^{\xi},f\rangle-\mathbb{E}\,\langle\mu_n^{\xi},f\rangle}{\sqrt{\text{Var}\langle\mu_n^{\xi},f\rangle}}\leq t\right]-P[N(0,1)\leq t]\right|\leq\epsilon_n.
$$

Recall
$$
\mu_n^{\xi} := \sum_{x \in \mathcal{H}_n} \xi(x, \mathcal{H}_n) \delta_{n^{-1/d}x}
$$
.

Thm (CLT): Assume ξ is exponentially stabilizing wrt H and that ξ satisfies the p moment condition for some $p\in (5,\infty).$ If $f\in B([-\frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}$]^d) satisfies $\text{Var}\langle \mu_n^\xi,f\rangle = \Omega(n)$, then

$$
\sup_{t\in\mathbb{R}}\left|P\left[\frac{\langle\mu_n^{\xi},f\rangle-\mathbb{E}\,\langle\mu_n^{\xi},f\rangle}{\sqrt{\text{Var}\langle\mu_n^{\xi},f\rangle}}\leq t\right]-P[N(0,1)\leq t]\right|\leq\epsilon_n.
$$

Penrose $+$ Y (2005), Penrose (2007): $\epsilon_n = O((\log n)^{3d} n^{-1/2})$.

Recall
$$
\mu_n^{\xi} := \sum_{x \in \mathcal{H}_n} \xi(x, \mathcal{H}_n) \delta_{n^{-1/d}x}
$$
.

Thm (CLT): Assume ξ is exponentially stabilizing wrt H and that ξ satisfies the p moment condition for some $p\in (5,\infty).$ If $f\in B([-\frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}$]^d) satisfies $\text{Var}\langle \mu_n^\xi,f\rangle = \Omega(n)$, then

$$
\sup_{t\in\mathbb{R}}\left|P\left[\frac{\langle\mu_n^{\xi},f\rangle-\mathbb{E}\,\langle\mu_n^{\xi},f\rangle}{\sqrt{\mathrm{Var}\langle\mu_n^{\xi},f\rangle}}\leq t\right]-P[N(0,1)\leq t]\right|\leq\epsilon_n.
$$

Penrose $+$ Y (2005), Penrose (2007): $\epsilon_n = O((\log n)^{3d} n^{-1/2})$.

Last, Peccati + Schulte (2016): $\epsilon_n = \gamma_1 + \gamma_2 + ... + \gamma_5$.

Recall
$$
\mu_n^{\xi} := \sum_{x \in \mathcal{H}_n} \xi(x, \mathcal{H}_n) \delta_{n^{-1/d}x}
$$
.

Thm (CLT): Assume ξ is exponentially stabilizing wrt H and that ξ satisfies the p moment condition for some $p\in (5,\infty).$ If $f\in B([-\frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}$]^d) satisfies $\text{Var}\langle \mu_n^\xi,f\rangle = \Omega(n)$, then

$$
\sup_{t\in\mathbb{R}}\left|P\left[\frac{\langle\mu_n^{\xi},f\rangle-\mathbb{E}\,\langle\mu_n^{\xi},f\rangle}{\sqrt{\mathrm{Var}\langle\mu_n^{\xi},f\rangle}}\leq t\right]-P[N(0,1)\leq t]\right|\leq\epsilon_n.
$$

Penrose $+$ Y (2005), Penrose (2007): $\epsilon_n = O((\log n)^{3d} n^{-1/2})$.

Last, Peccati + Schulte (2016): $\epsilon_n = \gamma_1 + \gamma_2 + ... + \gamma_5$.

Lachièze-Rey, Schulte, $+$ Y (2016): $\epsilon_n = O(n^{-1/2})$.

Variance asymptotics for Poisson input; volume order fluctuations

Given homogenous rate 1 Poisson input $\mathcal H$ on $\mathbb R^d$, and a score ξ , put

$$
\sigma^2(\xi) := \mathbb{E} \xi^2(\mathbf{0}, \mathcal{H}) + \int_{\mathbb{R}^d} \mathbb{E} \xi(\mathbf{0}, \mathcal{H} \cup \{x\}) \xi(x, \mathcal{H} \cup \{\mathbf{0}\}) - \mathbb{E} \xi(\mathbf{0}, \mathcal{H}) \mathbb{E} \xi(x, \mathcal{H}) dx.
$$

Variance asymptotics for Poisson input; volume order fluctuations

Given homogenous rate 1 Poisson input $\mathcal H$ on $\mathbb R^d$, and a score ξ , put

$$
\sigma^2(\xi) := \mathbb{E}\,\xi^2(\mathbf{0},\mathcal{H}) + \int_{\mathbb{R}^d} \mathbb{E}\,\xi(\mathbf{0},\mathcal{H}\cup\{x\})\xi(x,\mathcal{H}\cup\{\mathbf{0}\}) - \mathbb{E}\,\xi(\mathbf{0},\mathcal{H})\mathbb{E}\,\xi(x,\mathcal{H})dx.
$$

Thm (variance asymptotics): If ξ is exponentially stabilizing wrt H, if ξ satisfies the p moment condition for some $p \in (2,\infty)$, then for all $f \in B([-\frac{1}{2}]$ $\frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}]^d)$ we have

$$
\lim_{n \to \infty} n^{-1} \text{Var} \langle \mu_n^{\xi}, f \rangle = \sigma^2(\xi) \int_{[-\frac{1}{2}, \frac{1}{2}]^d} f^2(x) dx \in [0, \infty).
$$

Baryshnikov $+$ Y. (2005); Penrose (2007)

· Question. If the input pt process is not Poisson, when do we get results which are qualitatively similar?

· Soshnikov (2002): establishes asymptotic normality of the linear statistics

$$
\sum_{x\in\mathcal{P}_n}\delta_{n^{-1/d}x}
$$

where P is determinantal pt process, $P_n := \mathcal{P} \cap W_n$.

· Question. If the input pt process is not Poisson, when do we get results which are qualitatively similar?

· Soshnikov (2002): establishes asymptotic normality of the linear statistics

$$
\sum_{x\in\mathcal{P}_n}\delta_{n^{-1/d}x}
$$

where P is determinantal pt process, $P_n := \mathcal{P} \cap W_n$.

· Nazarov and Sodin (2012): establish asymptotic normality of the linear statistics

$$
\sum_{x\in\mathcal{P}_n}\delta_{n^{-1/d}x}
$$

where P is zero set of Gaussian analytic function, $P_n := \mathcal{P} \cap W_n$.

· We want to extend these results to non-linear statistics

$$
\mu_n^{\xi} := \sum_{x \in \mathcal{P}_n} \xi(x, \mathcal{P}_n) \delta_{n^{-1/d}x}.
$$

Clustering pt processes

Def. Given a simple pt process $\mathcal P$ on $\mathbb R^d$, the k pt correlation function $\rho^{(k)}:(\mathbb{R}^d)^k\to[0,\infty)$ is defined via

$$
\mathbb{E}\left[\Pi_{i=1}^k \text{card}(\mathcal{P} \cap B_i)\right] = \int_{B_1} \dots \int_{B_k} \rho^{(k)}(x_1, ..., x_k) dx_1...dx_k,
$$

where $B_1,...,B_k$ are disjoint subsets of $\mathbb{R}^d.$

Rk. $\rho^{(k)}(x_1,...,x_k)=\Pi_{i=1}^k\rho^{(1)}(x_i)$ characterizes the Poisson pt process

[Stoc](#page-33-0)[h](#page-31-0)[as](#page-32-0)[tic](#page-33-0) [G](#page-34-0)[eom](#page-0-0)[etry](#page-53-0) [and](#page-0-0) Italian Industry and Italia Industry and Italia Industry and Italia Industry and Italia

Clustering pt processes

Def. Given a simple pt process $\mathcal P$ on $\mathbb R^d$, the k pt correlation function $\rho^{(k)}:(\mathbb{R}^d)^k\to[0,\infty)$ is defined via

$$
\mathbb{E}\left[\Pi_{i=1}^k \text{card}(\mathcal{P} \cap B_i)\right] = \int_{B_1} \dots \int_{B_k} \rho^{(k)}(x_1, ..., x_k) dx_1...dx_k,
$$

where $B_1,...,B_k$ are disjoint subsets of $\mathbb{R}^d.$

Rk. $\rho^{(k)}(x_1,...,x_k)=\Pi_{i=1}^k\rho^{(1)}(x_i)$ characterizes the Poisson pt process

Key Definition A pt process P clusters if there is a fast decreasing function $\phi:\mathbb{R}^+\rightarrow\mathbb{R}^+$ such that for all $p,q\in\mathbb{N}$ there are constants $c_{p,q}$ and $C_{p,q}$ such that for all $x_1,...,x_{p+q}\in \mathbb{R}^d$,

$$
|\rho^{(p+q)}(x_1, ..., x_{p+q}) - \rho^{(p)}(x_1, ..., x_p)\rho^{(q)}(x_{p+1}, ..., x_{p+q})| \leq C_{p,q}\phi(-c_{p,q}s),
$$

where $s := \inf_{i \in \{1, ..., p\}, j \in \{p+1, ..., p+q\}} |x_i - x_j|.$

 $(\phi$ 'fast decreasi[n](#page-32-0)g' me[an](#page-34-0)s ϕ deca[y](#page-31-0)ing faster than any [p](#page-32-0)[o](#page-34-0)[wer](#page-0-0)[\)](#page-53-0)

A pt process is determinantal (DPP) if its correlation functions satisfy

$$
\rho^{(k)}(x_1, ..., x_k) = \det(K(x_i, x_j))_{1 \le i \le j \le k},
$$

where $K(\cdot,\cdot)$ is Hermitian kernel of integral operator from $L^2(\mathbb{R}^d)$ to itself.

A pt process is determinantal (DPP) if its correlation functions satisfy

$$
\rho^{(k)}(x_1, ..., x_k) = \det(K(x_i, x_j))_{1 \le i \le j \le k},
$$

where $K(\cdot,\cdot)$ is Hermitian kernel of integral operator from $L^2(\mathbb{R}^d)$ to itself.

Fact (Błaszczyszyn, Yogeshwaran, $+$ Y (2016)). If $|K(x, y)| \leq \phi(||x - y||)$, with ϕ fast decreasing, then the DPP clusters.

Ex. Infinite Ginibre ensemble on complex plane clusters with kernel

$$
K(z_1, z_2) = \exp(iIm(z_1\bar{z}_2) - \frac{1}{2}|z_1 - z_2|^2).
$$

 \cdot Let $X_j, j \geq 1$, be i.i.d. standard complex Gaussians. Consider the Gaussian entire function

$$
F(z) := \sum_{j=1}^{\infty} \frac{X_j}{\sqrt{j!}} z^j.
$$

 \cdot Zero set $Z_F:=F^{-1}(\{0\})$ is stationary.

 \cdot Let $X_j, j \geq 1$, be i.i.d. standard complex Gaussians. Consider the Gaussian entire function

$$
F(z) := \sum_{j=1}^{\infty} \frac{X_j}{\sqrt{j!}} z^j.
$$

- \cdot Zero set $Z_F:=F^{-1}(\{0\})$ is stationary.
- \cdot Z_F exhibits local repulsivity.
- \cdot Z_F strongly clusters (Nazarov and Sodin (2012)).

Consider the class Ψ of Hamiltonians consisting of:

- · pair potentials without negative part,
- · area interaction Hamiltonians, and
- · hard core Hamiltonians.

 \cdot For $\Psi\in {\bf \Psi}$, let $\mathcal{P}^{\beta\Psi}$ be the Gibbs pt process having Radon-Nikodym derivative $\exp(-\beta \Psi(\cdot))$ with respect to a reference homogeneous Poisson pt process \mathcal{H}_{τ} on \mathbb{R}^d of intensity $\tau.$

 \cdot There is a range of inverse temperature and activity parameters (β and $\tau)$ such that $\mathcal{P}^{\beta\Psi}$ clusters (Schreiber and Y, 2013).

Let ${\mathcal P}$ be clustering pt process on ${\mathbb R}^d.$ Recall ${\mathcal P}_n := {\mathcal P} \cap [\frac{-n^{1/d}}{2}$ $\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}$ $\frac{1/a}{2}]^d$ and

$$
\mu_n^{\xi} := \sum_{x \in \mathcal{P}_n} \xi(x, \mathcal{P}_n) \delta_{n^{-1/d}x}.
$$

Thm (BYY '16): If ξ is stabilizing wrt \mathcal{P} , if ξ satisfies the p moment condition for some $p\in (1,\infty)$, then for all $f\in B([-\frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}]^d$) we have

$$
\lim_{n\to\infty} n^{-1} \mathbb{E} \langle \mu_n^{\xi}, f \rangle = \mathbb{E} \xi(\mathbf{0}, \mathcal{P} \cup \{\mathbf{0}\}) \int_{[-\frac{1}{2},\frac{1}{2}]^d} f(x) dx \cdot \rho^{(1)}(\mathbf{0}).
$$

Gaussian fluctuations for clustering input P

Thm (BYY '16) $\mu_n^\xi:=\sum_{x\in\mathcal{P}_n}\xi(x,\mathcal{P}_n)\delta_{n^{-1/d}x}.$ Assume

- \cdot $\mathcal P$ clusters.
- \cdot ξ has deterministic radius of stabilization wrt \mathcal{P} .
- $\cdot \xi$ satisfies the p moment condition for some $p \in (2,\infty)$, and
- $\cdot \; \text{Var} \langle \mu_n^\xi, f \rangle = \Omega(n^\alpha)$ for some $\alpha \in (0,1), \: f \in B([-\frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}]^d$). Then

$$
\frac{\langle \mu_n^{\xi}, f \rangle - \mathbb{E} \langle \mu_n^{\xi}, f \rangle}{\sqrt{\text{Var}\langle \mu_n^{\xi}, f \rangle}} \xrightarrow{\mathcal{D}} N(0, 1).
$$

Gaussian fluctuations for clustering input P

Thm (BYY '16)
$$
\mu_n^{\xi} := \sum_{x \in \mathcal{P}_n} \xi(x, \mathcal{P}_n) \delta_{n^{-1/d}x}
$$
. Assume

- \cdot $\mathcal P$ clusters.
- \cdot ξ has deterministic radius of stabilization wrt \mathcal{P} .
- $\cdot \xi$ satisfies the p moment condition for some $p \in (2,\infty)$, and
- $\cdot \; \text{Var} \langle \mu_n^\xi, f \rangle = \Omega(n^\alpha)$ for some $\alpha \in (0,1), \: f \in B([-\frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}]^d$). Then

$$
\frac{\langle \mu_n^{\xi}, f \rangle - \mathbb{E} \langle \mu_n^{\xi}, f \rangle}{\sqrt{\text{Var} \langle \mu_n^{\xi}, f \rangle}} \xrightarrow{\mathcal{D}} N(0, 1).
$$

Remarks. If P is determinantal with fast decreasing kernel then this extends Soshnikov (2002), who restricts to linear statistics $\sum_{x\in\mathcal{P}_n}\delta_{n^{-1/d}x},$ that is he puts $\xi \equiv 1$.

 \cdot If P is zero set of Gaussian entire function, this extends Nazarov and Sodin (2012), who also restrict to $\sum_{x\in\mathcal{P}_n}\delta_{n^{-1/d}x}.$ $\sum_{x\in\mathcal{P}_n}\delta_{n^{-1/d}x}.$ $\sum_{x\in\mathcal{P}_n}\delta_{n^{-1/d}x}.$ [Stoc](#page-42-0)[h](#page-39-0)[as](#page-40-0)[tic](#page-41-0) [G](#page-42-0)[eom](#page-0-0)[etry](#page-53-0) [and](#page-0-0) [Its](#page-53-0) [Ap](#page-0-0)[plicat](#page-53-0)ion, Nantes, April 4-8, 2016 22 **Thm (BYY '16)** $\mu_n^\xi:=\sum_{x\in\mathcal{P}_n}\xi(x,\mathcal{P}_n)\delta_{n^{-1/d}x}.$ Assume

- \cdot P clusters and clustering coeff. satisfy mild growth condition
- $\cdot \xi$ exponentially stabilizing wrt \mathcal{P} ,
- $\cdot \xi$ satisfies the p moment condition for some $p \in (2,\infty)$, and
- $\cdot \; \text{Var} \langle \mu_n^\xi, f \rangle = \Omega(n^\alpha)$ for some $\alpha \in (0,1), \: f \in B([-\frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}]^d$). Then

$$
\frac{\langle \mu_n^{\xi}, f \rangle - \mathbb{E} \langle \mu_n^{\xi}, f \rangle}{\sqrt{\text{Var} \langle \mu_n^{\xi}, f \rangle}} \xrightarrow{\mathcal{D}} N(0, 1).
$$

Remark. If P is determinantal with fast decreasing kernel (e.g. Ginibre) then P satisfies stated condition.

Variance asymptotics for clustering input P

 \cdot Given clustering input P and a score ξ , put

 \sim

$$
\sigma^2(\xi):=\mathbb{E}\,\xi^2(\mathbf{0},\mathcal{P})\rho^{(1)}(\mathbf{0})+
$$

$$
\int_{\mathbb{R}^d} \mathbb{E}\,\xi(\mathbf{0},\mathcal{P}\cup x)\xi(x,\mathcal{P}\cup\mathbf{0})\rho^{(2)}(\mathbf{0},x)-\mathbb{E}\,\xi(\mathbf{0},\mathcal{P})\rho^{(1)}(\mathbf{0})\mathbb{E}\,\xi(x,\mathcal{P})\rho^{(1)}(\mathbf{x})dx.
$$

Variance asymptotics for clustering input P

 \cdot Given clustering input P and a score ξ , put

$$
\sigma^2(\xi) := \mathbb{E}\,\xi^2(\mathbf{0},\mathcal{P})\rho^{(1)}(\mathbf{0}) +
$$

Z $\int_{\mathbb{R}^d} \mathbb{E} \, \xi(\mathbf{0}, \mathcal{P} \cup x) \xi(x, \mathcal{P} \cup \mathbf{0}) \rho^{(2)}(\mathbf{0},x) - \mathbb{E} \, \xi(\mathbf{0}, \mathcal{P}) \rho^{(1)}(\mathbf{0}) \mathbb{E} \, \xi(x, \mathcal{P}) \rho^{(1)}(\mathbf{x}) dx.$

• **Thm (BYY '16)**: If ξ is exponentially stabilizing wrt \mathcal{P} , if ξ satisfies the p moment condition for some $p\in(2,\infty)$, then for all $f\in B([-\frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}$]^d) we have

$$
\lim_{n \to \infty} n^{-1} \text{Var} \langle \mu_n^{\xi}, f \rangle = \sigma^2(\xi) \int_{[-\frac{1}{2}, \frac{1}{2}]^d} f^2(x) dx \in [0, \infty).
$$

 \cdot Rk. When $\mathcal P$ is determinantal with fast decreasing kernel this extends Soshnikov (2002), who assumes $\xi \equiv 1$.

Proof idea for CLT

 \cdot Given ξ , consider k mixed moment functions $m_{(k)}:(\mathbb{R}^d)^k\to\mathbb{R}$ given by

$$
m_{(k)}(x_1, ..., x_k; \mathcal{P}_n) := \mathbb{E} \prod_{i=1}^k \xi(x_i, \mathcal{P}_n) \rho^{(k)}(x_1, ..., x_k).
$$

 \cdot We show that the mixed moments cluster, that is for all $p,q\in\mathbb{N}$ there are constants $c_{p,q}$ and $C_{p,q}$ s.t. for all $x_1,...,x_{p+q} \in \mathbb{R}^d$,

$$
|m_{(p+q)}(x_1,...,x_{p+q})-m_{(p)}(x_1,...,x_p)m_{(q)}(x_{p+1},...,x_{p+q})| \leq C_{p,q}\varphi(-c_{p,q}s),
$$

where

$$
s := \inf_{i \in \{1, \dots, p\}, \ j \in \{p+1, \dots, p+q\}} |x_i - x_j|
$$

and where φ is fast decreasing.

Proof idea for CLT

 \cdot Given ξ , consider k mixed moment functions $m_{(k)}:(\mathbb{R}^d)^k\to\mathbb{R}$ given by

$$
m_{(k)}(x_1, ..., x_k; \mathcal{P}_n) := \mathbb{E} \Pi_{i=1}^k \xi(x_i, \mathcal{P}_n) \rho^{(k)}(x_1, ..., x_k).
$$

• We show that the mixed moments cluster, that is for all $p, q \in \mathbb{N}$ there are constants $c_{p,q}$ and $C_{p,q}$ s.t. for all $x_1,...,x_{p+q} \in \mathbb{R}^d$,

$$
|m_{(p+q)}(x_1,...,x_{p+q})-m_{(p)}(x_1,...,x_p)m_{(q)}(x_{p+1},...,x_{p+q})| \leq C_{p,q}\varphi(-c_{p,q}s),
$$

where

$$
s := \inf_{i \in \{1, \dots, p\}, \ j \in \{p+1, \dots, p+q\}} |x_i - x_j|
$$

and where φ is fast decreasing.

 \cdot P clusters and ξ exp. stabilizing \Rightarrow mixed moments cluster

Proof idea for CLT

 \cdot Given ξ , consider k mixed moment functions $m_{(k)}:(\mathbb{R}^d)^k\to\mathbb{R}$ given by

$$
m_{(k)}(x_1, ..., x_k; \mathcal{P}_n) := \mathbb{E} \Pi_{i=1}^k \xi(x_i, \mathcal{P}_n) \rho^{(k)}(x_1, ..., x_k).
$$

 \cdot We show that the mixed moments cluster, that is for all $p,q\in\mathbb{N}$ there are constants $c_{p,q}$ and $C_{p,q}$ s.t. for all $x_1,...,x_{p+q} \in \mathbb{R}^d$,

$$
|m_{(p+q)}(x_1,...,x_{p+q})-m_{(p)}(x_1,...,x_p)m_{(q)}(x_{p+1},...,x_{p+q})| \leq C_{p,q}\varphi(-c_{p,q}s),
$$

where

$$
s := \inf_{i \in \{1, \dots, p\}, \ j \in \{p+1, \dots, p+q\}} |x_i - x_j|
$$

and where φ is fast decreasing.

 \cdot P clusters and ξ exp. stabilizing \Rightarrow mixed moments cluster

equivalants of
$$
\frac{\langle \mu_n^{\xi}, f \rangle - \mathbb{E} \langle \mu_n^{\xi}, f \rangle}{\sqrt{\text{Var}\langle \mu_n^{\xi}, f \rangle}}
$$
 converge to cumulants of $N(0, 1)$.

General results yield WLLN, Gaussian fluctuations, variance asymptotics for statistics of geometric structures on clustering pt processes (CPP):

(i) Vietoris-Rips clique count on any CPP, including DPP with fast decreasing kernel, zero set of Gaussian entire function.

 \ldots extends Chatterjee, Lachièze-Rey + Peccati, Reitzner + Schulte, Yogeshwaran $+$ Adler (2015)

General results yield WLLN, Gaussian fluctuations, variance asymptotics for statistics of geometric structures on clustering pt processes (CPP):

(i) Vietoris-Rips clique count on any CPP, including DPP with fast decreasing kernel, zero set of Gaussian entire function.

 \ldots extends Chatterjee, Lachièze-Rey + Peccati, Reitzner + Schulte, Yogeshwaran $+$ Adler (2015)

(ii) total volume and surface area of germ-grain model with germs given by points in CPP, i.i.d. grains with bounded diameter.

... extends Penrose $+$ Y (2005); Hug, Last, Schulte (2015)

General results yield WLLN, Gaussian fluctuations, variance asymptotics for statistics of geometric structures on clustering pt processes (CPP):

(i) Vietoris-Rips clique count on any CPP, including DPP with fast decreasing kernel, zero set of Gaussian entire function.

 \ldots extends Chatterjee, Lachièze-Rey + Peccati, Reitzner + Schulte, Yogeshwaran $+$ Adler (2015)

(ii) total volume and surface area of germ-grain model with germs given by points in CPP, i.i.d. grains with bounded diameter.

 \ldots extends Penrose $+$ Y (2005); Hug, Last, Schulte (2015)

(iii) total edge length in knn graph on DPP with fast decreasing kernel.

... extends Steele (1988); Penrose $+$ Y (2005); Hug, Last, Schulte (2015)

General results yield WLLN, Gaussian fluctuations, variance asymptotics for statistics of geometric structures on clustering pt processes (CPP):

(i) Vietoris-Rips clique count on any CPP, including DPP with fast decreasing kernel, zero set of Gaussian entire function.

 \ldots extends Chatterjee, Lachièze-Rey + Peccati, Reitzner + Schulte, Yogeshwaran $+$ Adler (2015)

(ii) total volume and surface area of germ-grain model with germs given by points in CPP, i.i.d. grains with bounded diameter.

 \ldots extends Penrose $+$ Y (2005); Hug, Last, Schulte (2015)

(iii) total edge length in knn graph on DPP with fast decreasing kernel.

... extends Steele (1988); Penrose $+$ Y (2005); Hug, Last, Schulte (2015)

(iv) the number of k -faces of convex hull of DPP (with fast decreasing kernel) on a volume n ball ... extends Reitzner (2005); Calka, Schreiber $+$ $\frac{\mathsf{Y}}{\mathsf{Y}}$ $\left(\frac{2008}{2013} \right)$.
Joe Yukich (Lehigh University) Limit Theory for Statistics of Random Geome [Stoc](#page-52-0)[h](#page-47-0)[as](#page-48-0)[tic](#page-52-0) [G](#page-53-0)[eom](#page-0-0)[etry](#page-53-0) [and](#page-0-0) [Its](#page-53-0) [Ap](#page-0-0)[plicat](#page-53-0)ion, Nantes, April 4-8, 2016 26

General results yield WLLN, Gaussian fluctuations, variance asymptotics for statistics of geometric structures on clustering pt processes (CPP):

(i) Vietoris-Rips clique count on any CPP, including DPP with fast decreasing kernel, zero set of Gaussian entire function.

 \ldots extends Chatterjee, Lachièze-Rey + Peccati, Reitzner + Schulte, Yogeshwaran $+$ Adler (2015)

(ii) total volume and surface area of germ-grain model with germs given by points in CPP, i.i.d. grains with bounded diameter.

 \ldots extends Penrose $+$ Y (2005); Hug, Last, Schulte (2015)

(iii) total edge length in knn graph on DPP with fast decreasing kernel.

... extends Steele (1988); Penrose $+$ Y (2005); Hug, Last, Schulte (2015)

(iv) the number of k -faces of convex hull of DPP (with fast decreasing kernel) on a volume n ball ... extends Reitzner (2005); Calka, Schreiber $+$ $\frac{\mathsf{Y}}{\mathsf{Y}}$ $\left(\frac{2008}{2013} \right)$.
Joe Yukich (Lehigh University) Limit Theory for Statistics of Random Geome [Stoc](#page-53-0)[h](#page-47-0)[as](#page-48-0)[tic](#page-52-0) [G](#page-53-0)[eom](#page-0-0)[etry](#page-53-0) [and](#page-0-0) [Its](#page-53-0) [Ap](#page-0-0)[plicat](#page-53-0)ion, Nantes, April 4-8, 2016 26

THANK YOU