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Movie: Level of energy density of charge 2 monopole in R3

Fix elliptic curve
2 K> 4 2 12y -2
C=(Gm): P+ (AR KR 1) =0
Find four solutions
¢i(x), j=1...4
of quartic equation, Atiyah-Ward constraint
n=(x2 +1x1)¢2 4+ 2x3¢ + x2 — 1x1

Build four transcendents

GO ¢ 2F — K
wi(x) = exp / (Cz— ) , J=1,...,4
J( ) { k' 41k T K

A level of energy density £(x) of charge 2 monopole is built in
terms quantities (j(x),1j(x) by certain explicit formula explained
below




Yang-Mils action

Gauge group U(1) x SU(2) x SU(3) c SU(N)
Yang-Mils free action

1
S= 22/d4xTrF F, ij=1,...,4

Yang-Mils field strengths
Fij = 0xaj — Ogaj + [ai, aj]
Covariant derivative
Di® = 0;% + [a;, D]

Finite action solutions B
D;F'JY =0
That's second order PDE
D



Instanton solution

Belavin,Polyakov,Schwartz, Tyupkin, 1975 (BPST) rewrote
the action in R* (imaginary time t) by completing the square

1 y _—y
Sinst = 73 /d xTr(Fij F*FY)2+Tr F*F
N——

Total derivative

where dual field strength are defined as *F; ; Eu K, [F<! and
second term ~ n € N. Then
82
5;n5t>—2]n], nEN
e

with equality iff
F,'J:*F,',j, n>0; or FiJ:—*F;J, n<0

BPST found explicitly n = 1 solution in algebraic form
In what follows SU(N) = SU(2)



Static instanton called Non-Abelian Monopole

—a;=0, i=1,....,4, x=(x1,x,x3) € R
Gauge fields :  aj(x), a2(x), a3(x), aa(x) = P(x)
Density of the Yang-Mills-Higgs action
~TrFjFY 4+ Tr D;®D'®, i, j=1,2,3
Self-duality condition = Bogomolny equations, 1976

Di® =+ epFu, i=1,23
j7k

which should be solved at the boundary conditions

1
H= \/—§Tr¢(x)2 ~ 1—2—nr—|—0(r*2), r=1\/x2+x3+x3




Nahm(1980)-Hitchin(1983) theorem,

Exist two and only two orthonormalizable solutions, v,(s,x) to the

3
] d
Weyl equation : | —1l5,— + Zl(Tj(s) +ax1,) @ o | v(s,x) =0
J:
with n x n matrices T;(s) satisfying to the
3
. dTi(s) 1
Nahm equation : dls =5 Z €kl Ti(s), Tk(s)]

jk=1

Ti(s) are regular s € (0,2) have simple poles at s =0, 2;
Ress—o Ti(s) - n-dim. irreducible representation of SU(2), also

Ti(s) = =T(s). Ti(s)=Tl(2-9)
Then monopole field ®(x),,, is given as

2
D(X) 0 = z/o va(s,x).vu(s,x)ds, w,v =172



And similar formula for gauges a;

2
ai(x) . = Z/O vL(s, X).0xVy(s,x)ds, i=1,2,3,



Hitchin solution to the Nahm equation (1982,1983)

Nahm equations admit Lax form:

dA(s, )

e = A, Q). M(s,0)]

A(z,¢) = A1(s)¢ T+ Ao(s) + Aga(s)C,
M(S,C) = %Ao(s) + CA.H(S)
Ail(s) = Tl(s) + ZT2(5), Ao(s) = 2ZT3(S)

Condition
det(A(s,{) —nl,) =0

yields the curve € = (¢, m) of genus
ge=(n—1)
n-charge monopole curve
" +a1(On" .+ an(C) =0

aj(¢)- polynomials in ¢ of degree 2j.
D



Further plan

(I) Problems appearing at finding monopole curve

v

v

(1) Calculation of monopole fields and energy density

v

(I11) The case of charge 2

v

(IV) Further problems



Part |: Monopole curve

n—1

n"+a(Qn" "+ +an(() =0

aj(¢)- polynomials in ¢ of degree 2;.

genus g = (n — 1)?



Hitchin constraints (1982,1983)

H1. C admits the involution
(¢m) = (~1/¢,-7/C°)

H2. Let 7 is the second kind normalized differential on C

F)/oo(P) P—oo; — <§£ -+ O(l)) d¢, % Yoo =0, p= e2z7r/n
473

Then its by-periods, k =1, ..., g are half-periods

1 T ].n 1
Uu=— 74 7{ =-n+—-Tm
o b Yoo ) " Yoo 5 5 )

n,m € Z&- Ercolani-Sinha vectors [E.Ercolani, A.Sinha, 1989]
H3. Linear winding Us + K, K- vector of Riemann constants, does
not intersect theta-divisor inside the interval (0, 2), i.e.:

0(Us+K;7)#0, se€(0,2)
D



Tetrahedral monopole

Hitchin,Manton,Murray, 1995 found charge 3 monopole curve of

genus 4
7+ +5v2¢° -1=0

The equation includes Kleinian polynomial ¢® 4 5/2¢3 — 1 which
is invariant under action of tetrahedral group.

The curve admits C3 symmetry,

(C.n) — (oG, pm), =3,



Extension on the above result

Let us try to extend this result to general curve with C3 symmetry,

773+0477C2+ﬁg6+’)’c3_520a aaﬁ7’y€R
Theorem [Braden & E, 2010 | For the family of trigonal curves
>+ x(¢°+ b3 ~1)=0

Hitchin constraints satisfy only and only for the following values of
parameters x and b

_1T(1/6)r(1/3)

e 7 =T

Below - the sketch of the prove



Wellstein (1899), Matsumoto (2000)

~

Trigonal curve C: wi=(z—-X1)...(z— Xs)

XX’

Period matrix 7 =02 | H+ (p*> — 1)——
iod matrix 7= p ( (P~ Vs,

) ,  p=exp(2ir/3)

H = diag(1,1,1, 1),

xz< ) dz).
a1W Cl4W



Homology basis by Wellstein (1899)




Solving constraint

Proposition For a pair of relatively prime integers (m, n) for which
(m+n)(m—2n) <0

a solution to H2 can be obtained as follows: solve for t

2n—m_ 2F1(%,%;1,t)
m+n  HF(121,1-¢)
Then
_1-2t t:—b+\/m
t(1—1) Vb2 + 4
and

« 12
X1/3:_(n+m)m2F (3,3,1,t> ) o = t/(l_t)



Ramanujan hypergeometric relation

At n=1 and m = 0 should be:
2oF1 (3’3'1
2F1 (3%

1—1t) _»
1;

Amazingly
1 53
t==-———, b=5Vv2
2 18’ 5v2

Ramanujan, 1915: Let r (signature) and n € N
2F1(1,r7 ,1,1*X) _nzFl( » T ,1,1* )

oFi (5,55 5x) 0 oFR (3,5 Ly)

r o1

Then P(x,y) = 0 is algebraic equation, find it!
Ramanujan theory for signature 3, r =3, n =2
()3 + (1= x)3(1-y)s =1

Set y = % to obtain b = 5v/2.
Other signatures: Berndt & Bhargava & Garvan, 1995



Tetrahedral monopole exists

Value b = 5v/2 corresponds to n =1, m = 0 - Check H3

100
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Plot of the real and imaginary parts of the function 6(Us + K),
se0,2]

The case b= —5/2 isgivenby n=m=1




Unramified cover

Our genus 4 curve C admits automorphism: o : ({,n) — (p¢, pn)
and covers 3-sheetedly genus 2 curve C.

7:C=C

~

C¢,m): m+x(C+b3-1)=0,

Clp,v): v?=(u®+b)>+4
v=_C41/¢3, p=-n/C
Riemann-Hurwitz formula,
2—-2g=2N(1—-g)-B

tells that the cover is unramified, N =3,g =4,g =2 — B =0.



Fay-Accola theorem, Fay-63, p.67

~

Theorem For unramified cover m: C(¢,n) — C(x,y) exists a
basis in homology group (ag, ..., as3;bg,...,b3) admitting
automorphism o,

00 aK = Gktlmod3s 00 bk =bki1moas, k=1,2,3,
g odapg ~ ap, UOboNbo

Then remarkable factorization occurs

0(3z1, 22,22, 22; 7) _
0(z1,22;7)0(z1 + 1/3, 22, 7)0(z1 — 1/3, 22, 7)

Here ¢ independent of zy, z», period matrices are

a b b b

-~ | b c dd (32 b

Tl b dcd T_<b c+2d>
b d d c



Humbert variety

Humbert variety H2: period matrix 7 of genus two curve C
satisfies

q1 + qoT11 + 3712 + GaTo2 + CI5(7122 — T11722) = 0;

G €Z, q5—4q1qs+ qq)=h, heN.
Then exists a symplectic transformation &

1

ST fl h ), heN.
L

Here h - degree of the cover C over elliptic curve £
m: C—E.

In the case considered we got h =2



15 components of Hy, Prinsheim, 1875

y? = x(1 = x)(1 = X°x)(1 — >x)(1 — K°x)

2710 + T117T0 — 7'122 =0 & K= A2u2

T11 + 2712722 = 0 & K- N = ,u2(1 - )\2)

T11 4 2712 — (111722 — 75) =0 & /A1 - p?) = N(k?2 - 1?)
271 — T2 =0 & u?=r2)\?

2710 — Tog + T11T22 — Ty = 0 & N =k%2

T11 — T =0 REN /<c2—)\2:)\2(/<;2—u2)
711—722+T11722—T122:0, & K2—M2:M2(H2—A2)

2110 = 1 & N 2= k2107



H,; components in our simplifications

Genus two period matrix in Fay-Accola reduction,

%a b _ T11 T12
b c+2d T12 T2
is proved to be Hj-component

2
1—711+ 71702 -7 =0

and mapped to the component

1

T2 = 3
2

by symplectic transformation &



Outline of theta-transformations

(n+ p?Hm)(n + p?Hm) T

T=p’H—(p—p? . Wellstei
T = H = o= ) 7 Hm) T Hn + 2 Hm) elstein
|’

a b b b
b ¢ d d
b d ¢ d
b d d c
[} Fay-Accola

%a b
b c+2d
)

1
( 71_ 2 ) Bolza Dg
2



Proposition [Braden & E, 2009 |
f(Us+K;7)=0 at se€(0,2)

iff one from the following 3 conditions satisfies

3 T s 1.7
By Bgem|T)+(-172 J=) =0
9 <yr+s3| >+( )193 <y+53 3>
1 2/ —
e=0,+1, y==s(n+m), T:—3(n+m)
3 2n—m

The solution y = y(T) provides the answer.
We reduced problem in (n, m) € Z? to one variable T



A new 6#-constant relation 7
s (T2 V2 (LT
A (317) = 93 (3 3)
Y1 (Z|7) 94 (% 91 (L1Z2) 9, (L2
2303 1 (317) 4(3\T)+192 (0|j) 1(313) 94 (313) 0

4
92 (3I7)° 3 9 (313)

We are able to prove that using Ramanujan third order
transformation of Jacobian moduli

92(017)2  (p+1)*B3-p)

KO =Gere = e
_9(0]7/3)>  (p+1)(3-p)?
k(7'/3) - 193(0‘7_/3)2 - 16[)3



No charge 3 monopoles beside tetrahedral monopole
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Three branches of the function y plotted against (n+ m)/(2n— m)

Only two cases (n+ m)/(2n — m) = 2 and

(n+ m)/(2n — m) = 1/2 satisfy H3
D



Charge 3 monopole curve with cyclic symmetry

The genus four curve C= (¢, n) satisfying to H1
P +anc®+ ¢+ -1=0, a,y €R

But only 3 points were explicitly known:

20

-20

Do other points exist in the («,)-plane?



New monopole curve (Braden,D’Avanzo&E, 2010)

The above result can be extended to the curve of genus 4
i+ an¢® + B +4¢ - 5=0
40

30 1

Axis « - horizontal and ~ - vertical.



Richelot Arithmetic-Geometric mean, Bost-Mestre, 1988

Above genus four curve covers 3-sheetedly the genus two curve
y? = (4 ax +7)? + 452

and Schottky-Jung factorization is still applicable.
H2 is formulated as a condition on complete holomorphic integrals
over this genus two curve:

dlzo, j{mzeglﬂ
¢ Y ¢« Y

taken along certain cycle .



Part Il: Calculation of monopole fields

Monopole fields are given as

1
S(x) 0 = z/ va(z,x) vy (z,x)dz,
1 wv=12 =123,

1
aj(X)w = z/ vL(z,x).@X,v,,(z,x)dz,

-1

with v - solutions to the Weyl equation

_zlgndz + Z s) +uwxjly) ®oj | v(z,x) =0



Panagopoulos formulae (1983)

Introduce

3
H(X)ZZX,’U,‘@L,, T(Z): EZ Tk(2)®0'k
i=1

O(x.2) = HH()T(2YH() — T()

Then antiderivatives are computed as
/v;r,(z7 X)Vg(z,x)dz = v;r,(x, 2)Q7(x, z)vq4(z, x)

dp q(x) ~ /zv;g(z,x)vq(z,x)dz

= vL(z, x)Q Yz, x)

3
X (9
Z+H(x)) r28X_] vq(z,x);
i=1 !

Note We need only values of v4(z, x) at boundaries of the interval,
ve(£l,x), ¢g=1,2
D



Similar formula for gauges a;

0
aj.p,q(x) ~ /v;g(z, x)a—xvq(z,x)dz

= v};(z, x)Q1(z,x) [8(?( + H(X)ZX'jLZ(r;(XV)' vg(z,x).



Lesser known Nahm Ansatz I; n > 2, Nahm (1982)

Apart from the Weyl equation, Afv =0

vi(x,z)

3
112,7 Z Tj 4 1xj1,) ® o 5 =0
=1 van(X, 2)
introduce construction equation Aw =0
wi (X, 2)
zlzn%-l- Z(Tj—i—zlen)@)aj 5 =0
J=1 wan(X, z)

If
W = (Wl,...,Wgn)

be fundamental solution to Aw = 0, then fundamental solution
V = (Vl,.. . ,Vgn)

to Afv = 0 reads

v = Wl
D



Lesser known Nahm Ansatz Il

W.Nahm introduced Ansatz to solve Aw =0
w(x, z)_(12+zu, Jo)x ©9(z.0), ¢ =((x)
j=1
Here (-certain parameter, u(¢) real unit vector independent in z
u=(uy,u,u), v+us4ui=1
is constructed in terms of vector y

(143 1-¢
y= 2 20

—C>, y'y=0

u=1—-=
yy

1(z,() - n-vector to be found, also x arbitrary constant n- vector.



Then the construction equation reduces to the spectral problem,

L(Z7 <)¢(27 C) =7 'Qb(Z? C)

(4 + M) (2.0 =0

L, M are exactly n x n-matrices of the Lax form of Nahm eqns.
The spectral curve

"+ ar(QOn" .+ an(() =0
is constraint by the condition
n=(x+ le)C2 +2x3( +x0 —1x1 = Po

That is algebraic equation of order 2n with respect to (, called
Atiyah-Ward constraint

Pon(Q) =PI+ a1 (OPy .. 4+ a,(¢) =0



Resume on the “Lesser known Nahm Ansatz”

» Let C be monopole curve of genus (n — 1)

> Let PB2,(¢) be 2n degree polynomial vanishing in 2n points
k(x), k=1,...,2n

» Let 9(z,((x)) be n-dimensional vector resolving of the linear
problem in the Lax representation of Nahm equation

» Let w(z,((x)) be 2n-dimensional vector described above

» Let W = (w(z,(1(x)),...,w(z,(2n(x))) be 2n x 2n matrix
representing fundamental solution to the construction
equation.

» Then fundamental solution V' to the Weyl equation is given as

v=wi



Nahm Anzatz revisited |

(i) Linear problem in Lax representation is non-standard and reads

Ai(s) = Ti(z) +:Ta(2), Ao(z) = 2T3(2)
Gauge transform, G
Y(z,¢) = G®(z,()
should be done to reduce the spectral problem to standard form

do . n—
— +Q(2)® = (- Diag(L,p. p2,.... " )0



Gauge transform |

Introduce
h=G'g
Recently (Braden&E, CMP, 2018, in press) found

h = ®(z,0)d(0,0) "
with matrix Baker-Akhiezer function

®(z,¢) = (®1(2,P1), ..., (2, Pa)),  Pj=(Comy)

®(0,0) - special values of f-functions



Gauge transform I

Recall: to compute monopole fields via Panagopoulos formulae we
need the quantity containing Nahm data T(z),

3
1
T(z) = 5 Z Ti(z) ® ok
k=1

For this purpose we found (Braden&E, CMP, 2018, in press)
1ppt - . dh
= 2 . -
7 ( shvh™t —Lhp~1 ) ’ dz

Here

v = T1(0) 4+ ¢ T»(0) = Diag(v1,...,vn)

For calculation of monopole fields we need only h



Nahm Anzatz revisited |l

(ii) To find expansion of matrix V(z) near z=1—-¢, z=—-1+¢
up to required order by the expansion W(z) near z = +1,
VWi =1

(iii) To find projection to 2-dimensional subspace of normalized
vectors

(ii) and (iii) overcame at the case n =2



Part Ill: charge two monopole

Hitchin constraints H1.,H2.,H3. constrain nothing in this case.
The curve:

2
o+ KT(C“ +2(K — K +1) =0

The Atiyah-Ward constraint:
2 2 K? 4 2 12y -2
(G + )¢ + 25 + 3¢ —va]” = (g + (K2 — K22+ 1)

Nahm equation in this case resolved in Jacobi elliptic functions

1 .
Ti(z) = _Eajfj(z)’ j=1273

,sn(Kz; k)
en(Kz; k)’

1

_dn(Kz; k)
K cn(Kz; k)

f(z) = n(Kz k)’ h(z) = Kk

(z) = KK



Expansions of v

Typical entry to the Panagopoulos formulae is of the form

vi(z,¢i(x)) @ (x, 2)v(z, Gi(x))

O-matrix expands near z = +1 as

0 l0-9=2 o, o1+g=L 1o
We need terms of order £1/2 to find monopole fields.
v(1—¢&G(x))
0 X0 — X1 aj(x)
1 1 1 X3 12 | bi(x) —r?/2
“or| | Tar| e [T aare | T
0 X0 + X1 ci(x)



Expansions v near z = +1 F ¢ showing monodromy

v(1—¢,¢(x))
0 1Xp — X1 a
B 1 1 1 X3 1/2 b— r2/2 3/2
e | | Tar| x| T8 besp | T
1Xo + X1 Cc
v(=1+¢,¢(x))
1 —X3 a —r?)2
N B B 1/2 b 3/2
o 53/2 0 + 51/2 —1X2 + X1 +¢ c + O(f )
1 X3 —a —r?)2

We should find a, b, c, a’b’c’ from the relation
v=w
D



Fundamental solution of Aw =0

Columns wy, of the fundamental solution W = (wq,...,wy) are

—193(04;()192(041( — 2/2)
we — 1 exp{fkz}
k < ZCk > ®© 191(0”()194(0“( N 2/2) 792 (2/2)

Ck Ck
Here ak:/ w, Bk:/ Yoo, k=1,...,4

oo o
w and v - first and second kind normalised differentials, (j is a
branch point.

Hi<j V1(ai — o)
TTie1 V1(c)3(ak)

Determinant Det W computed using the Weierstrass trisecants

Det W = exp {—m(N>t — Nz)}, NeZ



Weierstrass trisecant relations ( Weierstrass-Schwartz

Lectures (1885)

Let &/ = T(ax), " = T(’), T(a') = a and

ai ay +apx+ a3+ ag
T (0%) :1 apt+ar —a3 —ag
a3 2 a1 —oap+ a3 —ag
(o7} —a1 +ay+ a3 — oy

Weierstrass-Schwartz gave 6 trisecant formulae, W1,.., W6, we
present here those two which we used

[W1]  91(ea)d1(a2)d1(az)dr(aa) + D1(a1)d1(an)di(as)di(ay)
+ V1(af)d1(as)01(az)d1(ay) =0

[W6]  9i(a1)di(a2)di(az)di(aa) — 9i(ah)di(a))di(as)di(ay)
+ 91(af)d1(as)01(a3)d1(ay) =0



Expansions of W and V

Let W(z,x), V(z,x) -fundamental solutions of ATV =0,
AW =0, then

W(l-¢,x)= 51/2 Wo + 51/2 Wy + €32 Ws 4+ 0(£%/?)

1
V(l - 57 X) = @ 51/2 Vl + 51/2 V2 + 0(63/2)

Using Nahm condition VW1 = 1 reduces to
WOT.\/2 + WlT.V1 + W2T.Vo =0

compute V, via Kramer rule.



Energy density £(x), x = (x1,x,x3) € R?




Energy density £(x) for n = 2

Fix elliptic curve

C=(cm: R 20—l e =0
Find four solutions
¢i(x), j=1,...4
of quartic equation, Atiyah-Ward constraint
n = (x4 x1)¢% + 2x3( + x2 — 11

Find four transcendents

GO de / , 2E—K>
i(X) =ex — - , j=1...,4
1(x) p{/k’+zk ) (C 0 J

Energy density £(x) is expressible in terms of (j, ;1j and the above
formula.



Numerics by P.Sutcliffe: Energy density along x; axis

0.3 7

0.2 1




Part IV: Further problems

Description of monopole curve satisfying H2. and H3.

u_ 1 7{ f{ T 1 N 1
= — =-n+—-Tm
27TZ bl ’7007 ) bn ’700 2 2 9

O(Us+K;7)#£0, se(0,2)

Algebro-geometric approach predicts 4n — 4 dimension of the
monopole moduli space; 3 parameters - coordinates of the
centrum, i.e. 4n— 7. At n = 2 - one parametr, Jacobi k

At n = 3 - 5 parametrs. The method exposed permits to find the
point associated to the Plato solid - tetrahedron and then find
one-dimensional subspace in 5D space of parametrs.



Homologies evaluation for curves with symmetries

Easy to construct first 3 cycles




and difficult to find the fourth

Right plot admits symmetries needed for Fay-Accola theorem
Problem: construct homologies respecting symmeries of the
curve



Surprising 6-relations |

K?
Elliptic curve 7?4+ — (C4 +2(k? — k’2)§2 + 1) =0
Atiyah-Ward constraint 1 = (x2 + le)C2 + 2x3¢ + x0 — 1x1
Given:

Gi
Abelian images «; —/ w, a1+...+as=N1, NeZ

Second kind integrals 3; = /CI Yoos P14 ...+ Pa= 7%
o
V(i +aj+ax) at iF#jF#k
~(2a — 2o — K)U3(a; + aj)03( 0 + ag)d3(ak + ;)
a m3(0)91 ()1 () V1 ()
U3(ai + o + ax)
- (2x1 — 2w + K)3(aj + aj)93(aj + )3k + )
B m3(0)93(;)V3(j)3(uk)
D




Surprising 6-relations Il

Ati#j#k#1e{l,...,4}

19%(04,‘ + aj + ak)
= =284+ 1K — 2N
U3(a + o + ax) bi <
9 (s )
Qi) _ og ke, — o
191(04,' + o + ak)

Atij#k#1€{l,... 4)

U5 (i + o) B
m = —2(Bk + B1) + 4x3
+ 2(X2 + ZXl)(Ck + C/) — 2urN

and others following from the above given.

Problem: Generalize above relations to higher charges, n > 2
and monopole curves.



Theta-constant representation of periods, g =1

Jacobi
_ T 20, K
K= 2193(0,7'), T=g

! dx
K=Kk = /0 V(L= x2)(1 — k2x2)

Weierstrass

1 (19’2’(0) ¥3(0) 19:{(0))
+ +

= T 120 \0,(0) T 95(0) T 04(0)
d d
20} = 7X, 2’]” = — Q ,
a Y a Y S W'
2(,4,}/ = d7X7 277’ [ @ w
b Y b Y
Legendre relation wy’ — nw' = =%



First kind periods at g =2 (Rosenhain, 1851)

y2 =x(x —1)(x — a1)(x — a2)(x — a3)

and matrix A of a-periods,

" i-1ds ) 1 —Pb[02]  Qb2[d1]
(2w) 1-(}1{_ " ) —27T2Qz< P61[62] —091[51])

g ij=1,2
with
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and 6 even characteristics [a1 23], [51,2,3] and two odd [d7 2]



Superstructure of Rosenhain derivative formula

Take any of 15 Rosenhain derivative formulas,
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Baker's basis of co-homologies, 1898, 1907
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This basis satisfies to the Generalized Legendre relation
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Second kind periods (Klein, 1888)

E&Eilbeck,Eilers, 2013
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Directional derivatives ©; j[e] = duy,0u,0[e], (2w)™! = (U1, Uy)

Generalization of these formulae to hyperelliptic curves in K.Eilers,

2016, 2018

Non-hyperelliptic curves are not studies in this context



