Limit Theory for Statistics of Random Geometric Structures

Joe Yukich

Lehigh University

Stochastic Geometry and Its Applications, Nantes, April 4-8, 2016

- **4 ∃ ≻** 4

Talk is based on joint work with B. Błaszczyszyn and D. Yogeshwaran

<ロ> (日) (日) (日) (日) (日)

Questions pertaining to geometric structures on random input $\mathcal{X} \subset \mathbb{R}^d$ often involve analyzing sums of spatially correlated terms

$$\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X}),$$

where the \mathbb{R} -valued score function ξ , defined on pairs (x, \mathcal{X}) , represents the interaction of x with respect to \mathcal{X} .

・聞き ・ ほき・ ・ ほき

Questions pertaining to geometric structures on random input $\mathcal{X} \subset \mathbb{R}^d$ often involve analyzing sums of spatially correlated terms

$$\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X}),$$

where the \mathbb{R} -valued score function ξ , defined on pairs (x, \mathcal{X}) , represents the interaction of x with respect to \mathcal{X} .

The sums describe some global feature of the random system in terms of local contributions $\xi(x, \mathcal{X}), x \in \mathcal{X}$.

★課 ▶ ★ 理 ▶ ★ 理 ▶ … 理

Questions pertaining to geometric structures on random input $\mathcal{X} \subset \mathbb{R}^d$ often involve analyzing sums of spatially correlated terms

$$\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X}),$$

where the \mathbb{R} -valued score function ξ , defined on pairs (x, \mathcal{X}) , represents the interaction of x with respect to \mathcal{X} .

The sums describe some global feature of the random system in terms of local contributions $\xi(x, \mathcal{X}), x \in \mathcal{X}$.

★課 ▶ ★ 理 ▶ ★ 理 ▶ … 理

Clique counts. $\mathcal{X} \subset \mathbb{R}^d$ finite, $r \in (0, \infty)$.

· Join two points of \mathcal{X} iff they are at distance at most r. Vietoris-Rips complex (with parameter r) is simplicial complex whose k-simplices correspond to unordered (k + 1)-tuples of points in \mathcal{X} all pairwise within r of each other.

 \cdot For $k \in \mathbb{N}$ and $x \in \mathcal{X}$, put $\sigma_k(x, \mathcal{X}) := \frac{\text{number of }k\text{-simplices containing }x}{k+1}$

個人 くほと くほと

Clique counts. $\mathcal{X} \subset \mathbb{R}^d$ finite, $r \in (0, \infty)$.

· Join two points of \mathcal{X} iff they are at distance at most r. Vietoris-Rips complex (with parameter r) is simplicial complex whose k-simplices correspond to unordered (k + 1)-tuples of points in \mathcal{X} all pairwise within r of each other.

- · For $k \in \mathbb{N}$ and $x \in \mathcal{X}$, put $\sigma_k(x, \mathcal{X}) := \frac{\text{number of }k\text{-simplices containing }x}{k+1}$
- · Total number of k-simplices in Vietoris-Rips complex: $\sum_{x \in \mathcal{X}} \sigma_k(x, \mathcal{X})$.

Chatterjee, Decreusefond et al., Eichelsbacher, Lachièze-Rey + Peccati, Reitzner + Schulte, Penrose + Y

- 本部 とくほど くほど 二日

Total edge length of graphs. $\mathcal{X} \subset \mathbb{R}^d$ finite. Given $x \in \mathcal{X}$, let x_{NN} be the nearest neighbor of x.

· Undirected nearest neighbor graph on \mathcal{X} : include an edge $\{x, y\}$ if $y = x_{NN}$ and/or $x = y_{NN}$.

 \cdot For $x \in \mathcal{X}$, put

$$\xi(x,\mathcal{X}) := \begin{cases} \frac{1}{2} ||x - x_{NN}|| & \text{if } x, x_{NN} \text{ are mutual n.n.} \\ ||x - x_{NN}|| & \text{otherwise.} \end{cases}$$

Total edge length of graphs. $\mathcal{X} \subset \mathbb{R}^d$ finite. Given $x \in \mathcal{X}$, let x_{NN} be the nearest neighbor of x.

· Undirected nearest neighbor graph on \mathcal{X} : include an edge $\{x, y\}$ if $y = x_{NN}$ and/or $x = y_{NN}$.

 \cdot For $x \in \mathcal{X}$, put

$$\xi(x,\mathcal{X}) := \begin{cases} \frac{1}{2} ||x - x_{NN}|| & \text{if } x, x_{NN} \text{ are mutual n.n.} \\ ||x - x_{NN}|| & \text{otherwise.} \end{cases}$$

· Total edge length of n.n. graph on \mathcal{X} : $\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X})$.

Chatterjee; Last, Peccati, + Schulte; Steele; Penrose + Y

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

Ex. 2: Germ-grain models

- $\cdot \ \mathcal{X} \subset \mathbb{R}^d$ a collection of 'germs'.
- $\cdot S_x, x \in \mathcal{X}$, a collection of 'grains' (closed bounded sets).
- · Germ-grain model: $\bigcup_{x \in \mathcal{X}} (x \oplus S_x)$.
- · Surface area, Euler characteristic, clump count,... may be expressed as $\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X})$ for appropriate ξ . For example, for $x \in \mathcal{X}$ we put

 $\xi_{\mathsf{clump}}(x, \mathcal{X}) := (\text{size of clump of germ-grain model containing } x)^{-1}.$

★掃▶ ★ 国▶ ★ 国▶ 二 国

Ex. 2: Germ-grain models

- $\cdot \ \mathcal{X} \subset \mathbb{R}^d$ a collection of 'germs'.
- $\cdot S_x, x \in \mathcal{X}$, a collection of 'grains' (closed bounded sets).
- · Germ-grain model: $\bigcup_{x \in \mathcal{X}} (x \oplus S_x)$.
- · Surface area, Euler characteristic, clump count,... may be expressed as $\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X})$ for appropriate ξ . For example, for $x \in \mathcal{X}$ we put

 $\xi_{\mathsf{clump}}(x, \mathcal{X}) := (\text{size of clump of germ-grain model containing } x)^{-1}.$

- · Clump count in germ-grain model equals $\sum_{x \in \mathcal{X}} \xi_{\text{clump}}(x, \mathcal{X})$.
- · Baddeley; Hall; Hug, Last + Schulte; Molchanov; Penrose + Y; Schneider + Weil; Stoyan;...

★個★★注★★注★

Ex. 3: Random packing (Random sequential adsorption)

 $\cdot \mathcal{X} \subset \mathbb{R}^d$ finite. Assign elements $x \in \mathcal{X}$ time marks $\tau_x \in [0, 1]$.

· Let $B_1, B_2, ...$ be a sequence of unit volume *d*-dimensional Euclidean balls with centers arriving sequentially at points $x \in \mathcal{X}$ and at arrival times τ_x .

· The first ball B_1 to arrive is packed. Recursively, for i = 2, 3, ..., the *i*th ball is packed if it does not overlap any ball in $B_1, B_2, ..., B_{i-1}$ which has already been packed.

個 と く ヨ と く ヨ と

Ex. 3: Random packing (Random sequential adsorption)

 $\cdot \mathcal{X} \subset \mathbb{R}^d$ finite. Assign elements $x \in \mathcal{X}$ time marks $\tau_x \in [0, 1]$.

· Let $B_1, B_2, ...$ be a sequence of unit volume *d*-dimensional Euclidean balls with centers arriving sequentially at points $x \in \mathcal{X}$ and at arrival times τ_x .

· The first ball B_1 to arrive is packed. Recursively, for i = 2, 3, ..., the *i*th ball is packed if it does not overlap any ball in $B_1, B_2, ..., B_{i-1}$ which has already been packed.

 \cdot For $x \in \mathcal{X}$ define packing functional

$$\rho(x, \mathcal{X}) := \begin{cases} 1 & \text{if ball arriving at x is packed} \\ 0 & \text{otherwise} \end{cases},$$

Then total number of packed balls equals $\sum_{x \in \mathcal{X}} \rho(x, \mathcal{X})$.

· Rényi, Coffman, Dvoretzky + Robbins; Flory, Itoh + Shepp; Torquato,...

(ロトス個人ス語)を語と、語

- $\cdot \mathcal{X} \subset \mathbb{R}^d$ finite. Let $\operatorname{co}(\mathcal{X})$ denote the convex hull of \mathcal{X} .
- \cdot For $x \in \mathcal{X}$, $k \in \{0, 1, ..., d-1\}$, we put

 $f_k(x, \mathcal{X}) := \frac{1}{k+1}$ (number of k – dimensional faces containing x).

▲圖 → ▲ 国 → ▲ 国 → 二 国

- $\cdot \mathcal{X} \subset \mathbb{R}^d$ finite. Let $\operatorname{co}(\mathcal{X})$ denote the convex hull of \mathcal{X} .
- \cdot For $x \in \mathcal{X}$, $k \in \{0,1,...,d-1\}$, we put

 $f_k(x, \mathcal{X}) := \frac{1}{k+1}$ (number of k – dimensional faces containing x).

· Total number of k-dimensional faces of $co(\mathcal{X})$ equals $\sum_{x \in \mathcal{X}} f_k(x, \mathcal{X})$.

 \cdot Rényi + Sulanke; Bárány; Buchta; Calka, Schreiber + Y; Groeneboom, Reitzner, Vu,...

< 個 → < 注 → < 注 → … 注

· When $\mathcal{X} \subset \mathbb{R}^d$ is a random pt configuration, the sums $\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X})$ describe a global feature of some spatial random system.

★聞▶ ★ 国▶ ★ 国▶

- · When $\mathcal{X} \subset \mathbb{R}^d$ is a random pt configuration, the sums $\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X})$ describe a global feature of some spatial random system.
- · **Question.** What is the distribution of these sums for large pt configurations \mathcal{X} ? LLN? CLT?

★課 ▶ ★ 理 ▶ ★ 理 ▶ … 理

Goals

 \mathcal{P} : stationary pt process on \mathbb{R}^d

Restrict to windows: $\mathcal{P}_n := \mathcal{P} \cap [-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d.$

◆□> ◆□> ◆目> ◆目> ◆目> □ ○ ○ ○

Goals

 \mathcal{P} : stationary pt process on \mathbb{R}^d

Restrict to windows: $\mathcal{P}_n := \mathcal{P} \cap [-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$.

Goal. Given a score function $\xi(\cdot, \cdot)$ defined on pairs (x, \mathcal{X}) , given a pt process \mathcal{P} , we seek the limit theory (LLN, CLT, variance asymptotics) for the total score

$$\sum_{x \in \mathcal{P}_n} \xi(x, \mathcal{P}_n)$$

and total measure

$$\mu_n^{\xi} := \sum_{x \in \mathcal{P}_n} \xi(x, \mathcal{P}_n) \delta_{n^{-1/d}x}.$$

Tractable problems must be *local* in the sense that points far away from x should not play a role in the evaluation of the score $\xi(x, \mathcal{P}_n)$.

ロトス聞とスヨトスヨトーヨ

We assume translation invariant scores: $\xi(x, \mathcal{X}) = \xi(\mathbf{0}, \mathcal{X} - x).$ Recall $\mathcal{P}_n := \mathcal{P} \cap [-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$

▲口 > ▲圖 > ▲ 国 > ▲ 国 > 二 国

We assume translation invariant scores: $\xi(x, \mathcal{X}) = \xi(\mathbf{0}, \mathcal{X} - x)$. Recall $\mathcal{P}_n := \mathcal{P} \cap [-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$

Key Definition. ξ is *stabilizing* wrt pt process \mathcal{P} on \mathbb{R}^d if for all $x \in \mathcal{P}$ there is $R := R^{\xi}(x, \mathcal{P}) < \infty$ a.s. (a 'radius of stabilization') such that

$$\xi(x, \mathcal{P} \cap B_R(x)) = \xi(x, \mathcal{P} \cap B_R(x) \cup (\mathcal{A} \cap B_R^c(x))).$$

for any locally finite $\mathcal{A} \subset \mathbb{R}^d$. ξ is *exponentially stabilizing* wrt \mathcal{P} if there is a constant c such that

$$\sup_{x \in \mathbb{R}^d} \sup_n P[R^{\xi}(x, \mathcal{P}_n) \ge r] \le c \exp(-\frac{r}{c}), \quad r \in [1, \infty).$$

米部 米油 米油 米油 とう

$$\mathcal{P}$$
: a pt process on \mathbb{R}^d ; $\mathcal{P}_n:=\mathcal{P}\cap [-rac{n^{1/d}}{2},rac{n^{1/d}}{2}]^d$

Definition. ξ satisfies the p moment condition wrt \mathcal{P} if

$$\sup_{n} \sup_{x,y \in \mathbb{R}^{d}} \mathbb{E} |\xi(x, \mathcal{P}_{n} \cup \{y\})|^{p} < \infty.$$

・ロト ・聞 ト ・ 国 ト ・ 国 ト … 国

Weak law of large numbers for Poisson input ${\mathcal H}$

Let \mathcal{H} be a rate 1 Poisson pt process on \mathbb{R}^d ; $\mathcal{H}_n := \mathcal{H} \cap [\frac{-n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$.

$$\mu_n^{\xi} := \sum_{x \in \mathcal{H}_n} \xi(x, \mathcal{H}_n) \delta_{n^{-1/d}x}.$$

Thm (WLLN): If ξ is stabilizing wrt \mathcal{H} , if ξ satisfies the p moment condition for some $p \in (1, \infty)$, then for all $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$ we have

$$|n^{-1}\mathbb{E}\langle \mu_n^{\xi}, f\rangle - \mathbb{E}\xi(\mathbf{0}, \mathcal{H} \cup \{\mathbf{0}\}) \int_{[-\frac{1}{2}, \frac{1}{2}]^d} f(x)dx| \le \epsilon_n.$$

・聞き ・ ほき ・ ・ ほき

Let \mathcal{H} be a rate 1 Poisson pt process on \mathbb{R}^d ; $\mathcal{H}_n := \mathcal{H} \cap [\frac{-n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$.

$$\mu_n^{\xi} := \sum_{x \in \mathcal{H}_n} \xi(x, \mathcal{H}_n) \delta_{n^{-1/d}x}.$$

Thm (WLLN): If ξ is stabilizing wrt \mathcal{H} , if ξ satisfies the p moment condition for some $p \in (1, \infty)$, then for all $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$ we have

$$|n^{-1}\mathbb{E}\langle \mu_n^{\xi}, f\rangle - \mathbb{E}\,\xi(\mathbf{0}, \mathcal{H}\cup\{\mathbf{0}\})\int_{[-\frac{1}{2}, \frac{1}{2}]^d} f(x)dx| \le \epsilon_n.$$

Penrose and Y (2003): $\epsilon_n = o(1)$.

Schulte + Y (2016): $\epsilon_n = O(n^{-1/d})$ if ξ is exponentially stabilizing wrt \mathcal{H} .

▲圖 → ▲ 国 → ▲ 国 → 二 国

Recall
$$\mu_n^{\xi} := \sum_{x \in \mathcal{H}_n} \xi(x, \mathcal{H}_n) \delta_{n^{-1/d}x}.$$

Thm (CLT): Assume ξ is exponentially stabilizing wrt \mathcal{H} and that ξ satisfies the p moment condition for some $p \in (5, \infty)$. If $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$ satisfies $\operatorname{Var}\langle \mu_n^{\xi}, f \rangle = \Omega(n)$, then

$$\sup_{t \in \mathbb{R}} \left| P\left[\frac{\langle \mu_n^{\xi}, f \rangle - \mathbb{E} \langle \mu_n^{\xi}, f \rangle}{\sqrt{\operatorname{Var} \langle \mu_n^{\xi}, f \rangle}} \le t \right] - P[N(0, 1) \le t] \right| \le \epsilon_n.$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

Recall
$$\mu_n^{\xi} := \sum_{x \in \mathcal{H}_n} \xi(x, \mathcal{H}_n) \delta_{n^{-1/d}x}.$$

Thm (CLT): Assume ξ is exponentially stabilizing wrt \mathcal{H} and that ξ satisfies the p moment condition for some $p \in (5, \infty)$. If $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$ satisfies $\operatorname{Var}\langle \mu_n^{\xi}, f \rangle = \Omega(n)$, then

$$\sup_{t \in \mathbb{R}} \left| P\left[\frac{\langle \mu_n^{\xi}, f \rangle - \mathbb{E} \langle \mu_n^{\xi}, f \rangle}{\sqrt{\operatorname{Var} \langle \mu_n^{\xi}, f \rangle}} \le t \right] - P[N(0, 1) \le t] \right| \le \epsilon_n.$$

Penrose + Y (2005), Penrose (2007): $\epsilon_n = O((\log n)^{3d} n^{-1/2}).$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ 二 国

Recall
$$\mu_n^{\xi} := \sum_{x \in \mathcal{H}_n} \xi(x, \mathcal{H}_n) \delta_{n^{-1/d}x}.$$

Thm (CLT): Assume ξ is exponentially stabilizing wrt \mathcal{H} and that ξ satisfies the p moment condition for some $p \in (5, \infty)$. If $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$ satisfies $\operatorname{Var}\langle \mu_n^{\xi}, f \rangle = \Omega(n)$, then

$$\sup_{t \in \mathbb{R}} \left| P\left[\frac{\langle \mu_n^{\xi}, f \rangle - \mathbb{E} \langle \mu_n^{\xi}, f \rangle}{\sqrt{\operatorname{Var} \langle \mu_n^{\xi}, f \rangle}} \le t \right] - P[N(0, 1) \le t] \right| \le \epsilon_n.$$

Penrose + Y (2005), Penrose (2007): $\epsilon_n = O((\log n)^{3d} n^{-1/2}).$

Last, Peccati + Schulte (2016): $\epsilon_n = \gamma_1 + \gamma_2 + \dots + \gamma_5$.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ 二 国

Recall
$$\mu_n^{\xi} := \sum_{x \in \mathcal{H}_n} \xi(x, \mathcal{H}_n) \delta_{n^{-1/d}x}.$$

Thm (CLT): Assume ξ is exponentially stabilizing wrt \mathcal{H} and that ξ satisfies the p moment condition for some $p \in (5, \infty)$. If $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$ satisfies $\operatorname{Var}\langle \mu_n^{\xi}, f \rangle = \Omega(n)$, then

$$\sup_{t \in \mathbb{R}} \left| P\left[\frac{\langle \mu_n^{\xi}, f \rangle - \mathbb{E} \langle \mu_n^{\xi}, f \rangle}{\sqrt{\operatorname{Var} \langle \mu_n^{\xi}, f \rangle}} \le t \right] - P[N(0, 1) \le t] \right| \le \epsilon_n.$$

Penrose + Y (2005), Penrose (2007): $\epsilon_n = O((\log n)^{3d} n^{-1/2})$. Last, Peccati + Schulte (2016): $\epsilon_n = \gamma_1 + \gamma_2 + \dots + \gamma_5$. Lachièze-Rey, Schulte, + Y (2016): $\epsilon_n = O(n^{-1/2})$.

Variance asymptotics for Poisson input; volume order fluctuations

Given homogenous rate 1 Poisson input \mathcal{H} on \mathbb{R}^d , and a score ξ , put

$$\sigma^{2}(\xi) := \mathbb{E}\xi^{2}(\mathbf{0},\mathcal{H}) + \int_{\mathbb{R}^{d}} \mathbb{E}\xi(\mathbf{0},\mathcal{H}\cup\{x\})\xi(x,\mathcal{H}\cup\{\mathbf{0}\}) - \mathbb{E}\xi(\mathbf{0},\mathcal{H})\mathbb{E}\xi(x,\mathcal{H})dx$$

> < E > < E >

Variance asymptotics for Poisson input; volume order fluctuations

Given homogenous rate 1 Poisson input ${\mathcal H}$ on ${\mathbb R}^d,$ and a score $\xi,$ put

$$\sigma^{2}(\xi) := \mathbb{E}\xi^{2}(\mathbf{0},\mathcal{H}) + \int_{\mathbb{R}^{d}} \mathbb{E}\xi(\mathbf{0},\mathcal{H}\cup\{x\})\xi(x,\mathcal{H}\cup\{\mathbf{0}\}) - \mathbb{E}\xi(\mathbf{0},\mathcal{H})\mathbb{E}\xi(x,\mathcal{H})dx$$

Thm (variance asymptotics): If ξ is exponentially stabilizing wrt \mathcal{H} , if ξ satisfies the p moment condition for some $p \in (2, \infty)$, then for all $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$ we have

$$\lim_{n \to \infty} n^{-1} \operatorname{Var} \langle \mu_n^{\xi}, f \rangle = \sigma^2(\xi) \int_{[-\frac{1}{2}, \frac{1}{2}]^d} f^2(x) dx \in [0, \infty).$$

Baryshnikov + Y. (2005); Penrose (2007)

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

 \cdot **Question.** If the input pt process is not Poisson, when do we get results which are qualitatively similar?

· Soshnikov (2002): establishes asymptotic normality of the linear statistics

$$\sum_{x \in \mathcal{P}_n} \delta_{n^{-1/d}x}$$

where \mathcal{P} is determinantal pt process, $\mathcal{P}_n := \mathcal{P} \cap W_n$.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

 \cdot **Question.** If the input pt process is not Poisson, when do we get results which are qualitatively similar?

· Soshnikov (2002): establishes asymptotic normality of the linear statistics

$$\sum_{x \in \mathcal{P}_n} \delta_{n^{-1/d}x}$$

where \mathcal{P} is determinantal pt process, $\mathcal{P}_n := \mathcal{P} \cap W_n$.

 \cdot Nazarov and Sodin (2012): establish asymptotic normality of the *linear* statistics

$$\sum_{x \in \mathcal{P}_n} \delta_{n^{-1/d}x}$$

where \mathcal{P} is zero set of Gaussian analytic function, $\mathcal{P}_n := \mathcal{P} \cap W_n$.

 \cdot We want to extend these results to non-linear statistics

$$\mu_n^{\xi} := \sum_{x \in \mathcal{P}_n} \xi(x, \mathcal{P}_n) \delta_{n^{-1/d}x}.$$

(ロメス聞メス語を入意を、語

Clustering pt processes

Def. Given a simple pt process \mathcal{P} on \mathbb{R}^d , the k pt correlation function $\rho^{(k)}: (\mathbb{R}^d)^k \to [0,\infty)$ is defined via

$$\mathbb{E}\left[\Pi_{i=1}^{k} \operatorname{card}(\mathcal{P} \cap B_{i})\right] = \int_{B_{1}} \dots \int_{B_{k}} \rho^{(k)}(x_{1}, \dots, x_{k}) dx_{1} \dots dx_{k},$$

where $B_1, ..., B_k$ are disjoint subsets of \mathbb{R}^d .

Rk. $\rho^{(k)}(x_1,...,x_k) = \prod_{i=1}^k \rho^{(1)}(x_i)$ characterizes the Poisson pt process

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Clustering pt processes

Def. Given a simple pt process \mathcal{P} on \mathbb{R}^d , the k pt correlation function $\rho^{(k)}: (\mathbb{R}^d)^k \to [0,\infty)$ is defined via

$$\mathbb{E}\left[\Pi_{i=1}^{k} \operatorname{card}(\mathcal{P} \cap B_{i})\right] = \int_{B_{1}} \dots \int_{B_{k}} \rho^{(k)}(x_{1}, \dots, x_{k}) dx_{1} \dots dx_{k},$$

where $B_1, ..., B_k$ are disjoint subsets of \mathbb{R}^d .

Rk. $\rho^{(k)}(x_1,...,x_k) = \Pi_{i=1}^k \rho^{(1)}(x_i)$ characterizes the Poisson pt process

Key Definition A pt process \mathcal{P} clusters if there is a fast decreasing function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ such that for all $p, q \in \mathbb{N}$ there are constants $c_{p,q}$ and $C_{p,q}$ such that for all $x_1, ..., x_{p+q} \in \mathbb{R}^d$,

$$|\rho^{(p+q)}(x_1, ..., x_{p+q}) - \rho^{(p)}(x_1, ..., x_p)\rho^{(q)}(x_{p+1}, ..., x_{p+q})| \le C_{p,q}\phi(-c_{p,q}s),$$

where $s := \inf_{i \in \{1,...,p\}, j \in \{p+1,...,p+q\}} |x_i - x_j|$. (ϕ 'fast decreasing' means ϕ decaying faster than any power), $z \in \mathbb{R}$ A pt process is determinantal (DPP) if its correlation functions satisfy

$$\rho^{(k)}(x_1, ..., x_k) = \det(K(x_i, x_j))_{1 \le i \le j \le k},$$

where $K(\cdot, \cdot)$ is Hermitian kernel of integral operator from $L^2(\mathbb{R}^d)$ to itself.

(本部) ・ モト ・ モト ・ モ

A pt process is determinantal (DPP) if its correlation functions satisfy

$$\rho^{(k)}(x_1, ..., x_k) = \det(K(x_i, x_j))_{1 \le i \le j \le k},$$

where $K(\cdot, \cdot)$ is Hermitian kernel of integral operator from $L^2(\mathbb{R}^d)$ to itself.

Fact (Błaszczyszyn, Yogeshwaran, + Y (2016)). If $|K(x,y)| \le \phi(||x-y||)$, with ϕ fast decreasing, then the DPP clusters.

Ex. Infinite Ginibre ensemble on complex plane clusters with kernel

$$K(z_1, z_2) = \exp(iIm(z_1\bar{z}_2) - \frac{1}{2}|z_1 - z_2|^2).$$

(人間) (人) (人) (人) (日) (日) (日)

 \cdot Let $X_j, j \geq 1,$ be i.i.d. standard complex Gaussians. Consider the Gaussian entire function

$$F(z) := \sum_{j=1}^{\infty} \frac{X_j}{\sqrt{j!}} z^j.$$

· Zero set $Z_F := F^{-1}(\{0\})$ is stationary.

- 本部 とくほど くほど 二日

 \cdot Let $X_j, j \geq 1,$ be i.i.d. standard complex Gaussians. Consider the Gaussian entire function

$$F(z) := \sum_{j=1}^{\infty} \frac{X_j}{\sqrt{j!}} z^j.$$

- · Zero set $Z_F := F^{-1}(\{0\})$ is stationary.
- $\cdot Z_F$ exhibits local repulsivity.
- · Z_F strongly clusters (Nazarov and Sodin (2012)).

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ 二 国

Consider the class Ψ of Hamiltonians consisting of:

- \cdot pair potentials without negative part,
- \cdot area interaction Hamiltonians, and
- · hard core Hamiltonians.

· For $\Psi \in \Psi$, let $\mathcal{P}^{\beta\Psi}$ be the Gibbs pt process having Radon-Nikodym derivative $\exp(-\beta\Psi(\cdot))$ with respect to a reference homogeneous Poisson pt process \mathcal{H}_{τ} on \mathbb{R}^d of intensity τ .

· There is a range of inverse temperature and activity parameters (β and τ) such that $\mathcal{P}^{\beta\Psi}$ clusters (Schreiber and Y, 2013).

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ 二 国

Let \mathcal{P} be clustering pt process on \mathbb{R}^d . Recall $\mathcal{P}_n := \mathcal{P} \cap [\frac{-n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$ and

$$\mu_n^{\xi} := \sum_{x \in \mathcal{P}_n} \xi(x, \mathcal{P}_n) \delta_{n^{-1/d}x}.$$

Thm (BYY '16): If ξ is stabilizing wrt \mathcal{P} , if ξ satisfies the p moment condition for some $p \in (1, \infty)$, then for all $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$ we have

$$\lim_{n \to \infty} n^{-1} \mathbb{E} \langle \mu_n^{\xi}, f \rangle = \mathbb{E} \, \xi(\mathbf{0}, \mathcal{P} \cup \{\mathbf{0}\}) \int_{[-\frac{1}{2}, \frac{1}{2}]^d} f(x) dx \cdot \rho^{(1)}(\mathbf{0}).$$

▲聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Gaussian fluctuations for clustering input ${\cal P}$

Thm (BYY '16) $\mu_n^{\xi} := \sum_{x \in \mathcal{P}_n} \xi(x, \mathcal{P}_n) \delta_{n^{-1/d}x}$. Assume

- $\cdot \mathcal{P}$ clusters,
- $\cdot \ \xi$ has deterministic radius of stabilization wrt $\mathcal P$,
- $\cdot \ \xi$ satisfies the p moment condition for some $p \in (2,\infty),$ and
- $\cdot \operatorname{Var}\langle \mu_n^{\xi}, f \rangle = \Omega(n^{\alpha})$ for some $\alpha \in (0, 1)$, $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$. Then

$$\frac{\langle \mu_n^{\xi}, f \rangle - \mathbb{E} \langle \mu_n^{\xi}, f \rangle}{\sqrt{\mathrm{Var} \langle \mu_n^{\xi}, f \rangle}} \xrightarrow{\mathcal{D}} N(0, 1).$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ 二 国

Gaussian fluctuations for clustering input $\ensuremath{\mathcal{P}}$

Thm (BYY '16) $\mu_n^\xi := \sum_{x \in \mathcal{P}_n} \xi(x, \mathcal{P}_n) \delta_{n^{-1/d}x}$. Assume

- $\cdot \mathcal{P}$ clusters,
- $\cdot \ \xi$ has deterministic radius of stabilization wrt \mathcal{P} ,
- $\cdot \ \xi$ satisfies the p moment condition for some $p \in (2,\infty),$ and
- · $\operatorname{Var}\langle \mu_n^{\xi}, f \rangle = \Omega(n^{\alpha})$ for some $\alpha \in (0, 1)$, $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$. Then

$$\frac{\langle \mu_n^{\xi}, f \rangle - \mathbb{E} \langle \mu_n^{\xi}, f \rangle}{\sqrt{\operatorname{Var} \langle \mu_n^{\xi}, f \rangle}} \xrightarrow{\mathcal{D}} N(0, 1).$$

Remarks. If \mathcal{P} is determinantal with fast decreasing kernel then this extends Soshnikov (2002), who restricts to linear statistics $\sum_{x \in \mathcal{P}_n} \delta_{n^{-1/d_x}}$, that is he puts $\xi \equiv 1$.

· If \mathcal{P} is zero set of Gaussian entire function, this extends Nazarov and Sodin (2012), who also restrict to $\sum_{x \in \mathcal{P}_n} \delta_{n^{-1/d}x}$.

Thm (BYY '16) $\mu_n^{\xi} := \sum_{x \in \mathcal{P}_n} \xi(x, \mathcal{P}_n) \delta_{n^{-1/d}x}$. Assume

- $\cdot \ \mathcal{P}$ clusters and clustering coeff. satisfy mild growth condition
- · ξ exponentially stabilizing wrt \mathcal{P} ,
- $\cdot \ \xi$ satisfies the p moment condition for some $p \in (2,\infty),$ and
- · $\operatorname{Var}\langle \mu_n^{\xi}, f \rangle = \Omega(n^{\alpha})$ for some $\alpha \in (0, 1)$, $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$. Then

$$\frac{\langle \mu_n^{\xi}, f \rangle - \mathbb{E} \langle \mu_n^{\xi}, f \rangle}{\sqrt{\operatorname{Var} \langle \mu_n^{\xi}, f \rangle}} \xrightarrow{\mathcal{D}} N(0, 1).$$

Remark. If \mathcal{P} is determinantal with fast decreasing kernel (e.g. Ginibre) then \mathcal{P} satisfies stated condition.

- * 聞 * * 国 * * 国 * 三国

Variance asymptotics for clustering input \mathcal{P}

 $\cdot\;$ Given clustering input ${\cal P}$ and a score $\xi,$ put

0

$$\sigma^2(\xi) := \mathbb{E}\,\xi^2(\mathbf{0},\mathcal{P})\rho^{(1)}(\mathbf{0}) +$$

$$\int_{\mathbb{R}^d} \mathbb{E}\,\xi(\mathbf{0},\mathcal{P}\cup x)\xi(x,\mathcal{P}\cup\mathbf{0})\rho^{(2)}(\mathbf{0},x) - \mathbb{E}\,\xi(\mathbf{0},\mathcal{P})\rho^{(1)}(\mathbf{0})\mathbb{E}\,\xi(x,\mathcal{P})\rho^{(1)}(\mathbf{x})dx.$$

> < 3 > < 3

Variance asymptotics for clustering input ${\cal P}$

 $\cdot\;$ Given clustering input ${\cal P}$ and a score $\xi,$ put

$$\sigma^2(\xi) := \mathbb{E}\,\xi^2(\mathbf{0},\mathcal{P})\rho^{(1)}(\mathbf{0}) +$$

 $\int_{\mathbb{R}^d} \mathbb{E}\,\xi(\mathbf{0},\mathcal{P}\cup x)\xi(x,\mathcal{P}\cup\mathbf{0})\rho^{(2)}(\mathbf{0},x) - \mathbb{E}\,\xi(\mathbf{0},\mathcal{P})\rho^{(1)}(\mathbf{0})\mathbb{E}\,\xi(x,\mathcal{P})\rho^{(1)}(\mathbf{x})dx.$

• Thm (BYY '16): If ξ is exponentially stabilizing wrt \mathcal{P} , if ξ satisfies the p moment condition for some $p \in (2, \infty)$, then for all $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$ we have

$$\lim_{n \to \infty} n^{-1} \operatorname{Var} \langle \mu_n^{\xi}, f \rangle = \sigma^2(\xi) \int_{[-\frac{1}{2}, \frac{1}{2}]^d} f^2(x) dx \in [0, \infty).$$

• **Rk.** When \mathcal{P} is determinantal with fast decreasing kernel this extends Soshnikov (2002), who assumes $\xi \equiv 1$.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

Proof idea for CLT

· Given ξ , consider k mixed moment functions $m_{(k)}: (\mathbb{R}^d)^k \to \mathbb{R}$ given by

$$m_{(k)}(x_1,...,x_k;\mathcal{P}_n) := \mathbb{E} \prod_{i=1}^k \xi(x_i,\mathcal{P}_n) \rho^{(k)}(x_1,...,x_k)$$

· We show that the mixed moments cluster, that is for all $p,q \in \mathbb{N}$ there are constants $c_{p,q}$ and $C_{p,q}$ s.t. for all $x_1, ..., x_{p+q} \in \mathbb{R}^d$,

$$|m_{(p+q)}(x_1,...,x_{p+q}) - m_{(p)}(x_1,...,x_p)m_{(q)}(x_{p+1},...,x_{p+q})| \le C_{p,q}\varphi(-c_{p,q}s),$$

where

$$s := \inf_{i \in \{1, \dots, p\}, \ j \in \{p+1, \dots, p+q\}} |x_i - x_j|$$

and where φ is fast decreasing.

▲圖 → ▲ 国 → ▲ 国 → 二 国

Proof idea for CLT

· Given ξ , consider k mixed moment functions $m_{(k)}: (\mathbb{R}^d)^k \to \mathbb{R}$ given by

$$m_{(k)}(x_1,...,x_k;\mathcal{P}_n) := \mathbb{E} \prod_{i=1}^k \xi(x_i,\mathcal{P}_n) \rho^{(k)}(x_1,...,x_k)$$

· We show that the mixed moments cluster, that is for all $p,q \in \mathbb{N}$ there are constants $c_{p,q}$ and $C_{p,q}$ s.t. for all $x_1, ..., x_{p+q} \in \mathbb{R}^d$,

$$|m_{(p+q)}(x_1, ..., x_{p+q}) - m_{(p)}(x_1, ..., x_p)m_{(q)}(x_{p+1}, ..., x_{p+q})| \le C_{p,q}\varphi(-c_{p,q}s),$$

where

$$s := \inf_{i \in \{1, \dots, p\}, \ j \in \{p+1, \dots, p+q\}} |x_i - x_j|$$

and where φ is fast decreasing.

 $\cdot \mathcal{P}$ clusters and ξ exp. stabilizing \Rightarrow mixed moments cluster

米部 米油 米油 米油 とう

Proof idea for CLT

· Given ξ , consider k mixed moment functions $m_{(k)}: (\mathbb{R}^d)^k \to \mathbb{R}$ given by

$$m_{(k)}(x_1,...,x_k;\mathcal{P}_n) := \mathbb{E} \prod_{i=1}^k \xi(x_i,\mathcal{P}_n) \rho^{(k)}(x_1,...,x_k)$$

· We show that the mixed moments cluster, that is for all $p,q \in \mathbb{N}$ there are constants $c_{p,q}$ and $C_{p,q}$ s.t. for all $x_1, ..., x_{p+q} \in \mathbb{R}^d$,

$$|m_{(p+q)}(x_1, ..., x_{p+q}) - m_{(p)}(x_1, ..., x_p)m_{(q)}(x_{p+1}, ..., x_{p+q})| \le C_{p,q}\varphi(-c_{p,q}s),$$

where

$$s := \inf_{i \in \{1, \dots, p\}, \ j \in \{p+1, \dots, p+q\}} |x_i - x_j|$$

and where φ is fast decreasing.

 $\cdot \mathcal{P}$ clusters and ξ exp. stabilizing \Rightarrow mixed moments cluster

$$\cdot \text{ cumulants of } \frac{\langle \mu_n^{\xi}, f \rangle - \mathbb{E} \langle \mu_n^{\xi}, f \rangle}{\sqrt{\operatorname{Var} \langle \mu_n^{\xi}, f \rangle}} \text{ converge to cumulants of } N(0, 1).$$

General results yield WLLN, Gaussian fluctuations, variance asymptotics for statistics of geometric structures on clustering pt processes (CPP):

(i) Vietoris-Rips clique count on any CPP, including DPP with fast decreasing kernel, zero set of Gaussian entire function.

... extends Chatterjee, Lachièze-Rey + Peccati, Reitzner + Schulte, Yogeshwaran + Adler (2015)

伺下 イヨト イヨト

General results yield WLLN, Gaussian fluctuations, variance asymptotics for statistics of geometric structures on clustering pt processes (CPP):

(i) Vietoris-Rips clique count on any CPP, including DPP with fast decreasing kernel, zero set of Gaussian entire function.

... extends Chatterjee, Lachièze-Rey + Peccati, Reitzner + Schulte, Yogeshwaran + Adler (2015)

(ii) total volume and surface area of germ-grain model with germs given by points in CPP, i.i.d. grains with bounded diameter.

... extends Penrose + Y (2005); Hug, Last, Schulte (2015)

General results yield WLLN, Gaussian fluctuations, variance asymptotics for statistics of geometric structures on clustering pt processes (CPP):

(i) Vietoris-Rips clique count on any CPP, including DPP with fast decreasing kernel, zero set of Gaussian entire function.

... extends Chatterjee, Lachièze-Rey + Peccati, Reitzner + Schulte, Yogeshwaran + Adler (2015)

(ii) total volume and surface area of germ-grain model with germs given by points in CPP, i.i.d. grains with bounded diameter.

... extends Penrose + Y (2005); Hug, Last, Schulte (2015)

(iii) total edge length in knn graph on DPP with fast decreasing kernel.

 \dots extends Steele (1988); Penrose + Y (2005); Hug, Last, Schulte (2015)

||圖 | | 国 | | 国 |

General results yield WLLN, Gaussian fluctuations, variance asymptotics for statistics of geometric structures on clustering pt processes (CPP):

(i) Vietoris-Rips clique count on any CPP, including DPP with fast decreasing kernel, zero set of Gaussian entire function.

... extends Chatterjee, Lachièze-Rey + Peccati, Reitzner + Schulte, Yogeshwaran + Adler (2015)

(ii) total volume and surface area of germ-grain model with germs given by points in CPP, i.i.d. grains with bounded diameter.

... extends Penrose + Y (2005); Hug, Last, Schulte (2015)

(iii) total edge length in knn graph on DPP with fast decreasing kernel.
... extends Steele (1988); Penrose + Y (2005); Hug, Last, Schulte (2015)

(iv) the number of k-faces of convex hull of DPP (with fast decreasing kernel) on a volume n ball ... extends Reitzner (2005); Calka, Schreiber + Y (2008, 2013).

General results yield WLLN, Gaussian fluctuations, variance asymptotics for statistics of geometric structures on clustering pt processes (CPP):

(i) Vietoris-Rips clique count on any CPP, including DPP with fast decreasing kernel, zero set of Gaussian entire function.

... extends Chatterjee, Lachièze-Rey + Peccati, Reitzner + Schulte, Yogeshwaran + Adler (2015)

(ii) total volume and surface area of germ-grain model with germs given by points in CPP, i.i.d. grains with bounded diameter.

... extends Penrose + Y (2005); Hug, Last, Schulte (2015)

(iii) total edge length in knn graph on DPP with fast decreasing kernel.
... extends Steele (1988); Penrose + Y (2005); Hug, Last, Schulte (2015)

(iv) the number of k-faces of convex hull of DPP (with fast decreasing kernel) on a volume n ball ... extends Reitzner (2005); Calka, Schreiber + Y (2008, 2013).

THANK YOU

イロト 不聞 と 不良 と 不良 とう 酒