Dispersive estimates for magnetic Schrödinger operators

Hynek Kovařík (Università di Brescia)

Magnetic fields and semi-classical analysis

Rennes, May 21, 2015

General setting

Let $B:\mathbb{R}^2\to\mathbb{R}$ be a magnetic field and consider the Schrödinger operator $H(B)$ in $L^2(\mathbb{R}^2)$ formally given by

 $H(B) = (i\nabla + A)^2$

where $A:\mathbb{R}^2\to\mathbb{R}^2$ is such that $|A|\in L^2_{loc}(\mathbb{R}^2)$ and ${\sf curl}\, A=B$ holds in the distributional sense.

We will work under the condition $|A| \in L^\infty(\mathbb{R}^2)$; hence we define $H(B)$ as the unique self-adjoint operator associated with the closed quadratic form

$$
Q[u] = \int_{\mathbb{R}^2} |(i\nabla + A) u|^2 dx, \qquad d(Q) = W^{1,2}(\mathbb{R}^2).
$$

General setting

Obviously, $H(B) \geq 0$. We assume that B is such that

 $\sigma(H(B)) = [0, \infty).$

Let $V:\mathbb{R}^2\to\mathbb{R}$ be a bounded electric potential with a suitable decay at infinity such that $\sigma_{es}(H(B) + V) = [0, \infty)$.

■ The problem: we want to study the influence of the magnetic on the asymptotic behavior of the solutions to the Schrödinger equation

 $i \partial_t u = (H(B) + V) u$

General setting

Hence the object our interest is the unitary group $e^{-it(H(B)+V)}$

In particular, we want to compare the time decay of

$$
e^{-it(H(B)+V)} P_c^B \qquad \text{as} \qquad t \to +\infty
$$

where P_c^B c^B_c is the projection onto the continuous subspace of $L^2(\mathbb{R}^2)$ with respect to $H(B) + V$, with the decay of its non-magnetic counterpart:

$$
e^{-it(-\Delta + V)} P_c \qquad \text{as} \qquad t \to +\infty
$$

Here P_c is the projection onto the continuous subspace of $L^2(\mathbb{R}^2)$ with respect to $-\Delta + V$

Time decay: non-magnetic Schrödinger operators

 $L^1\to L^\infty$ estimates: one considers the propagator $e^{-it(-\Delta+V)}\,P_c$ as operator from $L^1(\mathbb{R}^n)$ to $L^\infty(\mathbb{R}^n)$ and studies the time decay of the corresponding norm

$$
\|e^{-it(-\Delta+V)}\,P_c\|_{L^1\to L^\infty}
$$

If $V = 0$, then

$$
e^{it\Delta}(x,y) = (4 i \pi t)^{-n/2} e^{\frac{i |x-y|^2}{4t}}, \qquad x, y \in \mathbb{R}^n
$$

Hence

$$
||e^{it\Delta}||_{L^1 \to L^\infty} \le (4 \pi t)^{-\frac{n}{2}} \t t > 0.
$$

Time decay: non-magnetic Schrödinger operators

An alternative, thought less precise, way to measure the time decay is to consider $e^{-it(-\Delta+V)}$ as an operator between weighted L^2- spaces;

$$
e^{-it(-\Delta + V)} P_c
$$
 : $L^2(\mathbb{R}^n, \rho^2 dx) \to L^2(\mathbb{R}^n, \rho^{-2} dx)$,

or equivalently

$$
\rho^{-1} e^{-it(-\Delta + V)} P_c \rho^{-1} : L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n),
$$

where $\rho > 0$ is a suitable weight function.

For $V = 0$ the Cauchy-Schwarz inequality gives

$$
\|\,\rho^{-1}\,e^{it\Delta}\,\,\rho^{-1}\,\,u\,\|_{L^2(\mathbb{R}^n)}\,\,\lesssim\,\,t^{-\frac{n}{2}}\,\,\|\rho^{-1}\,\|^2_{L^2(\mathbb{R}^n)}\,\,\|u\|_{L^2(\mathbb{R}^n)}
$$

provided

$$
\rho(x) = (1+|x|)^{\frac{n}{2}+\varepsilon}, \quad \varepsilon > 0.
$$

Magnetic fields and semi-classical analysis, Rennes May 19-22 Dispersive estimates for magnetic Schrödinger operators

Time decay: non-magnetic Schrödinger operators

If $V \neq 0$, then the decay rate depends on the validity of the estimate

$$
\limsup_{z \to 0} \| \rho^{-1} (-\Delta + V - z)^{-1} \rho^{-1} \|_{2 \to 2} < \infty \tag{1}
$$

If (1) holds true for some ρ , then we say that zero is a regular point of $-\Delta + V$; (generic situation).

Zero is not a regular point of $-\Delta$ in $L^2(\mathbb{R}^n)$ for $n=1,2.$

Zero is a regular point of $-\Delta$ in $L^2(\mathbb{R}^n)$ for $n\geq 3$:

$$
\limsup_{z \to 0} \| \rho^{-1} (-\Delta - z)^{-1} \rho^{-1} \|_{2 \to 2} < \infty
$$

if $\rho(x) = (1+|x|)^{\beta}$, with $\beta \ge 1$.

Time decay: non-magnetic Schrödinger operators

■ Dimension $n = 3$. If zero is a regular point of $-\Delta + V$, then as $t \to \infty$

$$
\| \rho^{-1} e^{-it(-\Delta + V)} P_c \rho^{-1} \|_{2 \to 2} = \mathcal{O}(t^{-\frac{3}{2}})
$$
 (2)

[Rauch 1978]: $\rho(x) = e^{\varepsilon |x|}$ and $V(x) \lesssim e^{-\varepsilon |x|}$, $\varepsilon > 0$.

[Jensen-Kato 1979]: $\rho(x) = (1+|x|)^{\beta}, \, \beta > 5/2$, and $V(x) \lesssim (1+|x|)^{-3}$.

[Journeé-Soffer-Sogge 1991, Goldberg-Schlag 2004, Goldberg 2006]

If zero is not a regular point of $-\Delta + V$, then (2) fails and one observes a slower decay: [Rauch 1978, Jensen-Kato 1979, Murata 1982] Time decay: non-magnetic Schrödinger operators

■ Dimension $n = 2$. [Schlag 2005] : if zero is a regular point of $-\Delta + V$, then

$$
\| \rho^{-1} e^{-it(-\Delta + V)} P_c \rho^{-1} \|_{2 \to 2} = \mathcal{O}(t^{-1}) \qquad t \to \infty.
$$
 (3)

holds for $\rho(x)=(1+|x|)^{\beta},\,\,\beta>1$ and $V(x)\lesssim (1+|x|)^{-3}.$ This is again the decay rate of the free evolution. However, (3) can be improved, still under the condition that zero is a regular point, provided ρ grows fast enough:

$$
\| \rho^{-1} e^{-it(-\Delta + V)} P_c \rho^{-1} \|_{2 \to 2} = \mathcal{O}(t^{-1} (\log t)^{-2}) \qquad t \to \infty \tag{4}
$$

where $\rho(x)=(1+|x|)^{\beta},\,\,\beta>3,$ and $V(x)\lesssim (1+|x|^2)^{-3}.$ [Murata 82], see also [Goldberg-Green 2013].

 \blacksquare Hence adding a potential V might improve the decay rate, contrary to the case $n \geq 3$.

Time decay: magnetic Schrödinger operators

Dimension $n = 3$. [Murata: 1982] showed, under suitable regularity and decay assumptions on B and V, that if zero is a regular point of $H(B) + V$, and $\rho(x)=(1+|x|)^{\beta}$ with β large enough, then

$$
\| \rho^{-1} e^{-it(H(B) + V)} P_c \rho^{-1} \|_{2 \to 2} = \mathcal{O}(t^{-3/2}) \qquad t \to \infty
$$
 (5)

Moreover it follows from [Murata: 1982] hat the decay rate in (5) is sharp. Hence a magnetic field, decaying at infinity, does not improve the decay rate of $e^{-it(H(B)+V)}$ in dimension three.

Dimension $n = 2$. Our motivation is to show that a compactly supported magnetic field in dimension two does improve the decay of $e^{-it(H(B)+V)}$ as $t \to \infty$ and that the decay rate is given by its **total flux**.

Main results: weighted
$$
L^2
$$
—estimates

Assumption 1: Let $B\in C^\infty(\mathbb{R}^2;\mathbb{R})$ be such that for some $\sigma>4$ we have

$$
\sup_{\theta \in (0,2\pi)} (|B(r,\theta)| + |\partial_{\theta} B(r,\theta)|) \lesssim (1+r)^{-\sigma}.
$$

Under this assumption we can define the following quantities:

$$
\alpha = \frac{1}{2\pi} \int_{\mathbb{R}^2} B(x) dx < \infty, \qquad \mu(\alpha) := \min_{k \in \mathbb{Z}} |k - \alpha| \in [0, 1/2].
$$

Assumption 2: Let $V:\mathbb{R}^2\to\mathbb{R}$ be bounded and such that the operator $H(B) + V$ has no positive eigenvalues.

$$
\bullet \quad \sigma_{es}(H(B) + V) = \sigma_c(H(B) + V) = [0, \infty).
$$

Main results: weighted L^2 -estimates

Theorem (K.): Let $\alpha \notin \mathbb{Z}$. Put $\rho(x) = (1+|x|)^s$ with $s > 5/2$ and suppose that $|V(x)| \lesssim (1+|x|)^{-3}$. If zero is a regular point of $H(B)+V$, then there exists an operator

$$
K(B, V) \in \mathcal{B}(L^2(\mathbb{R}^2))
$$

such that

$$
\rho^{-1} e^{-it(H(B)+V)} P_c^B \rho^{-1} = t^{-1-\mu(\alpha)} K(B,V) + o(t^{-1-\mu(\alpha)})
$$

in $\mathscr{B}(L^2(\mathbb{R}^2))$ as $t\to\infty$.

Main results: weighted L^2 -estimates

The maximal decay rate $t^{-3/2}$, for $\mu(\alpha)=1/2$, is the same as in dimension three.

The operator $K(B, V)$ can be expressed explicitly in terms of B and V . Its L^2 –norm is gauge-invariant.

If $\rho(x) = (1+|x|)^{\beta}$ then we must have $\beta \geq 1$.

If $V = 0$, then zero is a regular point of $H(B)$:

$$
\frac{1}{1+|x|^2} \leq H(B)
$$

in the sense of quadratic forms on $W^{1,2}(\mathbb{R}^2)$; [Laptev-Weidl 1999].

Main results: weighted L^2 -estimates

Theorem (K.): Let $\alpha \in \mathbb{Z}$. Put $\rho(x) = (1+|x|)^s$ with $s > 5/2$ and suppose that $|V(x)| \lesssim (1+|x|)^{-3}$. If zero is a regular point of $H(B)+V$, then there exists an operator

$$
\widetilde{K}(B, V) \in \mathscr{B}(L^2(\mathbb{R}^2))
$$

such that

$$
\rho^{-1} e^{-it(H(B)+V)} P_c^B \rho^{-1} = t^{-1} (\log t)^{-2} \widetilde{K}(B,V) + o(t^{-1}(\log t)^{-2})
$$

in
$$
\mathscr{B}(L^2(\mathbb{R}^2))
$$
 as $t \to \infty$.

Main ingredients of the proof

Assume that $\alpha \not\in \mathbb{Z}$ and that $V = 0$.

By the spectral theorem and Stone formula we have

$$
\rho^{-1} e^{-itH(B)} \rho^{-1} = \int_0^\infty e^{-it\lambda} E(\alpha, \lambda) d\lambda, \tag{6}
$$

where $E(\alpha, \lambda)$ is the (weighted) spectral density associated to $H(B)$:

$$
E(\alpha, \lambda) = \frac{1}{2\pi i} \lim_{\varepsilon \to 0+} \rho^{-1} \left[(H(B) - \lambda - i\varepsilon)^{-1} - (H(B) - \lambda + i\varepsilon)^{-1} \right] \rho^{-1}
$$

We will use the notation

$$
R_{+}(\alpha,\lambda) = \lim_{\varepsilon \to 0+} (H(B) - \lambda - i\varepsilon)^{-1}
$$

Main ingredients of the proof

Let $\phi \in C^{\infty}(0,\infty)$, $0 \le \phi \le 1$, be such that $\phi(x) = 0$ for x large enough and $\phi(x) = 1$ in a neighborhood of 0.

$$
\int_0^\infty e^{-it\lambda} E(\alpha, \lambda) d\lambda = \int_0^\infty e^{-it\lambda} (1 - \phi) E(\alpha, \lambda) d\lambda + \int_0^\infty e^{-it\lambda} \phi E(\alpha, \lambda) d\lambda
$$

Our aim is to show that

$$
\int_0^\infty e^{-it\lambda} (1 - \phi(\lambda)) E(\alpha, \lambda) d\lambda = o(t^{-2})
$$

and

$$
\int_0^\infty e^{-it\lambda} \phi(\lambda) E(\alpha, \lambda) d\lambda = t^{-1-\mu(\alpha)} K(B, V) + o(t^{-1-\mu(\alpha)})
$$

in $\mathscr{B}(L^2(\mathbb{R}^2))$ as $t\to\infty$.

Main ingredients of the proof

We need to prove that

$$
E(\alpha, \lambda) = E_1 \lambda^{\mu(\alpha)} + o(\lambda^{\mu(\alpha)}) \qquad \lambda \to 0
$$

for some $E_1 \in \mathscr{B}(L^2(\mathbb{R}^2)).$ We have to show that

$$
\rho^{-1} R_{+}(\alpha, \lambda) \rho^{-1} = F_0 + F_1 \lambda^{\mu(\alpha)} + o(\lambda^{\mu(\alpha)}) \qquad \lambda \to 0.
$$

Recall that in the absence of magnetic field we have

$$
\rho^{-1} R_+(\lambda) \rho^{-1} = \widetilde{F}_0 \log \lambda + \mathcal{O}(1) \qquad \lambda \to 0.
$$

Resolvent expansion at threshold

Consider a radial magnetic field B_0 generated by the vector potential

$$
A_0(x) = \alpha \left(-x_2, x_1\right) \begin{cases} |x|^{-1} & |x| \le 1 \\ |x|^{-2} & |x| > 1 \end{cases} \qquad \nabla \cdot A_0 = 0.
$$

$$
B_0(x) = \text{curl } A_0(x) = \begin{cases} \alpha |x|^{-1} & |x| \le 1 \\ 0 & |x| > 1 \end{cases}, \frac{1}{2\pi} \int_{\mathbb{R}^2} B_0(x) dx = \alpha.
$$

Using the partial wave decomposition, after some calculations we find that

$$
\rho^{-1} R^0_+(\alpha, \lambda) \rho^{-1} = G_0 + G_1 \lambda^{\mu(\alpha)} + o(\lambda^{\mu(\alpha)}) \quad \lambda \to 0
$$

for some G_0,G_1 in $\mathscr{B}(L^2(\mathbb{R}^2))$, where $R^0_+(\alpha,\lambda)$ is the resolvent of $H(B_0).$

Resolvent expansion at threshold

Lemma: Let $\alpha > 0$ be the flux of B through \mathbb{R}^2 . Then there exists a bounded vector field $A = (a_1, a_2)$ s. t. curl $A = \partial_1 a_2 - \partial_2 a_1 = B$ in the distributional sense, and

$$
|\nabla \cdot A(x)| = o(|x|^{-3}), \qquad |A(x) - A_0(x)| = o(|x|^{-3})
$$

The above Lemma implies that

$$
T(B) := H(B) - H(B_0) = 2i \underbrace{(A - A_0)}_{o(|x|^{-3})} \cdot \nabla + \underbrace{i \nabla \cdot A}_{o(|x|^{-3})} + \underbrace{|A|^2 - |A_0|^2}_{o(|x|^{-3})}
$$

since $\nabla \cdot A_0 = 0$. This allows us to show that the operator

$$
G_0 \rho T(B) \rho = \rho^{-1} H(B_0)^{-1} T(B) \rho
$$

is compact in $\mathscr{B}(L^2(\mathbb{R}^2))$.

Hynek Kovařík, (Università degli Studi di Brescia) 19

Resolvent expansion at threshold

With this we prove that $1+ G_0\; \rho\, T(B)\, \rho \;$ is invertible in $L^2(\mathbb{R}^2).$ Then

$$
1 + \rho^{-1} R_{+}^{0}(\alpha, \lambda) T(B) \rho = 1 + G_0 \rho T(B) \rho + G_1 \rho T(B) \rho \lambda^{\mu(\alpha)} + o(\lambda^{\mu(\alpha)})
$$

is invertible for λ small enough. From the resolvent equation we thus obtain

$$
\rho^{-1} R_{+}(\alpha, \lambda) \rho^{-1} = \left(1 + \rho^{-1} R_{+}^{0}(\alpha, \lambda) T(B) \rho\right)^{-1} \rho^{-1} R_{+}^{0}(\alpha, \lambda) \rho^{-1}
$$

Since

$$
(1 + \rho^{-1} R_{+}^{0}(\alpha, \lambda) T(B) \rho)^{-1} = (1 + G_0 \rho T(B) \rho)^{-1} + S(B) \lambda^{\mu(\alpha)} + o(\lambda^{\mu(\alpha)}),
$$

we arrive at

$$
\rho^{-1} R_{+}(\alpha, \lambda) \rho^{-1} = F_0 + F_1 \lambda^{\mu(\alpha)} + o(\lambda^{\mu(\alpha)}) \qquad \lambda \to 0.
$$

Magnetic fields and semi-classical analysis, Rennes May 19-22 Dispersive estimates for magnetic Schrödinger operators

Remark

In order that the coefficients of $H(B_1,V) \!-\! H(B_2,V)$ decay faster than $o(|x|^{-1})$ at infinity, the fluxes of B_1 and B_2 must be equal.

Indeed, if curl $A_1 = B_1$ and curl $A_2 = B_2$, then by the Stokes Theorem we have

$$
|A_1(x) - A_2(x)| = o(|x|^{-1})
$$
 $|x| \to \infty$ \Rightarrow $\int_{\mathbb{R}^2} B_1(x) dx = \int_{\mathbb{R}^2} B_2(x) dx.$

 $L^1\to L^\infty$ estimates: scaling critical Schrödinger operators We consider Schrödinger operators in $L^2(\mathbb{R}^n),\,n\geq 2$ of the form

> $H(A, a) = \int -i\nabla + |x|^{-1} A$ $\int x$ $|x|$ \bigwedge^2 $+|x|^{-2} a$ $\frac{x}{2}$ $|x|$ \setminus ,

where $A\;\in\;W^{1,\infty}(\mathbb{S}^{n-1},\mathbb{R}^n),\;\;a\;\in\;W^{1,\infty}(\mathbb{S}^{n-1},\mathbb{R})$ and \mathbb{S}^{n-1} denotes the $n-$ dimensional unit sphere.

Under the scaling $x \mapsto \lambda x$ we have

$$
H(A, a) \mapsto \lambda^{-2} H(A, a).
$$

We are interested in the unitary group $e^{-it H(A,a)}$ generated by $H(A,a).$

$L^1\to L^\infty$ estimates: scaling critical Schrödinger operators

The behaviour of $e^{-it H(A,a)}$ is closely related to the spectral properties of the operator

$$
L(A, a) = (-i\nabla_{\mathbb{S}^{n-1}} + A)^2 + a
$$
 in $L^2(\mathbb{S}^{n-1}),$

where $\nabla_{\mathbb{S}^{n-1}}$ denotes the spherical gradient on $\mathbb{S}^{n-1}.$ If $A\equiv a\equiv 0,$ then $L(A,a)$ coincides with the Laplace-Beltrami operator on $L^2(\mathbb S^{n-1})$. The spectrum of $L(A, a)$ is purely discrete.

We denote by $\{\lambda_k(A,a)\}\$ and $\{\psi_k\}$ the sequences of its eigenvalues and normalized eigenfunctions:

$$
L(A, a) \psi_k = \lambda_k(A, a) \psi_k, \qquad \|\psi_k\|_{L^2(\mathbb{S}^{n-1})} = 1.
$$

$L^1\to L^\infty$ estimates: scaling critical Schrödinger operators

Theorem (Fanelli, Grillo, K.): Let $n \geq 2$ and assume that $\lambda_1(A, a) \geq 0$. Denote by

$$
g(n) = \sqrt{\left(\frac{n-2}{2}\right)^2 + \lambda_1(A, a)} - \frac{n-2}{2} \ge 0.
$$

If, for all $t > 0$ and some C_0 , the following estimate holds

$$
\| e^{-itH(A,a)} \|_{L^1(\mathbb{R}^n) \to L^\infty(\mathbb{R}^n)} \le C_0 t^{-\frac{n}{2}},
$$

then there exists a constant C such that

$$
\| |x|^{-g(n)} e^{-itH(A,a)} |x|^{-g(n)} \|_{L^1(\mathbb{R}^n) \to L^\infty(\mathbb{R}^n)} \le C t^{-\frac{n}{2} - g(n)}
$$

holds for all $t > 0$.

Magnetic fields and semi-classical analysis, Rennes May 19-22 Dispersive estimates for magnetic Schrödinger operators

$L^1\to L^\infty$ estimates: scaling critical Schrödinger operators

■ One of the main ingredients of the proof is the representation formula for the integral kernel of $e^{-it H(A,a)}$ which was found by [Fanelli-Felli-Fontelos-Primo, 14], for any $u_0\in C_0^\infty(\mathbb{R}^n)$ we have

$$
\left(e^{-itH(A,a)}u_0\right)(x) = -\frac{i e^{\frac{i|x|^2}{4t}}}{(2t)^{n/2}} \int_{\mathbb{R}^n} K\left(\frac{x}{\sqrt{2t}}, \frac{y}{\sqrt{2t}}\right) e^{\frac{i|y|^2}{4t}} u_0(y) \, dy,
$$

where

$$
K(x,y) = (|x| |y|)^{\frac{2-n}{2}} \sum_{k \in \mathbb{Z}} i^{-\beta_k} J_{\beta_k}(|x||y|) \psi_k\left(\frac{x}{|x|}\right) \overline{\psi_k\left(\frac{y}{|y|}\right)} ,
$$

and

$$
\alpha_k = \frac{n-1}{2} - \sqrt{\left(\frac{n-2}{2}\right)^2 + \lambda_k(A, a)}, \qquad \beta_k = \sqrt{\left(\frac{n-2}{2}\right)^2 + \lambda_k(A, a)}
$$

 $L^1\to L^\infty$ estimates: Aharonov-Bohm operator

If we put $n = 2$, $a = 0$ and

$$
A(x) = A_{ab}(x) = \frac{\alpha}{|x|^2} (-x_2, x_1), \qquad n = 2
$$

then the operator $H(A_{ab}, 0)$ describes the energy of a particle interacting with the so-called Aharonov-Bohm magnetic field of flux α in $\mathbb{R}^2.$

Since

$$
||e^{-itH(A_{ab},0)}||_{L^1(\mathbb{R}^2) \to L^\infty(\mathbb{R}^2)} \lesssim \frac{1}{t} \qquad \forall \ t > 0, \quad n = 2.
$$

holds true by [Fanelli-Felli-Fontelos-Primo, 14], the above Theorem implies

$L^1\to L^\infty$ estimates: Aharonov-Bohm operator

Corollary (Fanelli, Grillo, K.): Let $n=2$. Then

$$
\| |x|^{-\mu(\alpha)} e^{-itH(A_{ab},0)} |x|^{-\mu(\alpha)} \|_{L^1(\mathbb{R}^2) \to L^\infty(\mathbb{R}^2)} \le C t^{-1-\mu(\alpha)}
$$

holds for all $t > 0$.

For $\alpha \in \mathbb{Z}$ we have $\mu(\alpha) = 0$ and the above equation turns into

$$
\|e^{-itH(A_{ab},0)}\|_{L^1(\mathbb{R}^2)\to L^\infty(\mathbb{R}^2)} \leq C \ t^{-1}
$$

which is the decay rate of the free evolution; $H(A_{ab}, 0) \simeq -\Delta$ if $\alpha \in \mathbb{Z}$.

$L^1\to L^\infty$ estimates: Schrödinger operators with inverse square potentials

Consider the case $n = 3$, $A = 0$ and

$$
a(x) = \frac{\beta}{|x|^2}, \qquad \beta > 0.
$$

so that

$$
H(0, a) = -\Delta + \frac{\beta}{|x|^2}, \qquad \beta > 0.
$$

Then, again by [Fanelli-Felli-Fontelos-Primo,14] we have

$$
\|e^{-itH(0,a)}\|_{L^1(\mathbb{R}^3)\rightarrow L^\infty(\mathbb{R}^3)}\ \lesssim\ t^{-\frac32}\qquad\forall\ t>0,\quad n=3.
$$

Hence the Theorem above gives

Hynek Kovařík, (Università degli Studi di Brescia) 28

$L^1\to L^\infty$ estimates: Schrödinger operators with inverse square potentials

Corollary (Fanelli, Grillo, K.): Let $n = 3$ and let

$$
H(0, a) = -\Delta + \frac{\beta}{|x|^2}, \qquad \beta > 0.
$$

Then

$$
\| |x|^{-\gamma} e^{-itH(0,a)} |x|^{-\gamma} \|_{L^1(\mathbb{R}^3) \to L^\infty(\mathbb{R}^3)} \le C t^{-\frac{3}{2} - \gamma}
$$

where

$$
\gamma = \sqrt{\frac{1}{4}+\beta}\,-\,\frac{1}{2}\,.
$$

References

■ G. Grillo, H. Kovařík: Weighted dispersive estimates for two-dimensional Schrödinger operators with Aharonov-Bohm magnetic field. J. Diff. Equations 256 (2014) 3889–3911.

■ H. Kovařík: Resolvent expansion and time decay of the wave functions for twodimensional magnetic Schrödinger operators. $Comm.$ $Mat.$ $Phys.$ 337 (2015) 681–726.

■ L. Fanelli, G. Grillo, H. Kovařík: Improved time-decay for a class of scaling critical electromagnetic Schrödinger flows. arXiv: 1502.04987.