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The plan of this talk

The setting + spectral stability with respect to bounded magnetic field
perturbations.

Problem 1: construction of a magnetic matrix unitary equivalent with the
band Hamiltonian and its rewriting as a ’Peierls substituted’, Weyl
quantized ΨDO.

Problem 2: prove that given a magnetic field perturbation of strength ǫ,
the spectrum moves at most like ǫ1/2.

Problem 3: prove that given a slowly varying magnetic field perturbation
of strength ǫ, the spectral edges move like ǫ.

Problem 4: when does a slowly varying magnetic field perturbation of
strength ǫ create gaps of order ǫ?
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The unperturbed operator

V is a bounded, Zd -periodic scalar potential with d = 2 or d = 3,
H0 = −∆+ V and σ0 is an isolated spectral island of H0 which consists of
the range of N ≥ 1 Bloch bands.
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The unperturbed operator

V is a bounded, Zd -periodic scalar potential with d = 2 or d = 3,
H0 = −∆+ V and σ0 is an isolated spectral island of H0 which consists of
the range of N ≥ 1 Bloch bands.
We know [Helffer and Sjöstrand 1989, Nenciu 1991, Panati 2007, H.C.,
Herbst and Nenciu 2014, Panati and Monaco 2014] that if d ≤ 3 we can
construct N exponentially localized composite Wannier functions {wj}Nj=1:

P0 =
N∑

j=1

∑

γ∈Z2

|τ0γ (wj )〉〈τ0γ (wj )|, P0(x, x
′) =

N∑

j=1

∑

γ∈Z2

wj(x−γ)wj (x′ − γ).
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The unperturbed operator

V is a bounded, Zd -periodic scalar potential with d = 2 or d = 3,
H0 = −∆+ V and σ0 is an isolated spectral island of H0 which consists of
the range of N ≥ 1 Bloch bands.
We know [Helffer and Sjöstrand 1989, Nenciu 1991, Panati 2007, H.C.,
Herbst and Nenciu 2014, Panati and Monaco 2014] that if d ≤ 3 we can
construct N exponentially localized composite Wannier functions {wj}Nj=1:

P0 =
N∑

j=1

∑

γ∈Z2

|τ0γ (wj )〉〈τ0γ (wj )|, P0(x, x
′) =

N∑

j=1

∑

γ∈Z2

wj(x−γ)wj (x′ − γ).

Define a(x) :=
∫ 1
0 sB(sx) ∧ x ds. Here we assume that

max
j∈{1,2,3}

||Bj ||C1(Rd ) ≤ 1.
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The magnetic phase

Denote the magnetic flux of a unit magnetic field through a triangle with
corners at 0, x and x′ by:

φ(x, x′) =

∫ 1

0
a(x′ + s(x− x′)) · (x− x′)ds = −φ(x′, x).
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The magnetic phase

Denote the magnetic flux of a unit magnetic field through a triangle with
corners at 0, x and x′ by:

φ(x, x′) =

∫ 1

0
a(x′ + s(x− x′)) · (x− x′)ds = −φ(x′, x).

If d = 2 and B = [0, 0, 1]:

φ(x, x′) = −1

2
B · (x ∧ x′) =

1

2
(x2x

′
1 − x ′2x1).
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The magnetic phase

Denote the magnetic flux of a unit magnetic field through a triangle with
corners at 0, x and x′ by:

φ(x, x′) =

∫ 1

0
a(x′ + s(x− x′)) · (x− x′)ds = −φ(x′, x).

If d = 2 and B = [0, 0, 1]:

φ(x, x′) = −1

2
B · (x ∧ x′) =

1

2
(x2x

′
1 − x ′2x1).

An important estimate is the following:

fl(x, y, x′) := φ(x, y) + φ(y, x′)− φ(x, x′), |fl(x, y, x′)| ≤ |x− y| |y − x′|.
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Spectral stability

Let Hb = (−i∇− ba)2 + V .
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Spectral stability

Let Hb = (−i∇− ba)2 + V . The next result is well known, see [H.C. &
Nenciu 1998, Briet & H.C. 2001, H.C. 2010, Iftimie & Purice 2013].

Theorem

Fix a compact set K ⊂ ρ(H0). Then there exist b0 > 0, α < ∞ and

C < ∞ such that for every 0 ≤ b ≤ b0 we have that K ⊂ ρ(Hb) and:

sup
z∈K

∣∣∣(Hb − z)−1(x, x′)− e ibφ(x,x
′)(H0 − z)−1(x, x′)

∣∣∣ ≤ C b e−α|x−x′|.
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Spectral stability

Let Hb = (−i∇− ba)2 + V . The next result is well known, see [H.C. &
Nenciu 1998, Briet & H.C. 2001, H.C. 2010, Iftimie & Purice 2013].

Theorem

Fix a compact set K ⊂ ρ(H0). Then there exist b0 > 0, α < ∞ and

C < ∞ such that for every 0 ≤ b ≤ b0 we have that K ⊂ ρ(Hb) and:

sup
z∈K

∣∣∣(Hb − z)−1(x, x′)− e ibφ(x,x
′)(H0 − z)−1(x, x′)

∣∣∣ ≤ C b e−α|x−x′|.

Thus Hb has an isolated spectral island σb close to σ0. Applying the Riesz
integral formula we obtain:

∣∣∣Pb(x, x
′)− e ibφ(x,x

′)P0(x, x
′)
∣∣∣ ≤ C b e−α|x−x′|.
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The first problem
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The first problem

1. Construct an orthogonal family of vectors Ξγ,j ,b ∈ L2(Rd) with γ ∈ Z
d ,

j ∈ {1, ...,N} and 0 ≤ b ≤ b0 such that

|Ξγ,j ,b(x)| ≤ Ce−α|x−γ| and Ran(Pb) = Span{Ξγ,j ,b},
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2. If the field is constant, show that:
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The first problem

1. Construct an orthogonal family of vectors Ξγ,j ,b ∈ L2(Rd) with γ ∈ Z
d ,

j ∈ {1, ...,N} and 0 ≤ b ≤ b0 such that

|Ξγ,j ,b(x)| ≤ Ce−α|x−γ| and Ran(Pb) = Span{Ξγ,j ,b},

Pb =
∑

γ∈Zd

N∑

j=1

|Ξγ,j ,b〉〈Ξγ,j ,b|.

2. If the field is constant, show that:

Pb =
∑

γ∈Zd

N∑

j=1

|τbγ (wj ,b)〉〈τbγ (wj ,b)|, [τbγ (f )](x) = e ibφ(x,γ)f (x− γ).
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Important consequences

1. The restriction of Hb to the range of Pb is unitarily equivalent with a
bounded operator Tb : l2(Zd )⊗ C

N 7→ l2(Zd )⊗ C
N given by the matrix

elements:
Tb(γ, j ; γ

′, j ′) = 〈Ξγ,j ,b|Hb Ξγ′,j ′,b〉.
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N given by the matrix

elements:
Tb(γ, j ; γ

′, j ′) = 〈Ξγ,j ,b|Hb Ξγ′,j ′,b〉.
2. One can prove that Tb(γ, j ; γ

′, j ′) is exponentially localized in |γ − γ′|,
uniformly in b small enough.
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Important consequences

1. The restriction of Hb to the range of Pb is unitarily equivalent with a
bounded operator Tb : l2(Zd )⊗ C

N 7→ l2(Zd )⊗ C
N given by the matrix

elements:
Tb(γ, j ; γ

′, j ′) = 〈Ξγ,j ,b|Hb Ξγ′,j ′,b〉.
2. One can prove that Tb(γ, j ; γ

′, j ′) is exponentially localized in |γ − γ′|,
uniformly in b small enough.
3. If the field is constant, T̃b(γ, j ; γ

′, j ′) := e−ibφ(γ,γ′)Tb(γ, j ; γ
′, j ′)

depends on γ − γ′ and it can be diagonalized by a Floquet unitary.
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Important consequences

4. Let the field be constant. Let Ω = [−1/2, 1/2]d be the unit square in
R
d and define the N dimensional matrix

hk,b(j , j
′) :=

∑

γ∈Zd

e−i2πk·γT̃b(γ, j ; 0, j
′), k ∈ Ω.
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e−i2πk·γT̃b(γ, j ; 0, j
′), k ∈ Ω.
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〈τbγ (wj ,b)|Hbτ
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Important consequences

4. Let the field be constant. Let Ω = [−1/2, 1/2]d be the unit square in
R
d and define the N dimensional matrix

hk,b(j , j
′) :=

∑

γ∈Zd

e−i2πk·γT̃b(γ, j ; 0, j
′), k ∈ Ω.

We then have:

〈τbγ (wj ,b)|Hbτ
b
γ′(wj ′,b)〉 = e ibφ(γ,γ

′)

∫

Ω
e i2πk·(γ−γ′)hk,b(j , j

′)dk.

It turns out that hk,b(j , j
′) has an asymptotic expansion in b, all its terms

being real analytic in k and Z
d -periodic. The spectrum of the matrix hk,0

coincides with the N Bloch bands of H0 corresponding to σ0.
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Peierls substitution

5. Assume that the magnetic field is slowly varying, i.e. it comes from
aǫ(x) := a(ǫx) with a ∈ [C 1(R2)]2 and supx∈R2 |∂jak(x)| ≤ const where

Bǫ(x) = ǫ(da)(ǫx).
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5. Assume that the magnetic field is slowly varying, i.e. it comes from
aǫ(x) := a(ǫx) with a ∈ [C 1(R2)]2 and supx∈R2 |∂jak(x)| ≤ const where

Bǫ(x) = ǫ(da)(ǫx).

Stokes theorem gives:

φǫ(x, x
′) =

∫

[0,x′]
aǫ +

∫

[x′,x]
aǫ −

∫

[0,x]
aǫ.

Up to an error of order ǫ we have:

e
i
∫
[γ′ ,γ] aǫ

∫

Ω
e i2πk·(γ−γ′)hk,0(j , j

′)dk in l2(Z2)⊗ C
N .
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Peierls substitution

Up to an another error of order ǫ we have:

e iaǫ((γ+γ′)/2)·(γ−γ′)
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e iaǫ((γ+γ′)/2)·(γ−γ′)

∫

Ω
e i2πk·(γ−γ′)hk,0(j , j

′)dk in l2(Z2)⊗ C
N .

Consider the matrix valued symbol F (ξ, x) := hξ−aǫ(x),0. Every x ∈ R
2 can

be written as γ + x with x ∈ Ω.

The Schwartz integral kernel of F ’s Weyl quantization in
L2(R2)⊗C

N ≡ [L2(Ω)⊗ l2(Z2)]⊗ C
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Peierls substitution

Up to an another error of order ǫ we have:

e iaǫ((γ+γ′)/2)·(γ−γ′)

∫

Ω
e i2πk·(γ−γ′)hk,0(j , j

′)dk in l2(Z2)⊗ C
N .

Consider the matrix valued symbol F (ξ, x) := hξ−aǫ(x),0. Every x ∈ R
2 can

be written as γ + x with x ∈ Ω.

The Schwartz integral kernel of F ’s Weyl quantization in
L2(R2)⊗C

N ≡ [L2(Ω)⊗ l2(Z2)]⊗ C
N is:

δ(x − x ′)e iaǫ(x+(γ+γ′)/2)·(γ−γ′)

∫

Ω
e i2πk·(γ−γ′)hk,0(j , j

′)dk.

”Isospectrality up to order ǫ”
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Perturbation of rational fluxes

Let b = 2π p
q
+ ǫ with p, q ∈ N.

Denote by:

Λq := (qZ)× Z = {[qγ1, γ2] : γ1,2 ∈ Z}, Bq := {[0, 0], ..., [q − 1, 0]}.
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Perturbation of rational fluxes

Let b = 2π p
q
+ ǫ with p, q ∈ N.

Denote by:

Λq := (qZ)× Z = {[qγ1, γ2] : γ1,2 ∈ Z}, Bq := {[0, 0], ..., [q − 1, 0]}.

Every point γ ∈ Z
d can be uniquely represented as:

α+ x = [qγ1, γ2] + x , α ∈ Λq, x ∈ Bq.

The kernel of the effective operator can be re-expressed in terms of the
new coordinates as follows:

Hb(α, x , j ;α
′, x ′, j ′) = e ibφ(α+x ,α′+x ′)T (α− α′ + x − x ′; j , j ′).
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Perturbation of rational fluxes

If
[Ubf ](α, x , j) := e iπpγ1γ2e ibφ(α,x)f (α, x , j)

then

[UbHbU
∗
b ](α, x , j ;α

′, x ′, j ′) = e iǫφ(α,α
′)(−1)p(γ1−γ′

1)(γ2−γ′

2)e ibφ(α−α′ ,x+x ′)

· T (α− α′ + x − x ′; j , j ′).
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Perturbation of rational fluxes

This operator can be seen as an operator in l2(Zd )⊗ C
qN with the kernel:

Hǫ(γ, x , j ; γ
′, x ′, j ′) :=e iǫqφ(γ,γ

′)

· (−1)p(γ1−γ′

1)(γ2−γ′

2)e i(b0+ǫ)(γ2−γ′

2)(x1+x ′1)/2

· T ([q(γ1 − γ′1), γ2 − γ′2] + x − x ′; j , j ′).
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Perturbation of rational fluxes

This operator can be seen as an operator in l2(Zd )⊗ C
qN with the kernel:

Hǫ(γ, x , j ; γ
′, x ′, j ′) :=e iǫqφ(γ,γ

′)

· (−1)p(γ1−γ′

1)(γ2−γ′

2)e i(b0+ǫ)(γ2−γ′

2)(x1+x ′1)/2

· T ([q(γ1 − γ′1), γ2 − γ′2] + x − x ′; j , j ′).

The new Bloch fiber matrix will be of the type (Nq)× (Nq) and equals:

hk,ǫ(x , j ; x
′, j ′) =

∑

γ∈Zd

e−i2πk·γ(−1)pγ1γ2e i(πp/q+ǫ/2)γ2(x1+x ′1)

· T ([qγ1, γ2] + x − x ′; j , j ′).
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Harper model with half-flux

Here d = 2, N = 1, T (m, n) = 1 if m2 + n2 = 1 otherwise it equals zero,
and b0 = π i.e. p = 1 and q = 2.
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Harper model with half-flux

Here d = 2, N = 1, T (m, n) = 1 if m2 + n2 = 1 otherwise it equals zero,
and b0 = π i.e. p = 1 and q = 2.
The Bloch matrix is of the type 2× 2. Up to an ǫ order error, the new
Bloch matrix is: [

2 cos(2πk2) 2 cos(2πk1)
2 cos(2πk1) −2 cos(2πk2)

]
.

Its two eigenvalues are given by:

±2
√

cos2(2πk1) + cos2(2πk2)

which generate four Dirac points at [±1/4,±1/4].
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Harper model with half-flux

Here d = 2, N = 1, T (m, n) = 1 if m2 + n2 = 1 otherwise it equals zero,
and b0 = π i.e. p = 1 and q = 2.
The Bloch matrix is of the type 2× 2. Up to an ǫ order error, the new
Bloch matrix is: [

2 cos(2πk2) 2 cos(2πk1)
2 cos(2πk1) −2 cos(2πk2)

]
.

Its two eigenvalues are given by:

±2
√

cos2(2πk1) + cos2(2πk2)

which generate four Dirac points at [±1/4,±1/4].
Helffer-Sjöstrand and Bellissard shown that gaps of order

√
ǫ open around

0.
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The second problem

The second problem
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The second problem

Consider the Hilbert space L2(Rd ) with d ≥ 2. Let 〈x〉 :=
√

1 + |x|2 and
let α ≥ 0.
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The second problem

Consider the Hilbert space L2(Rd ) with d ≥ 2. Let 〈x〉 :=
√

1 + |x|2 and
let α ≥ 0.
We consider bounded integral operators T ∈ B(L2(Rd )) to which we can
associate a locally integrable kernel T (x, x′) which is continuous outside
the diagonal and obeys the following weighted Schur-Holmgren estimate:

||T ||α :=

max

{
sup
x′∈Rd

∫

Rd

|T (x, x′)|〈x − x′〉αdx, sup
x∈Rd

∫

Rd

|T (x, x′)|〈x− x′〉αdx′
}
.

Let us denote the set of all these operators with Cα.
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The second problem

If T ∈ Cα, we define {Tǫ}ǫ∈R ⊂ Cα given by the kernels

e iǫϕ(x,x
′)T (x, x′).

The second problem 18 / 31



The second problem

If T ∈ Cα, we define {Tǫ}ǫ∈R ⊂ Cα given by the kernels

e iǫϕ(x,x
′)T (x, x′).

The Hausdorff distance between two real compact sets A and B is defined
as:

dH(A,B) := max

{
sup
x∈A

inf
y∈B

|x − y |, sup
y∈B

inf
x∈A

|x − y |
}
.
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The second problem

If T ∈ Cα, we define {Tǫ}ǫ∈R ⊂ Cα given by the kernels

e iǫϕ(x,x
′)T (x, x′).

The Hausdorff distance between two real compact sets A and B is defined
as:

dH(A,B) := max

{
sup
x∈A

inf
y∈B

|x − y |, sup
y∈B

inf
x∈A

|x − y |
}
.

Question: how regular is the following map?

R ∋ ǫ 7→ dH(σ(Tǫ), σ(T )) ∈ R+
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The second problem

Theorem

[H.C. and Purice 2011]. Let H ∈ Cα with α > 0 be self-adjoint and

consider a family of Harper-like operators {Tǫ}ǫ∈R as above. The map

R ∋ ǫ 7→ dH(σ(Tǫ), σ(T )) ∈ R+

is Hölder continuous with exponent β := min{1/2, α/2}. More precisely,

for all ǫ0 we can find a numerical constant Cβ > 0 such that:

dH(σ(Tǫ0+δ), σ(Tǫ0)) ≤ Cβ ||T ||2β |δ|β .
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R ∋ ǫ 7→ dH(σ(Tǫ), σ(T )) ∈ R+

is Hölder continuous with exponent β := min{1/2, α/2}. More precisely,

for all ǫ0 we can find a numerical constant Cβ > 0 such that:

dH(σ(Tǫ0+δ), σ(Tǫ0)) ≤ Cβ ||T ||2β |δ|β .

The result is sharp for α ≥ 1.
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The second problem

Theorem

[H.C. and Purice 2011]. Let H ∈ Cα with α > 0 be self-adjoint and

consider a family of Harper-like operators {Tǫ}ǫ∈R as above. The map

R ∋ ǫ 7→ dH(σ(Tǫ), σ(T )) ∈ R+

is Hölder continuous with exponent β := min{1/2, α/2}. More precisely,

for all ǫ0 we can find a numerical constant Cβ > 0 such that:

dH(σ(Tǫ0+δ), σ(Tǫ0)) ≤ Cβ ||T ||2β |δ|β .

The result is sharp for α ≥ 1.
Previous contributors: Elliot, Avron, Herbst, Simon, Helffer, Sjöstrand,
Nenciu, Bellissard, Măntoiu, Iftimie,...
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The third problem

The third problem
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The third problem

Denote by E(ǫ) one of the quantities supσ(Tǫ), inf σ(Tǫ) or ||Tǫ||, where
Tǫ is as before.
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Question: is E(ǫ) more regular than the other points of the spectrum?

[Bellissard 1995] proved Lipschitz regularity for Harper like operators and
constant magnetic field.
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The third problem

Denote by E(ǫ) one of the quantities supσ(Tǫ), inf σ(Tǫ) or ||Tǫ||, where
Tǫ is as before.

Question: is E(ǫ) more regular than the other points of the spectrum?

[Bellissard 1995] proved Lipschitz regularity for Harper like operators and
constant magnetic field.

What about the general case?
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The third problem

Theorem

[H.C. and Purice 2014].
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Theorem

[H.C. and Purice 2014].
If 1 ≤ α < 2, then there exists a numerical constant Cα > 0 with

limαր2 Cα = ∞, such that

|E(ǫ) − E(0)| ≤ Cα‖T‖α |ǫ|α/2;

If α ≥ 2, then there exists a numerical constant C > 0 such that

|E(ǫ) − E(0)| ≤ C‖T‖2 |ǫ| ln(1/|ǫ|);

Let α ≥ 2 and assume that the magnetic field perturbation comes from a

constant magnetic field. Then there exists a numerical constant C > 0
such that

|E(ǫ) − E(0)| ≤ C‖T‖2 |ǫ|.

The third problem 22 / 31



The fourth problem

The fourth problem

The fourth problem 23 / 31



The fourth problem

Consider a slowly varying magnetic field Bǫ,η(x) := ǫ(1 + ηb(ǫx)) and the
corresponding magnetic matrix

e iφǫ,η(γ,γ′)

∫

Ω
e i2πk·(γ−γ′)λ(k)dk.
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Consider a slowly varying magnetic field Bǫ,η(x) := ǫ(1 + ηb(ǫx)) and the
corresponding magnetic matrix

e iφǫ,η(γ,γ′)

∫

Ω
e i2πk·(γ−γ′)λ(k)dk.

Question 1: if η = 0, do we get Landau-like spectrum around the
maximum and minimum of λ?

Yes: Bellissard, Helffer, Sjöstrand, Kerdelhue,...

Question 2: if η 6= 0 is small, are the gaps preserved?

Ongoing work with Helffer and Purice.
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1. Fiorenza,D., Monaco,D., Panati,G.: Construction of real-valued
localized composite Wannier functions for insulators. Preprint 2014
http://arxiv.org/abs/1408.0527

2. When N = 1: Nenciu, Helffer-Sjöstrand.

3. If d ≤ 2, ongoing work H.C., I. Herbst and G. Nenciu.
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