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An outline

Support and cosupport provide a link between

algebra and geometry.

I discuss two papers of Amnon Neeman involving these concepts:

The chromatic tower of D(R), Topology (1992).

Colocalizing subcategories of D(R), Crelles Journal (2011).

Applications in representation theory of finite groups follow at the
end.

All this is part of a joint project with D. Benson and S. Iyengar.



The setup

Here is the setup:

R = a commutative noetherian ring

ModR = the category of R-modules

D(R) = the (unbounded) derived category of ModR

SpecR = the set of prime ideals of R

D(R) is a triangulated category with set-indexed (co)products.



Localizing and colocalizing subcategories

Definition

A triangulated subcategory C ⊆ D(R) is called

localizing if C is closed under taking all coproducts,

colocalizing if C is closed under taking all products.

For any class S ⊆ D(R) write:

Loc(S) = the smallest localizing subcategory containing S

Coloc(S) = the smallest colocalizing subcategory containing S



Classifying localizing subcategories

Theorem (Neeman, 1992)

The assignment

SpecR ⊇ U 7−→ Loc({k(p) | p ∈ U}) ⊆ D(R)

induces a bijection between

the collection of subsets of SpecR, and

the collection of localizing subcategories of D(R).

Notation: k(p) = the residue field Rp/pp



Classifying colocalizing subcategories

Theorem (Neeman, 2011)

The assignment

SpecR ⊇ U 7−→ Coloc({k(p) | p ∈ U}) ⊆ D(R)

induces a bijection between

the collection of subsets of SpecR, and

the collection of colocalizing subcategories of D(R).

This is surprising because products tend to be complicated!

How are the results from ’92 and ’11 related to each other?

Is there a common proof?



A consequence / reformulation

For C ⊆ D(R) write:

C⊥ = {X ∈ D(R) | HomD(R)(C ,X ) = 0 for all C ∈ C}
⊥C = {X ∈ D(R) | HomD(R)(X ,C ) = 0 for all C ∈ C}

If C is localizing, then C⊥ is colocalizing.

If C is colocalizing, then ⊥C is localizing.

If C is localizing, then ⊥(C⊥) = C [Neeman 1992].

Corollary (Neeman, 2011)

The assignment C 7→ C⊥ induces a bijection between

the collection of localizing subcategories of D(R), and

the collection of colocalizing subcategories of D(R).



The support of a complex

Definition (Foxby, 1979)

For X ∈ D(R) define the support

suppX = {p ∈ SpecR | X ⊗L
R k(p) 6= 0}.

Some examples:

If X ∈ Db(modR), then

suppX = {p ∈ SpecR | Xp 6= 0} =
⋃
n∈Z

suppHn(X ).

Let p ∈ SpecR. Then suppE (R/p) = supp k(p) = {p}.

Corollary (Neeman, 1992)

For X ,Y ∈ D(R) we have

suppX ⊆ suppY ⇐⇒ Loc(X ) ⊆ Loc(Y ).



A test question

Let us test our understanding of localizing subcategories:

Question

Let X ∈ D(R). Is it true that

Loc(X ) = Loc(H∗(X )) ?



An example

R = k[[x , y ]] (k a field)
m = (x , y) the maximal ideal of R
Q = the field of fractions of R

The minimal injective resolution of R:

· · · −→ 0 −→ Q −→
⊕
ht p=1

E (R/p) −→ E (R/m) −→ 0 −→ · · ·

X : · · · −→ 0 −→ Q −→
⊕
ht p=1

E (R/p) −→ 0 −→ · · ·

In D(R) one has

suppX = (SpecR) \ {m} suppH∗(X ) = SpecR

Thus Loc(X ) 6= Loc(H∗X ).



The cosupport of a complex

Definition

For X ∈ D(R) define the cosupport

cosuppX = {p ∈ SpecR | RHomR(k(p),X ) 6= 0}.

This seems hard to compute, even for ‘simple’ objects:

Let R = Z. Then cosuppX = suppX for X ∈ Db(modR).
Let (R,m) be complete local. Then cosuppR = {m}.

Proposition

For a complex X in D(R) we have

Max(suppX ) = Max(cosuppX ).

Notation: MaxU = {p ∈ U | p ⊆ q ∈ U =⇒ p = q}.



Four fundamental functors

Four fundamental (idempotent) functors ModR → ModR:

localization M −→ M ⊗R Rp

colocalization HomR(Rp,M) −→ M

torsion ΓaM = lim−→Hom(R/an,M) −→ M

completion M −→ ΛaM = lim←−M ⊗R R/an

Their derived functors D(R)→ D(R):

localization X −→ X ⊗L
R Rp

colocalization RHomR(Rp,X ) −→ X

local cohomology RΓaX −→ X [Grothendieck, 1967]

local homology X −→ LΛaX [Greenlees–May, 1992]

Note:

The functor RHomR(Rp,−) is a right adjoint of −⊗L
R Rp.

The functor LΛa is a right adjoint of RΓa.



Local (co)homology

Definition

Fix p ∈ SpecR and define (by abuse of notation):

local cohomology Γp = RΓp(−⊗L
R Rp),

local homology Λp = RHomR(Rp,LΛp−).

These are idempotent functors D(R)→ D(R), and Λp is a right
adjoint of Γp.

We consider their essential images:

ImΓp = local cohomology objects (a localizing subcategory)

ImΛp = local homology objects (a colocalizing subcategory)

Note: Λp induces an equivalence ImΓp
∼−→ ImΛp.



(Co)support revisited

An alternative description of (co)support:

suppX = {p ∈ SpecR | ΓpX 6= 0}.
cosuppX = {p ∈ SpecR | ΛpX 6= 0}.

The following are equivalent:

Hn(X ) is p-local and p-torsion for all n ∈ Z.

suppX ⊆ {p}.
X lies in ImΓp.

There seems to be no analogue for Λp.



Stratification of D(R)

Proposition

The assignment

D(R) ⊇ C 7−→ (C ∩ ImΓp)p∈SpecR

induces a bijection between

the collection of localizing subcategories of D(R), and

the collection of families (Cp)p∈SpecR with each Cp ⊆ ImΓp a
localizing subcategory.

Analogously, the assignment

D(R) ⊇ C 7−→ (C ∩ ImΛp)p∈SpecR

classifies the colocalizing subcategories of D(R).



(Co)localizing subcategories of D(R)

Proposition

Let p ∈ SpecR.

ImΓp has no proper localizing subcategories.

ImΛp has no proper colocalizing subcategories.

Proof.

For each 0 6= X ∈ ImΓp, one shows that

Loc(X ) = Loc(k(p)) = ImΓp.

Analogously, Coloc(Y ) = ImΛp for each 0 6= Y ∈ ImΛp.

The classifications of [Neeman, 1992] and [Neeman, 2011] are
immediate consequences.



Formulas for support and cosupport

Theorem

For X ,Y ∈ D(R) we have:

supp(X ⊗L
R Y ) = (suppX ) ∩ (suppY )

cosupp(RHomR(X ,Y )) = (suppX ) ∩ (cosuppY )



A generalization and an application

The above proof allows to generalize Neeman’s results to the
derived category of a differential graded algebra A such that

A is formal, i.e. quasi-isomorphic to its cohomology H∗(A),

H∗(A) is graded-commutative and noetherian.

An application to the study of modular representations of finite
groups goes as follows:

Let G be a finite group and k a field of characteristic p > 0. We
consider modules over the group algebra kG and classify the
(co)localizing subcategories of the stable category StMod kG .



Modular representations of finite groups

Take as example G = (Z/2Z)r and a field k of characteristic 2.

Group algebra kG ∼= k[x1, . . . , xr ]/(x21 , . . . , x
2
r )

Group cohomology H∗(G , k) = Ext∗kG (k, k) ∼= k[ξ1, . . . , ξr ]

K(Inj kG ) = category of complexes of injective kG -modules / htpy.
ik = an injective resolution of the trivial representation k
EndkG (ik) = the endomorphism dg algebra of ik (is formal)

StMod kG
∼−→ Kac(Inj kG ) ↪→ K(Inj kG )

∼−−−−−−−−→
HomkG (ik,−)

D(EndkG (ik))
∼−→ D(k[ξ1, . . . , ξr ])

Corollary

There are canonical bijections between

(co)localizing subcategories of StMod kG, and

sets of graded non-maximal prime ideals of H∗(G , k).



Outlook

The next lecture will focus on infinite methods:

Compactly generated triangulated categories

Bousfield localization

Brown representability

Then we explain the stratification of triangulated categories using:

Local cohomology functors

Support of objects

Local-global principle
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