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Introduction

Talk is based on joint work with B. B laszczyszyn and D. Yogeshwaran
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Introduction

Questions pertaining to geometric structures on random input X ⊂ Rd
often involve analyzing sums of spatially correlated terms∑

x∈X
ξ(x,X ),

where the R-valued score function ξ, defined on pairs (x,X ), represents
the interaction of x with respect to X .

The sums describe some global feature of the random system in terms of
local contributions ξ(x,X ), x ∈ X .
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Ex. 1: Statistics of random graphs

Clique counts. X ⊂ Rd finite, r ∈ (0,∞).

· Join two points of X iff they are at distance at most r. Vietoris-Rips
complex (with parameter r) is simplicial complex whose k-simplices
correspond to unordered (k + 1)-tuples of points in X all pairwise within r
of each other.

· For k ∈ N and x ∈ X , put σk(x,X ) := number of k-simplices containing x
k+1

· Total number of k-simplices in Vietoris-Rips complex:
∑

x∈X σk(x,X ).

Chatterjee, Decreusefond et al., Eichelsbacher, Lachièze-Rey + Peccati,
Reitzner + Schulte, Penrose + Y

Joe Yukich (Lehigh University ) Limit Theory for Statistics of Random Geometric Structures
Stochastic Geometry and Its Application, Nantes, April 4-8, 2016 4

/ 27



Ex. 1: Statistics of random graphs

Clique counts. X ⊂ Rd finite, r ∈ (0,∞).

· Join two points of X iff they are at distance at most r. Vietoris-Rips
complex (with parameter r) is simplicial complex whose k-simplices
correspond to unordered (k + 1)-tuples of points in X all pairwise within r
of each other.

· For k ∈ N and x ∈ X , put σk(x,X ) := number of k-simplices containing x
k+1

· Total number of k-simplices in Vietoris-Rips complex:
∑

x∈X σk(x,X ).

Chatterjee, Decreusefond et al., Eichelsbacher, Lachièze-Rey + Peccati,
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Ex. 1: Statistics of random graphs

Total edge length of graphs. X ⊂ Rd finite. Given x ∈ X , let xNN be
the nearest neighbor of x.

· Undirected nearest neighbor graph on X : include an edge {x, y} if
y = xNN and/or x = yNN .

· For x ∈ X , put

ξ(x,X ) :=

{
1
2 ||x− xNN || if x, xNN are mutual n.n.

||x− xNN || otherwise.

· Total edge length of n.n. graph on X :
∑

x∈X ξ(x,X ).

Chatterjee; Last, Peccati, + Schulte; Steele; Penrose + Y
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Ex. 2: Germ-grain models

· X ⊂ Rd a collection of ‘germs’.

· Sx, x ∈ X , a collection of ‘grains’ (closed bounded sets).

· Germ-grain model:
⋃
x∈X (x⊕ Sx).

· Surface area, Euler characteristic, clump count,... may be expressed as∑
x∈X ξ(x,X ) for appropriate ξ. For example, for x ∈ X we put

ξclump(x,X ) := (size of clump of germ-grain model containing x)−1.

· Clump count in germ-grain model equals
∑

x∈X ξclump(x,X ).

· Baddeley; Hall; Hug, Last + Schulte; Molchanov; Penrose + Y;
Schneider + Weil; Stoyan;...
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Ex. 3: Random packing (Random sequential adsorption)

· X ⊂ Rd finite. Assign elements x ∈ X time marks τx ∈ [0, 1].

· Let B1, B2, ... be a sequence of unit volume d-dimensional Euclidean balls
with centers arriving sequentially at points x ∈ X and at arrival times τx.

· The first ball B1 to arrive is packed. Recursively, for i = 2, 3, ..., the ith
ball is packed if it does not overlap any ball in B1, B2, ..., Bi−1 which has
already been packed.

· For x ∈ X define packing functional

ρ(x,X ) :=

{
1 if ball arriving at x is packed

0 otherwise
,

Then total number of packed balls equals
∑

x∈X ρ(x,X ).

· Rényi, Coffman, Dvoretzky + Robbins; Flory, Itoh + Shepp; Torquato,...
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Ex. 4: Statistics of random convex hulls

· X ⊂ Rd finite. Let co(X ) denote the convex hull of X .

· For x ∈ X , k ∈ {0, 1, ..., d− 1}, we put

fk(x,X ) := 1
k+1(number of k− dimensional faces containing x).

· Total number of k-dimensional faces of co(X ) equals
∑

x∈X fk(x,X ).

· Rényi + Sulanke; Bárány; Buchta; Calka, Schreiber + Y; Groeneboom,
Reitzner, Vu,...
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General questions

· When X ⊂ Rd is a random pt configuration, the sums
∑

x∈X ξ(x,X )
describe a global feature of some spatial random system.

· Question. What is the distribution of these sums for large pt
configurations X ? LLN? CLT?
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Goals

P: stationary pt process on Rd

Restrict to windows: Pn := P ∩ [−n1/d

2 , n
1/d

2 ]d.

Goal. Given a score function ξ(·, ·) defined on pairs (x,X ), given a pt
process P, we seek the limit theory (LLN, CLT, variance asymptotics) for
the total score ∑

x∈Pn

ξ(x,Pn)

and total measure
µξn :=

∑
x∈Pn

ξ(x,Pn)δn−1/dx.

Tractable problems must be local in the sense that points far away from x
should not play a role in the evaluation of the score ξ(x,Pn).
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Stabilization

We assume translation invariant scores: ξ(x,X ) = ξ(0,X − x).

Recall Pn := P ∩ [−n1/d

2 , n
1/d

2 ]d

Key Definition. ξ is stabilizing wrt pt process P on Rd if for all x ∈ P
there is R := Rξ(x,P) <∞ a.s. (a ‘radius of stabilization’) such that

ξ(x,P ∩BR(x)) = ξ(x,P ∩BR(x) ∪ (A ∩Bc
R(x))).

for any locally finite A ⊂ Rd. ξ is exponentially stabilizing wrt P if there is
a constant c such that

sup
x∈Rd

sup
n
P [Rξ(x,Pn) ≥ r] ≤ c exp(−r

c
), r ∈ [1,∞).
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Moment condition

P: a pt process on Rd; Pn := P ∩ [−n1/d

2 , n
1/d

2 ]d.

Definition. ξ satisfies the p moment condition wrt P if

sup
n

sup
x,y∈Rd

E |ξ(x,Pn ∪ {y})|p <∞.
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Weak law of large numbers for Poisson input H

Let H be a rate 1 Poisson pt process on Rd; Hn := H ∩ [−n
1/d

2 , n
1/d

2 ]d.

µξn :=
∑
x∈Hn

ξ(x,Hn)δn−1/dx.

Thm (WLLN): If ξ is stabilizing wrt H, if ξ satisfies the p moment
condition for some p ∈ (1,∞), then for all f ∈ B([−1

2 ,
1
2 ]d) we have

|n−1E 〈µξn, f〉 − E ξ(0,H ∪ {0})
∫

[− 1
2
, 1
2

]d
f(x)dx| ≤ εn.

Penrose and Y (2003): εn = o(1).

Schulte + Y (2016): εn = O(n−1/d) if ξ is exponentially stabilizing wrt H.
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Gaussian fluctuations for Poisson input H on Rd

Recall µξn :=
∑

x∈Hn ξ(x,Hn)δn−1/dx.

Thm (CLT): Assume ξ is exponentially stabilizing wrt H and that ξ
satisfies the p moment condition for some p ∈ (5,∞). If f ∈ B([−1

2 ,
1
2 ]d)

satisfies Var〈µξn, f〉 = Ω(n), then

sup
t∈R

∣∣∣∣∣∣P
〈µξn, f〉 − E 〈µξn, f〉√

Var〈µξn, f〉
≤ t

− P [N(0, 1) ≤ t]

∣∣∣∣∣∣ ≤ εn.

Penrose + Y (2005), Penrose (2007): εn = O((log n)3dn−1/2).

Last, Peccati + Schulte (2016): εn = γ1 + γ2 + ....+ γ5.

Lachièze-Rey, Schulte, + Y (2016): εn = O(n−1/2).
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Variance asymptotics for Poisson input; volume order
fluctuations

Given homogenous rate 1 Poisson input H on Rd, and a score ξ, put

σ2(ξ) := E ξ2(0,H)+

∫
Rd

E ξ(0,H∪{x})ξ(x,H∪{0})−E ξ(0,H)E ξ(x,H)dx.

Thm (variance asymptotics): If ξ is exponentially stabilizing wrt H, if ξ
satisfies the p moment condition for some p ∈ (2,∞), then for all
f ∈ B([−1

2 ,
1
2 ]d) we have

lim
n→∞

n−1Var〈µξn, f〉 = σ2(ξ)

∫
[− 1

2
, 1
2

]d
f2(x)dx ∈ [0,∞).

Baryshnikov + Y. (2005); Penrose (2007)
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· Question. If the input pt process is not Poisson, when do we get results
which are qualitatively similar?

· Soshnikov (2002): establishes asymptotic normality of the linear statistics∑
x∈Pn

δn−1/dx

where P is determinantal pt process, Pn := P ∩Wn.

· Nazarov and Sodin (2012): establish asymptotic normality of the linear
statistics ∑

x∈Pn

δn−1/dx

where P is zero set of Gaussian analytic function, Pn := P ∩Wn.

· We want to extend these results to non-linear statistics

µξn :=
∑
x∈Pn

ξ(x,Pn)δn−1/dx.
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Clustering pt processes

Def. Given a simple pt process P on Rd, the k pt correlation function
ρ(k) : (Rd)k → [0,∞) is defined via

E [Πk
i=1card(P ∩Bi)] =

∫
B1

...

∫
Bk

ρ(k)(x1, ..., xk)dx1...dxk,

where B1, ..., Bk are disjoint subsets of Rd.

Rk. ρ(k)(x1, ..., xk) = Πk
i=1ρ

(1)(xi) characterizes the Poisson pt process

Key Definition A pt process P clusters if there is a fast decreasing
function φ : R+ → R+ such that for all p, q ∈ N there are constants cp,q
and Cp,q such that for all x1, ..., xp+q ∈ Rd,

|ρ(p+q)(x1, ..., xp+q)− ρ(p)(x1, ..., xp)ρ
(q)(xp+1, ..., xp+q)| ≤ Cp,qφ(−cp,qs),

where s := infi∈{1,...,p}, j∈{p+1,...,p+q} |xi − xj |.

(φ ‘fast decreasing’ means φ decaying faster than any power)
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Ex. 1: Determinantal pt process

A pt process is determinantal (DPP) if its correlation functions satisfy

ρ(k)(x1, ..., xk) = det(K(xi, xj))1≤i≤j≤k,

where K(·, ·) is Hermitian kernel of integral operator from L2(Rd) to itself.

Fact (B laszczyszyn, Yogeshwaran, + Y (2016)). If
|K(x, y)| ≤ φ(||x− y||), with φ fast decreasing, then the DPP clusters.

Ex. Infinite Ginibre ensemble on complex plane clusters with kernel

K(z1, z2) = exp(iIm(z1z̄2)− 1

2
|z1 − z2|2).
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Ex. 2: Zero set of Gaussian entire function

· Let Xj , j ≥ 1, be i.i.d. standard complex Gaussians. Consider the
Gaussian entire function

F (z) :=

∞∑
j=1

Xj√
j!
zj .

· Zero set ZF := F−1({0}) is stationary.

· ZF exhibits local repulsivity.

· ZF strongly clusters (Nazarov and Sodin (2012)).
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Ex. 3: Gibbs pt processes

Consider the class Ψ of Hamiltonians consisting of:

· pair potentials without negative part,

· area interaction Hamiltonians, and

· hard core Hamiltonians.

· For Ψ ∈ Ψ, let PβΨ be the Gibbs pt process having Radon-Nikodym
derivative exp(−βΨ(·)) with respect to a reference homogeneous Poisson
pt process Hτ on Rd of intensity τ .

· There is a range of inverse temperature and activity parameters (β and
τ) such that PβΨ clusters (Schreiber and Y, 2013).
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Weak law of large numbers for clustering input

Let P be clustering pt process on Rd. Recall Pn := P ∩ [−n
1/d

2 , n
1/d

2 ]d and

µξn :=
∑
x∈Pn

ξ(x,Pn)δn−1/dx.

Thm (BYY ’16): If ξ is stabilizing wrt P, if ξ satisfies the p moment
condition for some p ∈ (1,∞), then for all f ∈ B([−1

2 ,
1
2 ]d) we have

lim
n→∞

n−1E 〈µξn, f〉 = E ξ(0,P ∪ {0})
∫

[− 1
2
, 1
2

]d
f(x)dx · ρ(1)(0).
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Gaussian fluctuations for clustering input P

Thm (BYY ’16) µξn :=
∑

x∈Pn ξ(x,Pn)δn−1/dx. Assume

· P clusters,

· ξ has deterministic radius of stabilization wrt P,

· ξ satisfies the p moment condition for some p ∈ (2,∞), and

· Var〈µξn, f〉 = Ω(nα) for some α ∈ (0, 1), f ∈ B([−1
2 ,

1
2 ]d). Then

〈µξn, f〉 − E 〈µξn, f〉√
Var〈µξn, f〉

D−→ N(0, 1).

Remarks. If P is determinantal with fast decreasing kernel then this
extends Soshnikov (2002), who restricts to linear statistics

∑
x∈Pn δn−1/dx,

that is he puts ξ ≡ 1.

· If P is zero set of Gaussian entire function, this extends Nazarov and
Sodin (2012), who also restrict to

∑
x∈Pn δn−1/dx.
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Gaussian fluctuations for clustering input P

Thm (BYY ’16) µξn :=
∑

x∈Pn ξ(x,Pn)δn−1/dx. Assume

· P clusters and clustering coeff. satisfy mild growth condition

· ξ exponentially stabilizing wrt P,

· ξ satisfies the p moment condition for some p ∈ (2,∞), and

· Var〈µξn, f〉 = Ω(nα) for some α ∈ (0, 1), f ∈ B([−1
2 ,

1
2 ]d). Then

〈µξn, f〉 − E 〈µξn, f〉√
Var〈µξn, f〉

D−→ N(0, 1).

Remark. If P is determinantal with fast decreasing kernel (e.g. Ginibre)
then P satisfies stated condition.
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Variance asymptotics for clustering input P

· Given clustering input P and a score ξ, put

σ2(ξ) := E ξ2(0,P)ρ(1)(0)+∫
Rd

E ξ(0,P∪x)ξ(x,P∪0)ρ(2)(0, x)−E ξ(0,P)ρ(1)(0)E ξ(x,P)ρ(1)(x)dx.

· Thm (BYY ’16): If ξ is exponentially stabilizing wrt P, if ξ satisfies
the p moment condition for some p ∈ (2,∞), then for all f ∈ B([−1

2 ,
1
2 ]d)

we have

lim
n→∞

n−1Var〈µξn, f〉 = σ2(ξ)

∫
[− 1

2
, 1
2

]d
f2(x)dx ∈ [0,∞).

· Rk. When P is determinantal with fast decreasing kernel this extends
Soshnikov (2002), who assumes ξ ≡ 1.
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Proof idea for CLT

· Given ξ, consider k mixed moment functions m(k) : (Rd)k → R given by

m(k)(x1, ..., xk;Pn) := EΠk
i=1ξ(xi,Pn)ρ(k)(x1, ..., xk).

· We show that the mixed moments cluster, that is for all p, q ∈ N there
are constants cp,q and Cp,q s.t. for all x1, ..., xp+q ∈ Rd,

|m(p+q)(x1, ..., xp+q)−m(p)(x1, ..., xp)m(q)(xp+1, ..., xp+q)| ≤ Cp,qϕ(−cp,qs),

where
s := inf

i∈{1,...,p}, j∈{p+1,...,p+q}
|xi − xj |

and where ϕ is fast decreasing.

· P clusters and ξ exp. stabilizing ⇒ mixed moments cluster

· cumulants of 〈µ
ξ
n,f〉−E 〈µξn,f〉√

Var〈µξn,f〉
converge to cumulants of N(0, 1).
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Applications

General results yield WLLN, Gaussian fluctuations, variance asymptotics
for statistics of geometric structures on clustering pt processes (CPP):

(i) Vietoris-Rips clique count on any CPP, including DPP with fast
decreasing kernel, zero set of Gaussian entire function.

... extends Chatterjee, Lachièze-Rey + Peccati, Reitzner + Schulte,
Yogeshwaran + Adler (2015)

(ii) total volume and surface area of germ-grain model with germs given
by points in CPP, i.i.d. grains with bounded diameter.

... extends Penrose + Y (2005); Hug, Last, Schulte (2015)

(iii) total edge length in knn graph on DPP with fast decreasing kernel.

... extends Steele (1988); Penrose + Y (2005); Hug, Last, Schulte (2015)

(iv) the number of k-faces of convex hull of DPP (with fast decreasing
kernel) on a volume n ball ... extends Reitzner (2005); Calka, Schreiber +
Y (2008, 2013).
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THANK YOU
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