
Counting points on curves in average polynomial time

David Harvey

University of New South Wales

20th February 2018
Workshop on numerical methods for algebraic curves

Le Centre Henri Lebesgue, Rennes

The zeta function

Definition

Let X = smooth projective curve of genus g over Fp.
The zeta function of X is the power series

Z (T) = exp

(∞∑
k=1

|X (Fpk)|
k

T k

)
∈ Q[[T]].

It is actually a rational function of the form

Z (T) =
L(T)

(1− T)(1− pT)

where L(T) ∈ Z[T] has degree 2g .

Knowledge of Z (T) is equivalent to knowledge of L(T).

It is effectively computable: enough to compute |X (Fp)|, . . . , |X (Fpg)|.

2 / 28

Example

Let X be the genus two hyperelliptic curve with affine equation

y2 = x5 + x + 1

over Fp where p = 1000003.

Then
|X (Fp)| = 1000329, |X (Fp2)| = 1000007333965,

which implies that

Z (T) =
L(T)

(1− T)(1− pT)

where
L(T) = 1 + 325T + 719790T 2 + 325pT 3 + p2T 4.

3 / 28

Global case

Now consider a smooth projective curve X of genus g over Q.

Let Xp = reduction of X modulo p.

For all but finitely many primes, this reduction makes sense and yields a
smooth projective curve of genus g over Fp. For the rest of the talk, we
ignore the “bad” primes.

Let Lp(T) = corresponding L-polynomial for Xp.

Problem

Given curve X/Q and a bound N, compute Lp(T) for all good p < N.

Applications: study Sato–Tate distributions, BSD conjecture.

Typically N is around 220 or 230.

4 / 28

Example

Again take X defined over Q by

y2 = x5 + x + 1.

The bad primes are 3, 7, 23, and for the good primes we have

L5(T) = 1 + 10T 2 + 25T 4

L11(T) = 1− 4T + 14T 2 − 44T 3 + 121T 4

L13(T) = 1 + T + 4T 2 + 13T 3 + 169T 4

L17(T) = 1 + 4T + 22T 2 + 68T 3 + 289T 4

L19(T) = 1− 4T + 14T 2 − 76T 3 + 361T 4

...

5 / 28

Counting points, one prime at a time

Some possible algorithms:

1 Naive point enumeration up to Fpg .
Complexity pO(g).

2 Shanks–Mestre baby-step/giant-step.
Complexity pO(g) (with better big-O constant).

These bounds are exponential in both g and log p.

BSGS is quite effective in practice for small genus (especially g ≤ 2) for a
wide range of p. Highly optimised implementation smalljac by
Sutherland.

6 / 28

Counting points, one prime at a time

3 Schoof–Pila.
Complexity (log p)Cg where Cg grows exponentially with g .

4 Kedlaya-type algorithms.
Complexity gO(1)p1/2+ε (exponent of g depends on class of curve)

Polynomial in log p or g , but not both.

Major open problem: is it possible to obtain complexity polynomial in both
g and log p?

Schoof–Pila not competitive in the range of p under consideration.

7 / 28

Counting points, all primes simultaneously

Theorem (H. 2015, Computing zeta functions of arithmetic schemes)

Let X be a scheme of finite type over Z. One may compute Zp(T) for all
p < N in time O(N log3+ε N).

Complexity is O(log4+ε N) on average per prime, where implied constant
depends on X .

For curves, the dependence on g is polynomial.

8 / 28

Goal for today’s talk

Today I will explain in detail how to compute Lp(T) for all p < N in time
O(N log3+ε N), for the simplest nontrivial case: an elliptic curve of the
form

y2 = x3 + bx2 + cx , b, c ∈ Z, c(b2 − 4c) 6= 0.

The L-polynomial for each p has the form

Lp(T) = 1 + apT + pT 2,

where |ap| < 2
√

p (the Hasse–Weil bound).

We want to compute ap ∈ Z for all good p < N.

9 / 28

Why I would rather live in P2(R)

10 / 28

Polynomial powers

Lemma

Let up be the coefficient of x (p−1)/2 (the “central coefficient”) in the
polynomial

(x2 + bx + c)(p−1)/2.

Then
ap ≡ up (mod p).

For p ≥ 17, the bound |ap| < 2
√

p implies that up (mod p) determines
ap ∈ Z unambiguously.

So it is enough to compute up (mod p) for all p < N.

11 / 28

Polynomial powers

Sketch of proof of lemma:

The definition of the zeta function implies that

ap = p + 1− |X (Fp)|.

For each t ∈ Fp, the number of points with x-coordinate equal to t
depends on whether t3 + bt2 + ct is a square in Fp. We get

t3 + bt2 + ct =


zero in Fp =⇒ 1 point,

square in Fp =⇒ 2 points,

nonsquare in Fp =⇒ 0 points.

There is also one point at infinity.

12 / 28

Polynomial powers

(sketch of proof, continued)

Thus

|X (Fp)| = 1 +

p−1∑
t=0

[(
t3 + bt2 + ct

p

)
+ 1

]

≡ 1 +

p−1∑
t=0

(t3 + bt2 + ct)(p−1)/2 (mod p).

Now expand out the right hand side, and use the fact that

p−1∑
t=0

tk ≡

{
−1 if p − 1 | k ,

0 otherwise.

13 / 28

Example

For a running example, let’s take y2 = xf (x) where

f (x) = x2 − 3x − 2.

We have

p = 5 : f 2 = x4 − 6x3 + 5x2 + 12x + 4,

p = 7 : f 3 = x6 − 9x5 + 21x4 + 9x3 − 42x2 − 36x − 8

p = 11 : f 5 = · · · − 150x7 − 95x6 + 477x5 + 190x4 − 600x3 + · · · ,
...

p = 103 : f 51 = · · ·+ −2882250240953935920621757274295x51 + · · ·
...

For p < N, the total amount of data in this picture is roughly N3.

14 / 28

Recurrences

For each n, the coefficients of f n satisfy a linear recurrence.

Let
f n = f n

0 x2n + f n
1 x2n−1 + · · ·+ f n

2n.

Exercise: using the relations

f n+1 = f · f n, (f n+1)′ = (n + 1)f ′ · f n,

prove that

f n
k =

1

k

(
(n − k + 1)bf n

k−1 + (2n − k + 2)cf n
k−2
)
.

15 / 28

Recurrences

Problem: it’s a different recurrence for each n!

f n
k =

1

k

(
(n − k + 1)bf n

k−1 + (2n − k + 2)cf n
k−2
)
.

But we only need the coefficients modulo p, and only for n = (p − 1)/2:

f
(p−1)/2
k =

1

k

(
(−k + 1

2)bf
(p−1)/2
k−1 + (−k + 1)cf

(p−1)/2
k−2

)
(mod p).

So now we have the same recurrence for each p.

16 / 28

Recurrences

Problem: it’s a different recurrence for each n!

f n
k =

1

k

(
(n − k + 1)bf n

k−1 + (2n − k + 2)cf n
k−2
)
.

But we only need the coefficients modulo p, and only for n = (p − 1)/2:

f
(p−1)/2
k =

1

k

(
(−k + 1

2)bf
(p−1)/2
k−1 + (−k + 1)cf

(p−1)/2
k−2

)
(mod p).

So now we have the same recurrence for each p.

17 / 28

Recurrences

Let us rewrite the recurrence in vector form. Define

vp
k :=

[
f
(p−1)/2
k

f
(p−1)/2
k−1

]
∈ Z2.

Then

vp
k =

1

2k
Akvp

k−1 (mod p)

where

Ak :=

[
(−2k + 1)b (−2k + 2)c

2k 0

]
.

Notice that Ak is defined over Z, and no longer depends on p!!

18 / 28

Recurrences

The initial conditions are easy: we have vp
0 = [10] for each p.

Therefore we have transformed the original problem into the problem of
computing the matrix products

A1 (mod 3),
A2A1 (mod 5),

A3A2A1 (mod 7),
...

A51 · · ·A4A3A2A1 (mod 103),
...

simultaneously, for all primes p < N.

19 / 28

Example

For f (x) = x2 − 3x − 2, we need to compute[
3 0
2 0

]
(mod 3),[

9 4
4 0

] [
3 0
2 0

]
(mod 5),[

15 8
6 0

] [
9 4
4 0

] [
3 0
2 0

]
(mod 7),

...[
303 200
102 0

]
· · ·
[

15 8
6 0

] [
9 4
4 0

] [
3 0
2 0

]
(mod 103),

...

Notice there are O(N) rows, each row has O(N) matrices, and the matrix
entries have O(log N) bits.

20 / 28

The accumulating remainder tree, in one slide
Suppose we want to compute:

M1 (mod Q1),
M2M1 (mod Q2),

M3M2M1 (mod Q3),
M4M3M2M1 (mod Q4),

M5M4M3M2M1 (mod Q5),
· · ·

MnMn−1 · · ·M5M4M3M2M1 (mod Qn).

Algorithm (assuming n odd):
(1) multiply pairs of adjacent Mi ’s and Qi ’s,
(2) recursively compute

(M2M1) (mod Q2Q3),
(M4M3)(M2M1) (mod Q4Q5),

· · ·
(Mn−1Mn−2) · · · (M4M3)(M2M1) (mod Qn−1Qn),

(3) make the obvious corrections.
21 / 28

Example

Initial problem for N = 128, with 63 rows: [
3 0
2 0

]
(3),[

9 4
4 0

] [
3 0
2 0

]
(5),[

15 8
6 0

] [
9 4
4 0

] [
3 0
2 0

]
(7),[

21 12
8 0

] [
15 8
6 0

] [
9 4
4 0

] [
3 0
2 0

]
(9),[

27 16
10 0

] [
21 12
8 0

] [
15 8
6 0

] [
9 4
4 0

] [
3 0
2 0

]
(11),

...[
375 248
126 0

]
· · ·
[

27 16
10 0

] [
21 12
8 0

] [
15 8
6 0

] [
9 4
4 0

] [
3 0
2 0

]
(127).

22 / 28

Example

First recursive step, 31 rows: [
35 0
12 0

]
(35),[

387 168
120 64

] [
35 0
12 0

]
(99),[

1091 528
324 192

] [
387 168
120 64

] [
35 0
12 0

]
(195),

...[
163715 88560
45012 29760

]
· · ·
[

1091 528
324 192

] [
387 168
120 64

] [
35 0
12 0

]
(15875).

23 / 28

Example

Second recursive step, 15 rows: [
15561 0
4968 0

]
(19305),[

2692297 1340976
805200 403200

] [
15561 0
4968 0

]
(156009),

...[
25150018761 13987917216
7115707800 3978428160

]
· · ·

· · ·
[

2692297 1340976
805200 403200

] [
15561 0
4968 0

]
(236267625).

24 / 28

Analysis

Number of recursion levels is O(log N).

At top level, have O(N) matrices with O(log N)-bit entries.

At each recursive level, half as many matrices, but entries have twice as
many bits... so bit size at each level is still O(N log N).

Use FFT integer multiplication and division: cost is O(N log2+ε N) per
level.

Total cost: O(N log3+ε N) bit operations (ignoring bit size of b and c).

25 / 28

Sample timings for hyperelliptic curves

Genus 2, time to compute Lp(T) for all p < 230:

Baby-step/giant-step (smalljac) 1.4 years

Average polynomial time 1.3 days

Genus 3, time to compute Lp(T) for all p < 230:

Accelerated Kedlaya (hypellfrob) 3.8 years

Average polynomial time 4.0 days

(Timings from H. & Sutherland, 2016)

26 / 28

Summary

The “accumulating remainder tree” algorithm can be used to evaluate
certain types of matrix products modulo many primes simultaneously.

It is very memory intensive, and spends most of its time computing
Fourier transforms of large integers.

In the application to point counting, one must first express the
point-counting problem in terms of such matrix products.

27 / 28

Thank you!

28 / 28

