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[Faraut, Koranyi, Analysis on Symmetric Cones, Oxford
Press, 1994], Chapter VII " The Gamma function of a
symmetric cone’ :

"""Here begins the serious study of analysis on symmetric
cones’

Q ¢V = R" proper (Qn (=) = {0}) open convex
cone

Q*: open dual cone ={y € V| (z,y) >0 Vx € Q\ {0}}



Characteristic function of a cone

@) = [ @Dy = £ig. poy)(Lebo) (@)

*

Properties of po: If g € GL(V) is an automorphism of
G (i.e. ¢Q2 =), we have

pa(gr) = |det gl tpq(z).

Consequently, oo(x)dx is the invariant measure of the
cone £2:

| fea)ea(@)dz = | f@)¢a(@)dr.



Example Q =R,

It is

a self-dual cone: Q* =RT

a homogeneous cone:

Vz,y > 03c € Aut(Q) =RT y = cx.
Self-dual homogeneous cones are called symmetric cones.

Characteristic function and invariant measure of Rt:

() = [~ ety = 2 0
€Tr) = (& = —, T>
PR+ /O Y -

/Ooof(caz)idx = /Ooof(a:)idx, c>0



Gamma function. For s >0
X _x o s—1  _x s
(s) :/O e Tz da:Z/O e "z ppt(z)dx
Gamma integral. For s > 0
0. @)
Lot (@) W) = Lp+ (@ @) = [~ e e lda = M(s)y ™
The Riesz distributions Rs on RT are defined by

L(Rs)(y) =vy ° = a power function

Riesz distributions on RT are positive measures if and
only if s > 0. Then they have density Rs(z) = 51/ (s).



Gamma integrals are important in statistics:

e Y
the functions: x — Rs(z) =: vs,y(x)
LR () ) T

are probability densities for s,y > O.

They are GAMMA densities on RT (interpolation of x2)
Their Laplace transform: L(vysy)(z) = (1 4+ 2y~ 1)~

If 1 is @ measure on a cone 2 C V = R", then the family
of probability measures

wlda) = fo oo n(d)

is called exponential family generated by pu.



Cone of positive definite symmetric matrices
Sy = Sym™T(n,R)
Crucial in multivariate statistics.

Generalized power function of matrix argument x € Sp,

Aﬁ(y) — ﬁ (

1=1

dety_.,

53
) "past power function”
dety_,

If y = diag(y1,...,yn), We have Ay(y) =11 y;"
For constant s = s(1,...,1), we have As(y) = (dety)?®



Gamma integrals on Sy Siegel integrals(1935, number
theory), appeared before in statistics(Wishart 1928),
computed by Ingham (1933).

Characteristic function and invariant measure density
n—+1
¢s,(z) = (detx) 2

. n(n—1)
Gamma function of S, for s; > % and ¢y, = (2m)” 4

—tr(x —1
9= e e e =TI



Gamma-Siegel integral
o+ e TV AL (@)ps, (@)de = Ts, () As(y™) = s, (£)0-s(v)

where s; > % and és(y) is the " future power function”:

5§(y) — ﬁ (

i=1
A.c. Riesz measures Rs(z) = As(x)pg, (x)/Tg, (s)
have Laplace transform Ag(y—1) = §_s(y).
( There exist also singular positive Riesz measures)

dety- .\ si
det y>z-) '



Exp. families of Riesz measures: Wishart measures ~s y
The parameter s is called the shape parameter, y is the
scale parameter

The density of vsy:

o—tr(zy) Aﬁ(x>905n(33)
s, (8)0—s(y)
The Laplace transform of s y:

5—§(y + Z)
5—§(y)

In the case of one-dimensional shape parameter s =
s(1,...,1), we have s(y) = (dety)® and

L(vs,y)(z) = (det(y + z) det(y™ 1)) ~* = det(I + 2y~ 1) %

10
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Important direction of modern multivariate statistics:
Wishart laws and Riesz measures
on subcones 2 of 5,.

Cones of matrices with obligatory zeros and dual cones

WHY CONES WITH OBLIGATORY ZEROS APPEAR
IN STATISTICS:

X = (X1,Xo,...,Xpn)t a Gaussian vector N(m, X).

Some entries of the vector X are supposed to be
conditionally independent knowing others
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Conditional independence in a.c. case

X = (X1, X5, X3) : Random vector
fx1 x,.x5(®1, 2, 23) : density function

X1 and X3 are conditionally independent knowing X»

S Ix1, X3 Xp=20 = fX1|Xp=00F X3 Xp=25
& fx1,Xx0,x3(71,72,23) = F(x1,22)G (72, 73)
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X ~N(0,¥), eS8+
Fx1 Xo.x5(%1, 2, 23) = (det2nX) "1/ 2 exp(—tzZ~1z/2)

Put ¢ := X~1. Mixing z7 and z3 can be avoided only
when o013 = 0O:

fx1,%5,x3(21, 2, 23)
_ (277)_3/2(det 0)1/2exp<—(011m% + 20107172 + 02233%)/2)
><e><|0(—(2023$2$3 + 0335”:23)/2)

T herefore,

(X11X3)[Xo & 013=0
The matrix ¢ = X! has obligatory zeros o713 = 037 = 0
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The position of zeros in > 1 is encoded by a graph

G = (V, E) : undirected graph

V ={1,...,7} . the set of vertices
E CV xV : the set of edges
i~j<(i,j) €FE

Zg:={z€Sym(rR)|z;; =0if i j and i j |
Pg = Zgﬁs;" a sub-cone of Sf,?"

X ~N(0,X), = lep,
< X; and Xj are conditionally independent knowing all
other components if 1 = j and 7 % j

Example 1 (X;1X3)|X> corresponds to G: 1-2-3

14



Example 1. Graph G = A3: 1-2-3

r11 x12 O
Zg =149 [*r12 720 w23 ||7i; €R
0 x23 733
Po = ZgnN ST
This cone is homogeneous
(GL(Pg) acts transitively on Pg)
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§11 §12  *
Z =1 | €12 &2 &3 ||z €R
* €23 £33

Pl =Qq:={¢€zg|trag >0 for all z € Q1 \ {0} |

={§€Z§;| 22 L3l g f33>0}

§23 £33

11 €12

> 0,
§12 &22
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Example 2. Graph G = A4: 1-2-3-4

x11 x21 O 0 )
rp1 x22 x32 O
O x32 233 %43
L\ O O x43 w4 )
Pg = Zgn Sy
This cone is non-homogeneous

Ve

ZG =« |x11,...,:r;44€R

PY=Qq:={&€zg|trag >0 for all z € Q1 \ {0} |

={£€Z§‘;| £33 534>0,§44>O}

§34 §44

§22 &£23
§23 £33

11 €12

> 0,
§12 &22

> 0,
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T heory of graphical models
started in 1976 by Lauritzen and Speed,
is for decomposable graphs G

(G is decomposable
< (G has no cycle of length > 4 as an induced subgraph
Example:. A; =1-2-3—4 from Example 2

Qo C Zqa is homogeneous if and only if
G is decomposable and Ay-free (Letac-Massam, Ishi)

18



Wishart distributions for decomposable graphs

A seminal paper:

G. Letac and H. Massam,
Wishart distributions for decomposable graphs,
The Annals of Statistics, 35 (2007), 1278—1323.

Letac-Massam power functions on QAn

1 .
[L27 g1yl

n—1_pB;
i=2 i

H(e, B,m) =

This definition comes from the graph theory
(CLIQUES {i¢,7+ 1}, SEPARATORS {i})
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Our approach to Wishart theory for decomposable
graphs:

Consider analogs of “future” and “past’” power
functions

ds(z) and As(x)

for all eliminating orders of vertices

20



There are many (but not all) orders of vertices 1,2,...,n
that we should consider in order to have a harmonious
theory of Riesz and Wishart distributions on the cones
related to graphs.

These orders are called eliminating orders of vertices.

Let v be the set of future(w.r. to the order) neigbours
(w.r. to the graph) of v.

An eliminating order of the vertices of G is a permuta-
tion {v1,...,vn} of V such that for all v, the set v is
a complete graph

21



Example. For the graph Az :1 -2 — 3:

the orders 1 < 2 <3, 1 <3 <2, 3<x2<1 and
3 <1< 2 are eliminating orders

2<1<3and 2 <3 <1 are not eliminating.

Proposition. All eliminating orders on A,, are obtained
by an intertwining of two sequences
1<2<3<...<M-1<M
n<n—1<..<M4+2<M+1<M

foran M e V.



Power functions

Notations:

v~ = all the predecessors of v w.r. to <

vT = future neighbours of v.

We define power functions

AF(y) = ] ( dety _v

veV
det
5 (n) = ] ojuty
s\ det
’UEV TI@"‘

where dety@ = 1 = det Mg+
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In this research and lecture:

RECENT RESULTS ON RIESZ MEASURES AND
WISHART DISTRIBUTIONS FOR GRAPHS
Ap=1—-2—...—n

From now on,
G=A,=1—-2—...—n

Q4, and P4 are important non-homogeneous(n > 4)
cones appearing in the statistical theory of graphical
models

T hey correspond to the practical model of nearest neigh-
bour interactions:

in the Gaussian character (X1, X»,...,Xyn), non-neighbours
X, Xj, |t—j| > 1 are conditionally independent with re-
spect to other variables.

23



Theorem 0. Let M be the maximal element with re-
spect to an eliminating order <, M =1,2,...,n.
Then for all y € Pg,

65 (72 (y™1)) = A%, (w) = Y ()

Proof: Direct computation.

Corollary. The power functions §:(n) and A= (y) de-
pend only on M, the maximal element of <.

24



Formulas for the power functions may be written as:

NS 27

S1—S
=y11 ‘lyo
x|y|"M

S —S Sn—5n—-1
><|y{M—|—1:n}| MALI72M L ypp, "

Yy MM

For 2 < M<n-—1,

M-1 - .

sy = [Li=1 g 1P 1=y =120y 1™

= M—1 Si—1 SM-1—SMTSM+1 n—1 Si+1
Wi=2" M My =1 M

— a Letac-Massam power function H
5§1),5§") are not covered by Letac-Massam approach.

25



For n > 2 define pn 1 Q4, — R4 by

en(n) = H g ity 2 T mi
1#=1n

For n = 1 set

w1(n) =n"1t.

We will see that ¢, is the characteristic function of the
cone Qg4 -

26



Laplace transform of power functions

Theorem 1. Foralln>1, 1< M <n and y &€ Py,

[, e D mpntain = w2, (5800 )
where g, (s) = {Hi#M M(s; — %)}r(sM).

The integral converges if and only if s; > % forall i = M
and sp; > 0.

27



Theorem 2. Foralln>1, forall 1< M <n and for
allne Qa,,

/P e—”(y”)AéM) (y)dy = W(n—l)/QrPAn (§)5(_]\84) (M en(n).
” s

n

where p, (s) = {Hi#M M(s; + g)}r(sM +1).

The integral converges if and only if s; > —%, for all

1 %= M and sy > —1.

28



Corrolary 3.

EAYE —tr(yn) 7,, —
( 2) /PA e dy = on(n).

ﬂ- mn
Thus, up to a factor, ¢, is the characteristic function
of the cone Q4,,.
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Method: Recurrent constructions of the cones P,
and @4, from the cones P4 ., and Q4 ..

(Two versionsof A,,_1: 2—...—mand1—...—(n—1))
Let ®p RT XRx Py —> Py, (a,b,2) —>y

and &, :RT xRx Py . — Py, (a,b,2) — §

b b

\6 ......... (.)' 1)TO \0 ... (.)' 1)

1o \ o (1 \
j=10 ? o 0

\(:) ......... b 1) 0 ... 0a \(:) ......... b 1

The maps ®,, and ®,, are bijections.
30



Let W, : RT xR x Qa, , — Qa,, (a,p,z) —>n

and Wy i RT X RxQa ., — Qa,, (o, B,2) —> 7]

/(1 \T a 0 ..
n=m g O
\\O ......... (.). 1) 0
(1 \
O .
n=m||0
\\O ......... [3 1) 0

The maps V,, and W, are bijections.

. 0

(1
5
0

31



forall M =2,...,n,

AM () =a1alD );

M M
5 () = 04815&27)”.7871)(:1:).
For M =1,...,n—1 we use § = ®,(a,b,z) and
ﬁ — \Tfn(oz,ﬂ,x):

Agl)(g) — asnAgl),...,sn_l)(Z);

5@ = sl (@),

Jacobians: J(®y)(a,b,2) = J(Pn)(a,b, z) = a,

J(\Un)(a, 57 $> — L22, J({Dn)(a7 57 x) — ajn—l,n—l-

32



Proof of Theorem 1, M > 1: We proceed by induc-
tion

For n =1,

> o~y (1) — [Ty, — —s
/Oe 6s " (m)pa,(n)dn /Oe n°"tdn =T(s)y "

33



Assume that the assertion holds for some number of
vertices n — 1.

Let y = ®,(a, b, z) and let us make the change of vari-
able n = WV, («, 8, 2).

The induction hypothesis gives

—tr(zx)( _
/QAM 58D @A,y (@)de =
(n—2)/2 _ = (M
7220 T - D frenald e,
i=1 M :

if and only if s; > §, for all ¢+ # M and sy; > 0.
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The change of variable n = W,(a,3,2) gives dn
roodadfBdx. Thus, we have

/ e~ WM ()4 ()dn
Q 4, -

— / - / > / o—(aatazao(b+6)2+tr(za)) o
0 J=00JQy,

1

M -1/2 _
X 04315&2,)...,3,1)(93) Tos' o 3/290An_1($) xoodadBdx

— / - / °° / o—(aatazao(b+6)2+tr(zz)) o
0 J—00/Q4u, ,

X a81_3/258\§[)m 5n) (w)goAn_l(x)w%ézdadﬁd:C,
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Now, use the Gaussian integral

/oo e—a$22(b+ﬁ)2d5 — 771/2a—1/25,;;21/2

— 00

and the gamma integral

0
that is finite if and only if s1 > 3,

/OO e—aaasl—3/2da — CL_81+1/2|_(S]_ . l),
2

36



we get

/ e~ W5 ()4 (n)dn
Q A,

_ L 1 —tr(zx) (M )

= m2aq 1"(81—5) Qn . Ols, sn)(w)mn , (z)dz
L, 1

= w20 (s - D { ] I_(sz——)}l_(sM)A(]\é)z, ()

1=1,.M

37



LETAC-MASSAM CONJECTURE

This conjecture was formulated in

G. Letac and H. Massam,
Wishart distributions for decomposable graphs,
The Annals of Statistics, 35 (2007), 1278—-1323.

Recall Letac-Massam power functions on Q4

121 g1 |
H(a, B,n) = —== AL
i=2 T

38



The Laplace transform formula Vy € Py,

J, e O H e, B.m)eq,, (m)dn = CosH (e, 7 (),
An

will be referred to as the Letac-Massam (LM) formula
on QAn'

39



There are 2n — 3 parameters o, 3 in H(a, 3,-).

By [L-M], the LM formula holds for " ‘well chosen” ' «, 3,
il.e. o, B veryfing Letac-Massam conditions:

(O) ajjt1=Bj+1 i 1<j<M-2,

ajir1=p0jif M+1<j<n-1

D a1 > % forall j=1,...,n—1,

an—1,m + oy m+1— Bv >0

forsome M =2,...,n— 1.

Remarks. (C) limits the number of " ‘free”’ parame-

ters o, 8 to n.
There are n parameters s; indexing the power function

5§ ().
H(a, 8,n) = 6§ () if and only if (C) holds true.

40



Recall

Theorem 1. Foralln>1, 1< M <nand y € Py,

[, "D ypntnyin = xD2rg, (989 w)

where g, (s) = {Hi;&M M(si — %)}F(SM)-

The integral converges if and only if s; > % foralli = M
and sps > 0.

41



Define r; = a;—B;41, forall 1 <i<n-3and p;, = o;—5;,
forall 3<:<n-—1. We have

oy, M=o el |
H(O%Ban) — 5§ (77) H 77@';_1 H 77?;;7
1=2 1=M-+1

where s; = o4, forall 1 <+< M —-1; s; = a;_1, for all
M4+1<:<n and BMZSM—l_SM_I_SM—Fl-

42



We have proved
L-M CONJECTURE Letac-Massam formula on Q 4,
holds if and only if conditions (C) and (I) are satisfied

Recall that (C) is equivalent to

H(a, B,1) = 65 ()

forsome M =2,...,.n—1

(I) is equivalent to “5§M) admits Laplace transform”

Thus the functions 5§M) are more natural as power
functions on Qg than H(a, 8,n).
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OUTLINE OF THE PROOF OF the L-M CON-
JECTURE on Qy,

Letac-Massam Conjecture for power functions 5§M)
and A{M)

Let o(y) = m(y~1).

The Letac-Massam formula is equivalent,
foreach 2 < M <n-1, to

/ e~ trlum s M) H i H M 0Q.4, (Mdn
Q@ Ap z_2 i=M-+1

n—1
= Co W) H O | IO

1=M-+1

44



The Letac-Massam conditions (C) are equivalent to the
following n — 2 alternative conditions:

p3 = p4g = = pp-1=0 or
L= p4 = = pp—1=0 or
= : or (1)
Ty = = Th-4= pp—1=0 or
r1 = = rp—g4= 1p-3=0.
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We express, for each M, the constant Caﬁ as a function
of M,s = (s;),(r;) and (p;).

Lemma 4. If the LM formula holds for all y € P4 then
we have

Cogﬁ — W(n—l)/Q X

{ H M(s; — %)}F(SM) H M(s; +7—1) H (s; + pi).

=M 2<i<M (s:) M<i<n—1 " (s:)
If y is diagonal, then LM formula holds if and only if
si> 5 for i % M, s;m >0, si+ri_1>0for2<i<M
and s; +p; >0 for M <1 <n-—1.

Proof We take y diagonal. The proof is a by-product
of the main induction proof.
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We prove the Letac-Massam conjecture by induction
on n. The proof of the initiation part (n = 4) and the
heredity part (n > 5) are the same, so they are given
together.

Step 1 (descent in Letac-Massam formula, from
Qa, to Qs ).

Letn > 4, a = (Ozl,...,an_l) and B = (527---7677,—1)-
Suppose that the Letac-Massam formula holds for Hy(a, 3, -)
on Qga,. Then the Letac-Massam formula holds on

Qa, , for:
(i) the function H,_1((a1, ..., an—2),(B2,...,6n-2),")
and the graph1—...— (n—1)

(”) the function Hn—l((QQa S 70472—1)7 (637 S 7577,—1)7 )
and the graph 2 — ... —n.
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Proof of Step 1. We choose 2 < M < n—2. For
all y € Py, let, successively, y = ®p(a,b,z) and z =
P, _1(a,b,Z). One easily checks that p(y);; = p(2);; =
©(Z);;. Integration on @4, with two successive changes
of variables n = WU, (a, 8,z) and then 2 = V,,_1(a, 3, X)
gives

[ e oo T T s,
Qa,_p "2rmin—l =M1
(2)
n—1
= oy Pl (2) H o2t 1
825058 1) =M1
where C(nﬁ 2) = (io"ﬁ o
! ml(s1—=5) (sn—5)

48
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Now, we apply one more change of variable X = \Tln_g(a,ﬁ, U)
in formula (2) and we set Z = ®,,_5(a,0,T). Let
F(a,3,U) be the integrated function. We first com-

pute J = [0 [§° FdadB = 2 [5° J§° Fdadﬁ Using the
change of variables u = aa,t = aUp_2 5— 26 we get

J = 2q Pn-1 x .
|7 e leatalinza-2P) a%173 (aa + aB2Uy 5 -0) 1dadf =

a~GnoatpnDp12 / / e~ Dysn-1724=3 (u 4 £)Pr—1dudt

Now, using the change of variables u = u,v = u +t, we
get (with a change of variable z = u/v)

J=a —(sp—1+pn— 1)U / /OO (/U usn—l_%(v — u)_%du) e YvPrn—1dy
2m=2 Jo  \Jo
1/2 11
—a (Sn 1'|‘pn 1)Un—/n 2B(Sn_]_ 5 —)r(sn 1+pn 1)

(3)
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We get

—tr(TU) (M) 4
/QAn_ ( S 2)(U) H U H UZSOQA (U)dU

i=M+1
(4)
= c{yPall @ H o T e
i=M-+1
where
o(n=3) _ Ca,p (5n-1)
@ 3 1 1 13 + sp_1)
72l (s1 —5)M(sn —5)M(sp—1 — 3) Prn—1 n—1
(5)

By the same argument as to obtain formula (2), we ob-
serve that the Letac-Massam formula pour la fonction

Hn—l((a].? ° '7an—2)7 (/827 ¢ 7/377,—2)7 .) On QAn_]_ and the
graph 1 -2 — ... —(n—1) is equivalent to formula (4).
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By a mirror argument, with the change of variables X =
V. _s(a,58,U) in (2), we get the Letac-Massam formula

for Hn—l((a27 X .,O{n_]_>, (637 - 7577,—1)7 ) and the graph
2—...—n.

Proof of Lemma 4. For y diagonal, formula (5) leads
by induction to formula from Lemma 4, observing that
the last equation we get is

0
CL_SM/ e—aivaMd_aj — Cél)a—SM
0] X ’

so that Célg =T (sp).
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Step 2 (induction step). The Letac-Massam conjec-
ture on Q4 _, implies the Letac-Massam conjecture on

QA,-

Proof. Let n > 4. Suppose that the Letac-Massam
formula holds for some « and g and suppose that the
Letac-Massam conjecture is true on Q4.

For n > 5, we use Step 1 and the induction hypothesis.
Thus one of the following n — 3 conditions has to be
satisfied: for an M € {2,...,n— 2}

rL=...=Ty-2=DPM+1=...=Pp2=0,
and, simultaneously, one of the following n—3 " shifted”
conditions has to be satisfied: for an M € {2,...,n—2}

ro—...=—7"Tpm-—-1 :pM_|_2:...:pn_1:O.
52



This implies that either conditions (C) are satisfied or

p3=...an_QZO;TQZ...ZT‘n_g):O. (6)

Let us assume this exceptional case. The equality
rp—1 = 0 implies sy = syr41 and pyy, = 0 implies
SM = Sp—1- Also, from p; =r;_1 forall 3 <j <n-—2,
we get sp = ... =sy_1 and spy41 = ... =s,_1. Thus,
So=...= 8,1 =s. In the case (6), using the formula

for po(Z2);;, formula (2) reduces to

—tr(zX) (M) Pr_
/QAn2€ ! )5(8,---78)(X)X£12Xn—11,n—l%OQAn_z(X)dX

IC(R_Q)‘Z|_S |Z{3:n—1}‘ = |Z{2:n—2}‘ -1 (7)
- 1Z] 1Z] |




A TRICK: take SECOND DERIVATIVE with re-
spect to Z,,_»,_1 and restrain to 7, 5, 1 =0

The derivatives of all orders of the integral (7) can be
computed under the integral sign. We obtain

_ M n
Jou e 05N XX, X2 5, 19Q,  (X)dX

(n—2)
_ s 52 7] Zz3:n—13 I\ (1Z{2:0—23[\Pr—1 (8)
4 072 ,, 4 |Z] Z] '
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LHS: Let us change the variables X = W, _5(a,3,U)
and set Z = ®,,_5(a,0,T), i.e. Z,_5,_1 = 0. Similarly
as in the proof of (4) in Step 1, we find that the left
hand side of (8) is

CL_(S_I_pn—l‘I']-)r(S —|—pn_1 —|— 1)B (S _ %7 %) X (9)

—tr(TU M
/QA . € " )56‘5,..).,3)(U)USEUR—Q,TL—QSOQA”_?,(U)dU.
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RHS is standard, using Leibniz formula. We get that
for Z,_o -1 =0, the right hand side of (8) is
C(n—2)

%a—(s-l-pnq-l—l)|T|—(S+7“1-|-1)|T{3:n_2}‘?“1—1 v

[(8 + 71+ -1 (302} T2 33| — T1|T{3:n—3}||T|} :
(10)
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Equating (10) and (9), we obtain

— M
/QA € tr(TU)(SES,..).,s) UgéU’n—Q,n—QSOQAn_?) (U)dU =
n—3

Sd(S,T]_,T)
S+ pn—1

(s + 71+ P T30y T2 33| = 71T (3033 1T]
(11)
where d(s,r1,T) = CU ||~ Gt DT, o ri-t,
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Formula (11) is supposed to be true for our p,_1 =
a,_1— Bn—1. It is surely true for p,_1 = 0, because the
Letac-Massam conditions (1) are then satisfied. Equat-
ing (11) for these two values of p,,_1, and noting that
by Lemma 4 the constant Cé?6_3) does not depend on

Pn—1, We get
sl(s + 71 4 P DI z3in -2} 1 T2 -3} — m1T{3:0-3)lIT1] _

S+ pn—1
= (s +m)|T(3:0—2) T2 31| = 711 T(3:0—3} 1T,

which is equivalent to

r1pn—1 (1T (3:n—21 | T(2:n—33] = [Tiz:n—33IT1) =0,

where for n =5 we set [T(3.,_ 31| = 1.
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We observe that [T3., oy[|T(2:,— 3} — [T{3:n—3}IT] 7 O,
for example for T' such that T;; = 2 for all 2 <: <n -2,
Tiiv1=Tip1,=1for2<i:<n-—3andT;; =0 for all
other 7,4 (in this case, this expression equals 1).

Thus, for n > 5, in the exceptional case (6), we also
have r1 =0 or p,,_1 = 0.

In both cases we fall in the Letac-Massam conditions
(C) and the proof of the induction step is finished.
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For n = 4, we get formula (2) for M = 2, the computa-
tions are simpler (no use of Leibniz formula is needed),
and no condition s, = s3 = s appears. The analogue

of formula (11) is

r(83+p3+1)3(83—— —> / —tu % du =

(2)
’B (so+p3)t—2FD) ¢+ 0.

After substltutlon of the constant
0(2[3 — 7'('2|_(S Y (s3 2)r(83+p3)

(8
one gets

(53 + p3)s2 = s3(s2 + p3)
equivalent to ryp3 =0, so r{ =0 or p3 = 0.

We get the Letac-Massam conditions for Q) 4,.

59



