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Magnetic fields and semi-classical analysis

Rennes, May 21, 2015
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General setting

Let B : R2 → R be a magnetic field and consider the Schrödinger operator H(B)
in L2(R2) formally given by

H(B) = (i∇+A)2

where A : R2 → R2 is such that |A| ∈ L2
loc(R2) and curlA = B holds in the

distributional sense.

We will work under the condition |A| ∈ L∞(R2); hence we define H(B) as the
unique self-adjoint operator associated with the closed quadratic form

Q[u] =

∫
R2
|(i∇+A)u|2 dx, d(Q) = W 1,2(R2).
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General setting

Obviously, H(B) ≥ 0. We assume that B is such that

σ(H(B)) = [0,∞).

Let V : R2 → R be a bounded electric potential with a suitable decay at infinity
such that σes(H(B) + V ) = [0,∞).

The problem: we want to study the influence of the magnetic on the asymptotic
behavior of the solutions to the Schrödinger equation

i ∂tu = (H(B) + V )u
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General setting

Hence the object our interest is the unitary group e−it(H(B)+V )

In particular, we want to compare the time decay of

e−it(H(B)+V )PBc as t→ +∞

where PBc is the projection onto the continuous subspace of L2(R2) with respect
to H(B) + V , with the decay of its non-magnetic counterpart:

e−it(−∆+V )Pc as t→ +∞

Here Pc is the projection onto the continuous subspace of L2(R2) with respect
to −∆ + V
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Time decay: non-magnetic Schrödinger operators

L1 → L∞ estimates: one considers the propagator e−it(−∆+V )Pc as operator
from L1(Rn) to L∞(Rn) and studies the time decay of the corresponding norm

‖e−it(−∆+V )Pc‖L1→L∞

If V = 0, then

eit∆(x, y) = (4 i π t)−n/2 e
i |x−y|2

4t , x, y ∈ Rn

Hence
‖eit∆‖L1→L∞ ≤ (4π t)−

n
2 t > 0.

Hynek Kovǎŕık, (Università degli Studi di Brescia) 5



Magnetic fields and semi-classical analysis, Rennes May 19-22 Dispersive estimates for magnetic Schrödinger operators

Time decay: non-magnetic Schrödinger operators

An alternative, thought less precise, way to measure the time decay is to consider
e−it(−∆+V ) as an operator between weighted L2−spaces;

e−it(−∆+V )Pc : L2(Rn, ρ2 dx)→ L2(Rn, ρ−2 dx),

or equivalently

ρ−1 e−it(−∆+V )Pc ρ
−1 : L2(Rn)→ L2(Rn),

where ρ > 0 is a suitable weight function.

For V = 0 the Cauchy-Schwarz inequality gives

‖ ρ−1 eit∆ ρ−1 u ‖L2(Rn) . t−
n
2 ‖ρ−1 ‖2L2(Rn) ‖u‖L2(Rn)

provided
ρ(x) = (1 + |x|)n2+ε, ε > 0.
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Time decay: non-magnetic Schrödinger operators

If V 6= 0, then the decay rate depends on the validity of the estimate

lim sup
z→0

‖ ρ−1 (−∆ + V − z)−1 ρ−1‖2→2 < ∞ (1)

If (1) holds true for some ρ, then we say that zero is a regular point of −∆ + V ;
(generic situation).

Zero is not a regular point of −∆ in L2(Rn) for n = 1, 2.

Zero is a regular point of −∆ in L2(Rn) for n ≥ 3:

lim sup
z→0

‖ ρ−1 (−∆− z)−1 ρ−1‖2→2 < ∞

if ρ(x) = (1 + |x|)β, with β ≥ 1.
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Time decay: non-magnetic Schrödinger operators

Dimension n = 3. If zero is a regular point of −∆ + V , then as t→∞

‖ ρ−1 e−it(−∆+V )Pc ρ
−1‖2→2 = O

(
t−

3
2
)

(2)

[Rauch 1978]: ρ(x) = eε|x| and V (x) . e−ε|x|, ε > 0.

[Jensen-Kato 1979]: ρ(x) = (1 + |x|)β, β > 5/2, and V (x) . (1 + |x|)−3.

[Journeé-Soffer-Sogge 1991, Goldberg-Schlag 2004, Goldberg 2006] ....

If zero is not a regular point of −∆ + V , then (2) fails and one

observes a slower decay: [Rauch 1978, Jensen-Kato 1979, Murata 1982]

Hynek Kovǎŕık, (Università degli Studi di Brescia) 8



Magnetic fields and semi-classical analysis, Rennes May 19-22 Dispersive estimates for magnetic Schrödinger operators

Time decay: non-magnetic Schrödinger operators

Dimension n = 2. [Schlag 2005] : if zero is a regular point of −∆ + V , then

‖ ρ−1 e−it(−∆+V )Pc ρ
−1 ‖2→2 = O(t−1) t→∞. (3)

holds for ρ(x) = (1 + |x|)β, β > 1 and V (x) . (1 + |x|)−3. This is again the
decay rate of the free evolution. However, (3) can be improved, still under the
condition that zero is a regular point, provided ρ grows fast enough:

‖ ρ−1 e−it(−∆+V )Pc ρ
−1 ‖2→2 = O(t−1 (log t)−2) t→∞ (4)

where ρ(x) = (1 + |x|)β, β > 3, and V (x) . (1 + |x|2)−3, [Murata 82], see

also [Goldberg-Green 2013].

Hence adding a potential V might improve the decay rate, contrary to the case
n ≥ 3.
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Time decay: magnetic Schrödinger operators

Dimension n = 3. [Murata: 1982] showed, under suitable regularity and decay
assumptions on B and V , that if zero is a regular point of H(B) + V , and
ρ(x) = (1 + |x|)β with β large enough, then

‖ ρ−1 e−it(H(B)+V )Pc ρ
−1 ‖2→2 = O(t−3/2) t→∞ (5)

Moreover it follows from [Murata: 1982] hat the decay rate in (5) is sharp.
Hence a magnetic field, decaying at infinity, does not improve the decay rate
of e−it(H(B)+V ) in dimension three.

Dimension n = 2. Our motivation is to show that a compactly supported
magnetic field in dimension two does improve the decay of e−it(H(B)+V ) as
t→∞ and that the decay rate is given by its total flux.
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Main results: weighted L2−estimates

Assumption 1: Let B ∈ C∞(R2;R) be such that for some σ > 4 we have

sup
θ∈(0,2π)

(
|B(r, θ)|+ | ∂θB(r, θ)|

)
. (1 + r)−σ.

Under this assumption we can define the following quantities:

α =
1

2π

∫
R2
B(x) dx < ∞, µ(α) := min

k∈Z
|k − α| ∈ [0, 1/2] .

Assumption 2: Let V : R2 → R be bounded and such that the operator
H(B) + V has no positive eigenvalues.

σes(H(B) + V ) = σc(H(B) + V ) = [0,∞).
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Main results: weighted L2−estimates

Theorem (K.): Let α 6∈ Z. Put ρ(x) = (1 + |x|)s with s > 5/2 and suppose that
|V (x)| . (1 + |x|)−3. If zero is a regular point of H(B) +V , then there exists an
operator

K(B, V ) ∈ B(L2(R2))

such that

ρ−1 e−it(H(B)+V )PBc ρ−1 = t−1−µ(α)K(B, V ) + o(t−1−µ(α))

in B(L2(R2)) as t→∞.
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Main results: weighted L2−estimates

The maximal decay rate t−3/2, for µ(α) = 1/2, is the same as in dimension
three.

The operator K(B, V ) can be expressed explicitly in terms of B and V . Its
L2−norm is gauge-invariant.

If ρ(x) = (1 + |x|)β then we must have β ≥ 1.

If V = 0, then zero is a regular point of H(B):

1

1 + |x|2
. H(B)

in the sense of quadratic forms on W 1,2(R2); [Laptev-Weidl 1999].
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Main results: weighted L2−estimates

Theorem (K.): Let α ∈ Z. Put ρ(x) = (1 + |x|)s with s > 5/2 and suppose that
|V (x)| . (1 + |x|)−3. If zero is a regular point of H(B) +V , then there exists an
operator

K̃(B, V ) ∈ B(L2(R2))

such that

ρ−1 e−it(H(B)+V )PBc ρ−1 = t−1(log t)−2 K̃(B, V ) + o(t−1(log t)−2)

in B(L2(R2)) as t→∞.
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Main ingredients of the proof

Assume that α 6∈ Z and that V = 0.

By the spectral theorem and Stone formula we have

ρ−1 e−itH(B) ρ−1 =

∫ ∞
0

e−itλE(α, λ) dλ, (6)

where E(α, λ) is the (weighted) spectral density associated to H(B):

E(α, λ) =
1

2πi
lim
ε→0+

ρ−1
[
(H(B)− λ− iε)−1 − (H(B)− λ+ iε)−1

]
ρ−1

We will use the notation

R+(α, λ) = lim
ε→0+

(H(B)− λ− iε)−1
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Main ingredients of the proof

Let φ ∈ C∞(0,∞), 0 ≤ φ ≤ 1, be such that φ(x) = 0 for x large enough and
φ(x) = 1 in a neighborhood of 0.∫ ∞

0

e−itλE(α, λ) dλ =

∫ ∞
0

e−itλ (1− φ)E(α, λ) dλ +

∫ ∞
0

e−itλ φE(α, λ) dλ

Our aim is to show that∫ ∞
0

e−itλ (1− φ(λ))E(α, λ) dλ = o(t−2)

and ∫ ∞
0

e−itλ φ(λ)E(α, λ) dλ = t−1−µ(α)K(B, V ) + o(t−1−µ(α))

in B(L2(R2)) as t→∞.
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Main ingredients of the proof

We need to prove that

E(α, λ) = E1 λ
µ(α) + o(λµ(α)) λ→ 0

for some E1 ∈ B(L2(R2)). We have to show that

ρ−1 R+(α, λ) ρ−1 = F0 + F1 λ
µ(α) + o(λµ(α)) λ→ 0.

Recall that in the absence of magnetic field we have

ρ−1 R+(λ) ρ−1 = F̃0 log λ+O(1) λ→ 0.
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Resolvent expansion at threshold

Consider a radial magnetic field B0 generated by the vector potential

A0(x) = α (−x2, x1)

{
|x|−1 |x| ≤ 1
|x|−2 |x| > 1

∇ ·A0 = 0.

B0(x) = curlA0(x) =

 α |x|−1 |x| ≤ 1

0 |x| > 1
,

1

2π

∫
R2
B0(x) dx = α.

Using the partial wave decomposition, after some calculations we find that

ρ−1 R0
+(α, λ) ρ−1 = G0 +G1 λ

µ(α) + o(λµ(α)) λ→ 0

for some G0, G1 in B(L2(R2)), where R0
+(α, λ) is the resolvent of H(B0).
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Resolvent expansion at threshold

Lemma: Let α > 0 be the flux of B through R2. Then there exists a bounded
vector field A = (a1, a2) s. t. curlA = ∂1a2 − ∂2a1 = B in the distributional
sense, and

|∇ ·A(x)| = o
(
|x|−3

)
, |A(x)−A0(x)| = o

(
|x|−3

)
The above Lemma implies that

T (B) := H(B)−H(B0) = 2 i (A−A0)︸ ︷︷ ︸
o
(
|x|−3

) · ∇ + i ∇ ·A︸ ︷︷ ︸
o
(
|x|−3

) + |A|2 − |A0|2︸ ︷︷ ︸
o
(
|x|−3

)

since ∇ ·A0 = 0. This allows us to show that the operator

G0 ρ T (B) ρ = ρ−1H(B0)−1 T (B) ρ

is compact in B(L2(R2)).
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Resolvent expansion at threshold

With this we prove that 1 +G0 ρ T (B) ρ is invertible in L2(R2). Then

1 + ρ−1R0
+(α, λ) T (B) ρ = 1 +G0 ρ T (B) ρ +G1 ρ T (B) ρ λµ(α) + o(λµ(α))

is invertible for λ small enough. From the resolvent equation we thus obtain

ρ−1 R+(α, λ) ρ−1 =
(
1 + ρ−1R0

+(α, λ) T (B) ρ
)−1

ρ−1 R0
+(α, λ) ρ−1

Since(
1 + ρ−1R0

+(α, λ) T (B) ρ
)−1

= (1 +G0 ρ T (B) ρ)−1 + S(B)λµ(α) + o(λµ(α)),

we arrive at

ρ−1 R+(α, λ) ρ−1 = F0 + F1 λ
µ(α) + o(λµ(α)) λ→ 0.
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Remark

In order that the coefficients of H(B1, V )−H(B2, V ) decay faster than o(|x|−1)
at infinity, the fluxes of B1 and B2 must be equal.

Indeed, if curlA1 = B1 and curlA2 = B2, then by the Stokes Theorem we have

|A1(x)−A2(x)| = o(|x|−1) |x| → ∞ ⇒
∫
R2
B1(x) dx =

∫
R2
B2(x) dx.
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L1→ L∞ estimates: scaling critical Schrödinger operators

We consider Schrödinger operators in L2(Rn), n ≥ 2 of the form

H(A, a) =

(
−i∇+ |x|−1 A

(
x

|x|

))2

+ |x|−2 a
( x
|x|

)
,

where A ∈ W 1,∞(Sn−1,Rn), a ∈ W 1,∞(Sn−1,R) and Sn−1 denotes the
n−dimensional unit sphere.

Under the scaling x 7→ λx we have

H(A, a) 7→ λ−2H(A, a).

We are interested in the unitary group e−itH(A,a) generated by H(A, a).
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L1→ L∞ estimates: scaling critical Schrödinger operators

The behaviour of e−itH(A,a) is closely related to the spectral properties of the
operator

L(A, a) = (−i∇Sn−1 +A)
2

+ a in L2(Sn−1),

where ∇Sn−1 denotes the spherical gradient on Sn−1. If A ≡ a ≡ 0, then L(A, a)
coincides with the Laplace-Beltrami operator on L2(Sn−1). The spectrum of
L(A, a) is purely discrete.

We denote by {λk(A, a)} and {ψk} the sequences of its eigenvalues and norma-
lized eigenfunctions:

L(A, a)ψk = λk(A, a)ψk, ‖ψk‖L2(Sn−1) = 1.
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L1→ L∞ estimates: scaling critical Schrödinger operators

Theorem (Fanelli, Grillo, K.): Let n ≥ 2 and assume that λ1(A, a) ≥ 0. Denote
by

g(n) =

√(
n− 2

2

)2

+ λ1(A, a) − n− 2

2
≥ 0 .

If, for all t > 0 and some C0, the following estimate holds

‖ e−itH(A,a) ‖L1(Rn)→L∞(Rn) ≤ C0 t
−n2 ,

then there exists a constant C such that

∥∥ |x|−g(n) e−itH(A,a) |x|−g(n)
∥∥
L1(Rn)→L∞(Rn)

≤ C t−
n
2−g(n)

holds for all t > 0.
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L1→ L∞ estimates: scaling critical Schrödinger operators

One of the main ingredients of the proof is the representation formula for the
integral kernel of e−itH(A,a) which was found by
[Fanelli-Felli-Fontelos-Primo, 14], for any u0 ∈ C∞0 (Rn) we have

(
e−itH(A,a) u0

)
(x) = − i e

i|x|2
4t

(2t)n/2

∫
Rn
K
( x√

2t
,
y√
2t

)
e
i|y|2

4t u0(y) dy,

where

K(x, y) = (|x| |y|)
2−n

2

∑
k∈Z

i−βk Jβk(|x||y|) ψk
( x
|x|

)
ψk

( y
|y|

)
,

and

αk =
n− 1

2
−

√(
n− 2

2

)2

+ λk(A, a) , βk =

√(
n− 2

2

)2

+ λk(A, a)
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L1→ L∞ estimates: Aharonov-Bohm operator

If we put n = 2, a = 0 and

A(x) = Aab(x) =
α

|x|2
(−x2 , x1) , n = 2

then the operator H(Aab, 0) describes the energy of a particle interacting with
the so-called Aharonov-Bohm magnetic field of flux α in R2.

Since

‖e−itH(Aab,0)‖L1(R2)→L∞(R2) .
1

t
∀ t > 0, n = 2.

holds true by [Fanelli-Felli-Fontelos-Primo, 14], the above Theorem implies
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L1→ L∞ estimates: Aharonov-Bohm operator

Corollary (Fanelli, Grillo, K.): Let n = 2. Then

∥∥ |x|−µ(α) e−itH(Aab,0) |x|−µ(α)
∥∥
L1(R2)→L∞(R2)

≤ C t−1−µ(α)

holds for all t > 0.

For α ∈ Z we have µ(α) = 0 and the above equation turns into∥∥e−itH(Aab,0)
∥∥
L1(R2)→L∞(R2)

≤ C t−1

which is the decay rate of the free evolution; H(Aab, 0) ' −∆ if α ∈ Z.
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L1→ L∞ estimates: Schrödinger operators with inverse
square potentials

Consider the case n = 3, A = 0 and

a(x) =
β

|x|2
, β > 0.

so that

H(0, a) = −∆ +
β

|x|2
, β > 0.

Then, again by [Fanelli-Felli-Fontelos-Primo,14] we have

‖e−itH(0,a)‖L1(R3)→L∞(R3) . t−
3
2 ∀ t > 0, n = 3.

Hence the Theorem above gives
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L1→ L∞ estimates: Schrödinger operators with inverse
square potentials

Corollary (Fanelli, Grillo, K.): Let n = 3 and let

H(0, a) = −∆ +
β

|x|2
, β > 0.

Then

∥∥ |x|−γ e−itH(0,a) |x|−γ
∥∥
L1(R3)→L∞(R3)

≤ C t−
3
2−γ

where

γ =

√
1

4
+ β − 1

2
.
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