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1 Hierarchical models, discrete exponential

families and their closure, polytopes

In the following four subsections, we recall some basic facts about hierar-
chical models, discrete exponential families, polytopes and the closure of
exponential families, and we also define the extended mle.
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1.1 Hierarchical models

For details and proofs on the material in this subsection, we refer to Letac&
Massam(2012) and Rauh, Kahle & Ay. Let X = (Xv, v ∈ V ) be a discrete
random vector with components indexed by V = {1, . . . , p}, a finite set.
Each variable Xv takes values in a finite set Iv, v ∈ V . The vector X takes
its values in

I =
∏
v∈V

Iv,

the set of cells i = (iv, v ∈ V ) of the p-dimensional contingency table. Let ∆
be a set of subsets of V which is a simplicial complex, that is, ∆ is a set of
subsets D ⊂ V such that D ∈ ∆ and D′ ⊂ D implies D′ ∈ ∆. We say that
the joint distribution of X is hierarchical with underlying simplicial complex
∆ (or generating set ∆) if the probability p(i) = P (X = i) of a single cell
i = (iv, v ∈ V ) is of the form

log(p(i)) =
∑
D∈∆

θD(iD) (1)

where θD(iD) is a function of the marginal cell iD = (iv, v ∈ D) only.
The parametrization (1) is not identifiable; that is, for any joint distribu-
tion p from the hierarchical model there are different choices for the func-
tions θD that satisfy (1). For an example of identifiable and non-identifiable
parametrization on the same problem, see the sub-subsection at the end of
this subsection. One way to make the parameters unique is to choose a spe-
cial element within each set Iv, which we denote by 0. The cell with all its
components equal to 0 will be denoted by 0 also. The choice of 0 is arbitrary,
and a different choice of 0 leads to a simple affine change of parameters.
Then, with this choice of a fixed cell 0, by Moebius inversion formula, (1) is
equivalent to

θE(iE) =
∑
F⊆E

(−1)|E\F | log p(iF , 0F c) (2)

If we need to make precise the dependence of p on θ, then we write pθ(i)
instead of p(i). The set of all such distributions E∆ := {pθ} is called the
hierarchical model of ∆. We now show that θE(iE) = 0 unless all iγ 6= 0, γ ∈
E.

Lemma 1.1. If for γ ∈ E,E ⊆ V we have iγ = 0, then θE(iE) = 0
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Proof. By definition and since (iF∪γ, 0(F∪γ)c) = (iF , 0F c) if iγ = 0γ = 0, we
have

θE(iE) =
∑

F⊆E\γ

(−1)|E\F | log p(iF , 0F c)−
∑

F⊆E\γ

(−1)|E\F | log p(iF∪γ, 0(F∪γ)c)

=
∑

F⊆E\γ

(−1)|E\F | log p(iF , 0F c)−
∑

F⊆E\γ

(−1)|E\F | log p(iF , 0F c) = 0 .

From this lemma, it follows immediately that our parametrization is indeed
the ”baseline” or ”corner” constraint parametrization that sets to 0 the values
of the E−interaction loglinear parameters when at least one index in E is
at level 0 – see Agresti (1990), p.150. Therefore, for each E ⊆ V , there are
only

∏
γ∈E(|Iγ| − 1) parameters.

Thus, we arrive at the identifiable parametrization

log pθ(i) = θ0 +
∑

D∈∆\{∅},iv 6=0,∀v∈D

θD(iD), (3)

where θ0 := θ∅. We separate the parameter θ0 corresponding to the empty
set, since it has a special role. It does not depend on the cell index i and
acts as a normalizing constant: When all other parameters are chosen freely,
θ0 is determined by the requirement

∑
i∈I pθ(i) = 1. To make it clear that

we consider θ0 as a dependent parameter, we derive it explicitly

−θ0 = k(θ) = log
(∑

i∈I

exp
( ∑
D∈∆\{∅},iv 6=0,∀v∈D

θD(iD)
))
.

The parametrization (3) can be further reformulated using the definitions

S(i) = {v ∈ V ; iv 6= 0}
J = {j ∈ I \ {0}, S(j) ∈ ∆}.

For a given D ∈ ∆ and for given θD(iD) such that iγ 6= 0,∀γ ∈ D, there is
only one j ∈ J such that S(j) = D and jD = jS(j) = iD and conversely. We
can therefore write

θD(iD) = θj for the unique j ∈ J with S(j) = D, iD = jD.
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To simplify the notation, we write j/i whenever S(j) ⊆ S(i) and jS(j) = iS(j).
Then the parametrization (3) in terms of the free parameters θ = {θj, j ∈ J}
becomes

log pθ(i) =
∑
j∈J :j/i

θj − k(θ). (4)

It is convenient to introduce the vectors

fi =
∑
j∈J :j/i

ej, i ∈ I

where ej, j ∈ J are the unit vectors in RJ . Moreover, let A be the J × I
matrix with columns fi, i ∈ I, and let Ã be the (1 + |J |) × I matrix with
columns equal to

(
1
fi

)
, i ∈ I. The representation (4) becomes

log pθ(i) = 〈θ, fi〉 − k(θ) (5)

log pθ = Atθ − k(θ) = Ãtθ̃, (6)

where θ̃ = (θ0, θ) as a column vector. Both A and Ã are called design matrices
of the model.

From the definition of fi, i ∈ I, it follows immediately that if n = (n(i), i ∈
I) denotes the I-dimensional column vector of cell counts, then

Ãn =

(
N
t

)
and An = t, (7)

where N =
∑

i∈I n(i) is the total cell counts and t is the column vector of
jS(j)-marginal counts n(jS(j)), i.e. t = (tj, j ∈ J) where tj = n(jS(j)) =∑

i|iS(j)=jS(j)
n(i), j ∈ J .

It follows from (7) that t
N

=
∑

i∈I
n(i)
N
fi. Therefore, t belongs to the

convex polytope with extreme points fi, i ∈ I. This polytope is called the
marginal polytope of the hierarchical model, and we denote it by P∆.

Example 1.2. For the model defined by V = {a, b, c}, Ia = {0, 1} = Ib = Ic
and ∆ = {a, b, c, ab, bc}, we have I = (000, 100, 010, 110, 001, 101, 011, 111)
and J = {(100), (010), (001), (110), (011)}. Then

Ã =



f000︷︸︸︷
1

f001︷︸︸︷
1

f010︷︸︸︷
1

f011︷︸︸︷
1

f100︷︸︸︷
1

f101︷︸︸︷
1

f110︷︸︸︷
1

f111︷︸︸︷
1

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 0 0 1 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 1 0 0 0 1


θ000

θ100

θ010

θ001

θ110

θ011
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An important subclass of hierarchical model is the class of graphical mod-
els. Let G = (V,E) be an undirected graph with vertex set V and edge
set E. A subset D ⊆ V is a clique of G if any i, j ∈ D, i 6= j, define an edge
(i, j) ∈ E. The set of cliques of G, denoted by ∆(G), is a simplicial com-
plex. The graphical model of G is defined as the hierarchical model of ∆(G).
Graphical models are important because of their interpretation in terms of
conditional independence, see Lauritzen (1996).

1.1.1 An example of identifiable and non-identifiable parametriza-
tion

In this section, we will use an example to show that our parameterization is
identifiable and compare to another unidentifiable parameterization given by
Eriksson(2006).

Example 1.3. For the model defined by V = {a, b, c}, ∆ = {a, b, c, ab, bc}
and Ia = {0, 1} = Ib = Ic, we have I = {000, 100, 010, 110, 001, 101, 011, 111}
and J = {(100), (010), (001), (110), (011)}. Then

Ã =



f000︷︸︸︷
1

f001︷︸︸︷
1

f010︷︸︸︷
1

f011︷︸︸︷
1

f100︷︸︸︷
1

f101︷︸︸︷
1

f110︷︸︸︷
1

f111︷︸︸︷
1

0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 1


θ000

θ001

θ010

θ100

θ011

θ110

Since θ0 is not a free parameter in our setting, and matrix A is a full rank
matrix, our parameterization is identifiable. To verify this, we can extract
the columns indexed by the set J , rows indexed by the set θ, and get the
following sub-matrix:

X =


1 0 1 0 0
0 1 1 0 1
0 0 0 1 1
0 0 1 0 0
0 0 0 0 1
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The inverse of X is

X−1 =


1 0 0 −1 0
0 1 0 −1 −1
0 0 0 1 0
0 0 1 0 −1
0 0 0 0 1


Therefore we have

θ = (X−1)t log
pθ
pθ(0)

θ001

θ010

θ100

θ011

θ110

 =


1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
−1 −1 1 0 0
0 −1 0 −1 1




log p(001)

p(000)

log p(010)
p(000)

log p(011)
p(000)

log p(100)
p(000)

log p(110)
p(000)


It’s easy to verify that the above equation system gives us the formulas of θ
as we defined before.

Now let’s check another parameterization given by Eriksson(2006). Their
design matrix A∆ is a 0-1 matrix whose rows are indexed by the facets of
simplicial complex ∆ taking different values and columns are indexed by I.
In this example, their parameters are

{θab(00), θab(10), θab(01), θab(11), θbc(00), θbc(10), θbc(01), θbc(11)}.
The design matrix is given as follows:

A∆ =



f000︷︸︸︷
1

f001︷︸︸︷
1

f010︷︸︸︷
0

f011︷︸︸︷
0

f100︷︸︸︷
0

f101︷︸︸︷
0

f110︷︸︸︷
0

f111︷︸︸︷
0

0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1
1 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1



θab(00)
θab(10)
θab(01)
θab(11)
θbc(00)
θbc(10)
θbc(01)
θbc(11)

The rank of A∆ is 6, i.e. it is not a full rank matrix. We can’t solve log p =
At∆θ to get the formulas of θ as A∆ is noninvertible. This parameterization
is not identifiable. Denote ri as the i-th row of A∆, we can see that r1 + r2 =
r5 + r7, and r3 + r4 = r6 + r8.
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1.2 Discrete exponential families

Hierarchical models are examples of discrete exponential families. Let I and
J be finite sets, and let A ∈ RJ×I be a real matrix. Denote the columns of
A by fi, i ∈ I. The discrete exponential family corresponding to A, denoted
by EA, consists of all probability distributions on I that are of the form

pθ(i) = exp(〈θ, fi〉 − k(θ)), θ ∈ RJ ,

where k(θ) = log
∑

i∈I exp(〈θ, fi〉). Define J̃ = J ∪ {0}, θ0 = −k(θ) and

θ̃ = (θ0, θ), and let Ã be the matrix A with one additional row of ones; that

is, Ã ∈ RJ̃×I is the matrix with columns
(

1
fi

)
, i ∈ I. We make the additional

assumption that the row of 1’s belongs to the row span of the matrix A
so that A and Ã have the same rank. Then EA consists of the probability
distributions pθ that satisfy log pθ = Ãtθ̃ for some θ̃ ∈ RJ̃ . The convex hull of
the columns fi, i ∈ I, is called the convex support polytope, denoted by PA.
It generalizes the marginal polytope.

The parametrization θ → pθ is identifiable if and only if A has full rank.
If A does not have full rank, then one can drop certain rows of A to obtain a
submatrix A′ with full rank. This is equivalent to setting certain parameters
to zero until the remaining parameters are identifiable.

For a discrete exponential family,
∏

i∈I pθ(i)
n(i) can be written under the

form of a natural exponential family. Indeed,∏
i∈I

pθ(i)
n(i) = exp(

∑
i∈I

n(i) log pθ(i)) = exp(〈n, log(pθ)〉) = exp(〈n, Ãtθ̃〉)

= exp(〈Ãn, θ̃〉) = exp(
∑
j∈J

θjtj −Nk(θ)).

The log-likelihood function in θ for the loglinear parameter of the multi-
nomial distribution with the given hierarchical model is therefore

l(θ) =
∑
j∈J

θjtj −Nk(θ). (8)

It is well-known that l(θ) is concave. If the parameters are identifiable, then
it is strictly concave.
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We can also express the log-likelihood as a function of µ = (µi = log p(i)
p(0)

, i ∈
I):

l(µ) =
∑
i∈I

n(i) log p(i) =
∑

i∈I\{0}

n(i) log
p(i)

p(0)
+N log p(0)

=
∑
i∈I

n(i)µi −N log(
∑
i∈I

expµi). (9)

As stated before, only a subset µL of the parameters µ are independent, and
the remaining µi, i /∈ L, can be expressed as linear functions of µL.

1.3 Polytopes

We next recall some general facts about polytopes and their faces. We refer
to Ziegler (1998), Lectures on Polytopes, for details and more information.

Definition 1.4. A set P ⊂ Rh is a (convex) polytope if P is the convex
hull of a finite subset of Rh. Equivalently, a polytope can be defined as a
bounded subset of Rh defined by linear inequalities.

Definition 1.5. For any vector g ∈ Rh and any constant c ∈ R, define
three sets Hg,c =

{
x ∈ Rh : 〈g, x〉 = c

}
, H+

g,c =
{
x ∈ Rh : 〈g, x〉 ≥ c

}
and

H−g,c =
{
x ∈ Rh : 〈g, x〉 ≤ c

}
. If g 6= 0, then Hg,c is an (affine) hyperplane,

and H+
g,c and H−g,c are the positive and negative halfspace defined by g and c.

Let P ⊆ Rh be a polytope, let g ∈ Rh and c ∈ R, and suppose that
P ⊂ H+

g,c or P ⊂ H−g,c. Then F := Hg,c ∩ P is called a face of P. If g 6= 0,
then Hg,c is called a supporting hyperplane of P. If F 6= P and F 6= ∅, then
F is a proper face of P.

The dimension of a face F is the dimension of the smallest affine subspace
of Rh that contains it. Its co-dimension is dim(P) − dim(F). A facet of a
polytope P is a proper face that is maximal with respect to inclusion and is
thus of co-dimension 1. A minimal proper face of a polytope is a singleton
{p} ⊆ P; in this case, p is a vertex.

Intersections of faces are again faces: If g1, g2 ∈ Rh and c1, c2 ∈ R define
faces F1,F2 of P and if P ⊂ H+

g1,c1
∩ H+

g2,c2
, then P ⊂ H+

g1+g2,c1+c2 , and
F1 ∩ F2 = P ∩ Hg1+g2,c1+c2 (if x is such that 〈g1, x〉 = c1 and 〈g2, x〉 = c2,
then clearly that x must be such that 〈g1 + g2, x〉 = c1 + c2). Any face is an
intersection of facets.
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By definition, every face F of a polytope P ⊂ Rh is characterized by a
linear inequality 〈g, x〉 ≥ c that is valid on P and that holds as an equality
on F. This linear inequality is unique only if F is a facet. Sometimes it is
convenient to give all linear equations that hold on a face F. These linear
equations determine the smallest affine subspace of Rh containing F.

When a polytope is defined as the convex hull of a finite number of
points fi, i ∈ I, then it is of interest to know, which subsets of {fi}i∈I
lie on a common face. Indeed, it is the purpose of our work to compute the
smallest face of the marginal polytope containing the data vector t, and we
will determine this face by identifying which vectors fi belong to it.

Definition 1.6. For a finite set I let {fi}i∈I ⊂ Rh, and let P be the convex
hull of {fi}i∈I . A subset F ⊆ I is called facial (with respect to P), if there
exists a face F of P with F = {i : fi ∈ F}. For any subset S ⊆ I, denote
by FP(S) the smallest facial set that contains S.

Since the intersection of facial sets is again facial, FP(S) is well-defined.

Lemma 1.7. Let {fi}i∈I ⊂ Rh, let φ : Rh → Rh′ , x 7→ Bx + d be an affine
map, and let f ′i = φ(fi). If P is the convex hull of the fi, then P′ := φ(P) is
the convex hull of the f ′i . The faces and facial sets of P and P′ are related
as follows:

1. Any inequality 〈g′, x′〉 ≥ c′ that is valid on P′ corresponds to an inequal-
ity 〈g, x〉 ≥ c that is valid on P, where g = Btg′ and c = c′ − 〈g′, d〉.
Thus, if F′ is a face of P′, then φ−1(F′) is a face of P.

2. A subset of I that is facial with respect to P′ is also facial with respect
to P. Thus, FP(S) ⊆ FP′(S) for any S ⊆ I.

Proof. The first statement follows from

c′ ≤ 〈g′, φ(fi)〉 = 〈g′, Bfi + d〉 = 〈Btg′, fi〉+ 〈g′, d〉,

which holds for any i ∈ I. We note that if φ is a simple projection , then g
is obtained from g′ by adding 0 components to the additional dimensions.

For the second statement, since the lift of a face in P′ is also a face in P,
the f ′i in the face of P′ are lifted to fi in P and define a face (because any
x′ ∈ P′ is convex combination of the f ′i in P′ and thus the lift of x′ are linear
combinations of the lift of f ′i in the face of P′. Thus a subset of I that is
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facial with respect to P′ is also facial with respect to P. For the last sentence
of the second statement, we have from what we just proved that FP′(S) is
facial with respect to P and also it contains S. Thus FP(S) which is the
smallest facial set with respect to P and that contains S must be included
in FP′(S).

We note that in Lemma 1.7, the dimension of φ(P) is at most equal to h.
We will only apply Lemma 1.7 to coordinate projections φ with h′ < h.

Remark 1.8. Sometimes it is convenient to embed the polytope in a vector
space that has one additional dimension using a map Rh → Rh+1, x 7→ x̃ :=
(1, x). This has the advantage that all defining inequalities can be brought
into a homogeneous form with vanishing constant c: Note that 〈g, fi〉 − c =
〈g̃c, f̃i〉, where g̃c := (c, g).

When a defining inequality of a face F is given, its facial set F can be
obtained by checking whether fi ∈ F for each i ∈ I. In the other direction,
when a facial set F is given, it is much more difficult to compute a defining
inequality of the corresponding face F. However, it is straightforward to
compute the linear equations defining F: the set of such equations 0 =
〈g, x〉 − c = 〈g̃, x̃〉 corresponds to the set of vectors g̃ ∈ ker ÃtF , where ÃF
is the matrix obtained from A by adding a row of ones and dropping the
columns not in F .

1.4 The closure of an exponential family and existence
of the mle

We fix a discrete exponential family EA. While our main interest lies in
hierarchical models, the results that we need are more naturally formulated
in the language of discrete exponential families. We assume that a vector of
observed counts n = (n(i) : i ∈ I) is given.

Definition 1.9. A parameter value θ∗ is a maximum likelihood estimate
(mle) if it is a global maximum of l(θ).

The function l(θ) is always bounded (clearly, it is never positive). The
fundtion l(θ) is strictly concave, and so the maximum is unique, if it exists.
However, a maximum need not exist, since the domain of the parameters θ is
unbounded. To understand this, it is convenient to interpret the likelihood
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as a function of probabilities. Let l̃ be the function that assigns to any
probability distribution p on I the value

l̃(p) = log(
∏

i∈I
p(i)n(i))

Then l(θ) = l̃(pθ), and θ∗ is an mle if and only if pθ∗ maximizes l̃ subject to the
constraint that p belongs to the hierarchical model (and thus is of the form pθ
for some θ). While the set of all probability distributions on I is compact,
the hierarchical model itself is not closed (indeed, from the definition of

EA, the various p(i) cannot be equal to 0 because p(i) = exp〈θ,fi〉∑
j∈I exp〈θ,fj〉 . If

one of the components θα of θ goes to +∞ where fi,α 6= 0, then p(i) =
exp(θαfi,α+

∑
β 6=α θβfi,β)

exp(θαfi,α+
∑
β 6=α θβfi,β)+

∑
j∈I,j 6=i exp〈θ,fj〉 will go to 1 and the others will have to

go to 0 and thus this p = (p(i), i ∈ I) will not be in the hierarchical model))
and therefore not compact, and so there is no guarantee that l̃ attains its
maximum on the hierarchical model. However, things become better when
we pass from the hierarchical model to its topological closure, where the
topology comes from interpreting a probability distibution as a vector p =
(p(i))i∈I ∈ RI of real numbers (this choice of the topology is canonical since
we are dealing with a finite set I. The closure is sometimes also called
completion (see Barndorff:exponential families, (1978). Since the closure of
the hierarchical model is again compact, the continuous function l̃ always
attains its maximum.

Theorem 1.10. The closure of a discrete exponential family can be written
as a union

EA =
⋃
F

EF,A,

where F runs over all facial sets of the convex support polytope PA and where
EF,A consists of all probability distributions of the form pF,θ, with

pF,θ =

{
exp(〈θ, fi〉 − kF (θ)), if i ∈ F,
0, otherwise,

where kF (θ) = log
∑

i∈F exp(〈θ, fi〉.

Proof. See Barndorff-Nielsen (1976). For self-containedness we provide a
proof in our notation in Appendix A.1.

11



Theorem 1.10 shows that EA is a finite union of sets EF,A that are ex-
ponential families themselves with a very similar parametrization, using the
same number of parameters and the same design matrix A (or, rather, the
submatrix AF consisting of those columns of A indexed by F ). However, for
any proper facial set F , the parametrization θ 7→ pF,θ is not injective, i.e. the
parameters θ are not identifiable on EF,∆. The reason is that the matrix ÃF
does not have full rank, even if Ã has full rank, since all columns of ÃF lie
on a supporting hyperplane defining F .

A second thing to note is that although the parameters θ on EA and the
parameters θ on EF,A play similar roles, they are very different in the following
sense: If θ(s) is a sequence of parameters with pθ(s) → pF,θ for some θ, then,

in general, lims→∞ θ
(s)
j 6= θj for all j ∈ J .

Theorem 1.11. For any vector of observed counts n, there is a unique max-
imum p∗ of l̃ in EA. For t as defined in (5), this maximum p∗ satisfies:

• Ap∗ = t
N

.

• supp(p∗) = Ft.

Proof. See Barndorff-Nielsen (1978). For self-containedness we provide a
proof in our notation in Appendix A.2.

Definition 1.12. The maximum in Theorem 1.11 is called the extended
maximum likelihood estimate (EMLE).

Clearly, if the mle θ∗ exists, then p∗ = pθ∗ .

2 A Bayesian perspective

2.1 The DY conjugate prior

We saw that for a discrete exponential family,
∏

i∈I pθ(i)
n(i) can be written

under the form of a natural exponential family. Indeed,∏
i∈I

pθ(i)
n(i) = exp(

∑
i∈I

n(i) log pθ(i)) = exp(〈n, log(pθ)〉) = exp(〈n, Ãtθ̃〉)

= exp(〈Ãn, θ̃〉) = exp(
∑
j∈J

θjtj −Nk(θ)). (10)
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For a contingency table X = (Xv, v ∈ V ) is the random variable. We can
then write

f(X) = exp(
∑
j∈J

θjtj(X)−Nk(θ)) = exp(〈θ, t〉 −Nk(θ)).

From the form (10) of the multinomial distribution and Theorem 1 inDiaconis-
Ylvisaker (1979), the DY conjugate prior distribution for θ has density with
respect to the Lebesgue measure equal to

π(θ|mJ , α, J) =
1

IJ(mJ , α)
× eα〈θ,mJ 〉

L(θ)α
=

1

IJ(mJ , α)
× eα〈θ,mJ 〉−αk(θ)

where IJ(m,α) is the normalizing constant. It is proper if and only if the
hyperparameter (α,mJ) is such α > 0 and mJ ∈ C. The posterior probability
of θ given the data n = (n(i))i∈I and tJ = (tj, j ∈ J) is

π(θ|αmJ + tJ
α +N

,α +N, J).

In classical Bayesian model selection, the most probable models are selected
by means of Bayes factors. More precisely, models are compared two by two
by means of the Bayes factor B1,2 between model J1 and model J2. If the
prior on the set of all hierarchical models is uniform, we have

B1,2 =
I2(m2, α)

I1(m1, α)
×
I1(αm1+t1

α+N
, α +N)

I2(αm2+t2
α+N

, α +N)
(11)

where, for the sake of simplicity, m, t, I are indexed by k = 1, 2 rather than
by J1, J2 and where m1 and m2 have been chosen in C1 and C2 respectively.
The aim of the present paper is to find the limit of B1,2 when α → 0. If we
assume that n(i) > 0 for all i ∈ I, then tk/N is in the interior of Ck and
under these circumstances the second factor in the right-hand side of (11)
has the finite limit I1( t1

N
, N)/I2( t2

N
, N). For the first factor in (11), we will

show that I(m,α) ∼α→0 JC(m)α−|J | where JC(m) will be defined in the next
section. Thus when α→ 0 the Bayes factor is equivalent to

α|J1|−|J2|JC2(m2)

JC1(m1)
×
I1( t1

N
, N)

I2( t2
N
, N)

.

If we do not assume that n(i) > 0 for all i ∈ I, then tk/N might be on the
boundary of Ck for at least one k = 1, 2 and we will have to further study
the behaviour of I(m,α) and JC(m). This is done in the following section.

13



2.2 The characteristic function of a convex set

If C ⊂ E is an open non empty convex set not containing an (affine) line,its
support function hC : E∗ → (−∞,∞] is

hC(θ) = sup{〈θ, x〉 ; x ∈ C}
and its characteristic function is the function m 7→ JC(m) defined on C by

JC(m) =

∫
E∗
e〈θ,m〉−hC(θ)dθ. (12)

We note that if C contained a line, we would have hC(θ) =∞ almost every-
where and JC ≡ 0. Faraut and Koranyi (1994), p. 10 define JC when C is an
open convex salient cone. In that case, the polar set of C is the convex cone

Co = {θ ∈ E∗ ; 〈θ, x〉 ≤ 0 ∀x ∈ C} (13)

and hC(θ) = 0 if θ ∈ Co and hC(θ) =∞ if θ 6∈ Co. When C is a bounded set,
hC(θ) is finite for all θ ∈ E∗. We also have the following important property
of JC(.).

Lemma 2.1. Let C be an open convex set not containing a line and let
m ∈ C. Then JC(m) is finite.

Example 2.2. Let C = (0, 1) ⊆ R. In this case, hC(θ) = max(0, θ) and for
0 < m < 1 we have

JC(m) =

∫ 0

−∞
eθmdθ +

∫ ∞
0

eθm−θdθ =
1

m
+

1

1−m
=

1

m(1−m)
. (14)

Theorem 2.3. Let C ⊂ E be the non empty interior of a bounded polytope
C. Let m ∈ C. Then we have

JC(m) =
N(m)

D(m)

where D(m) =
∏K

k=1 gk(m) is the product of affine forms gk(m) in m such
that gk(m) = 0, k = 1, . . . , K define the facets of C and where N(m) is a
polynomial of degree < K.

Theorem 2.4. Let C ⊂ E be an open polytope with dimE = n. Let y ∈ ∂C,
let F be the face of C containing y in its relative interior and let k be the
dimension of F . Then when λ→ 0

lim
λ→0

λn−kJC(λm+ (1− λ)y) = D,

where D is a positive constant.
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2.3 The behaviour of I(m,α) as α→ 0

We have the following theorem.

Theorem 2.5. Let µ be a positive measure on the n-dimensional linear space
E with closed convex support bounded and with nonempty interior C. Denote
by L(θ) =

∫
E
e〈θ,x〉µ(dx) its Laplace transform. For m ∈ C and for α > 0

consider the Diaconis Ylvisaker integral

I(m,α) =

∫
E∗

eα〈θ,m〉

L(θ)α
dθ.

Then
lim
α→0

αnI(m,α) = JC(m). (15)

Let us note immediately that a remarkable feature of this result is that
the limit JC(m) of αnI(m,α) depends on µ only through its convex support.
For instance if E = R, the uniform measure on (0, 1) and the sum µ = δ0 +δ1

of two Dirac measures share the same C = (0, 1) and the same JC(m) =
(m(1−m))−1.

Lemma 2.6. Let µ be a bounded measure on some measurable space Ω and
let f be a positive, bounded and measurable function on Ω. Then we have

1. ||f ||p →p→∞ ||f ||∞

2. The function p 7→ ||f ||p is either decreasing on (0,∞) or there exists
p0 ≥ 0 such that it is decreasing on (0, p0] and increasing on [p0,+∞).

Proof. (of Theorem 2.5.) In the integral αnI(m,α) we make the change
of variable y = αθ and we obtain

αnI(m,α) =

∫
E∗

e〈y,m〉

L(y/α)α
dy.

We now apply the last lemma to Ω = C, to the bounded measure µ, to the
function f(x) = e〈y,x〉 for some fixed y ∈ E∗ and to p = 1/α. Denote by S
the support of µ. One easily sees that the support function of C satisfies

hC(θ) = sup{〈θ, x〉 ; x ∈ C} = max{〈θ, x〉 ; x ∈ S}
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since C is the interior of the convex hull of S. As a consequence the essential
sup of f is ehC(y) and we get limα→0 L(y/α)α = ehC(y). Furthermore, by
Lemma 2.6, the function p 7→ ‖f‖p is monotonic for p big enough. If p 7→
||f ||p is increasing, 1

||f ||p is decreasing and then by the monotone convergence

theorem

lim
α→0

∫
E∗

e〈y,m〉

L(y/α)α
dy =

∫
E∗

e〈y,m〉

limα→0 L(y/α)α
dy =

∫
E∗
e〈y,m〉−hC(y)dy = JC(m)

If p 7→ ||f ||p is decreasing, p 7→ 1/||f ||p is increasing. In order to show that
we can invert the order of limit and integration and to apply the monotone
convergence theorem as we did in the previous case, we need to insure that∫
E∗
e〈y,m〉−hC(y)dy is finite: Lemma 2.1 shows that it is true.

2.4 The case where the data belongs to a face of C i, i =
1, 2

When α → 0, αmi+ti
α+N

converges to the boundary point ti
N

of Ci along the
segment

s(α) =
αmi + ti
α +N

=
α

α +N
mi + (1− α

α +N
)
ti
N
. (16)

We need to study the limiting behaviour of B1,2 when α → 0. To do so, we
will use Theorem 2.4 to obtain the following result.

Theorem 2.7. Suppose that t
N
∈ C \ C belongs to the relative interior of a

face F of dimension k. Then

lim
α→0

α(|J |−k)I(
αm+ t

α +N
,α +N) (17)

exists and is positive.

From Theorems 2.5 and 2.7, we immediately derive the following which is
the object of this section.

Corollary 2.8. Consider two hierarchical models Ji, i = 1, 2 of dimension
|Ji|. Assume that the data ti

N
belongs to the relative interior of a face Fi of

Ci of dimension ki. Then the asymptotic behaviour of the Bayes factor B1,2

when α→ 0 is given by

B1,2 ∼ Dαk1−k2

16



where D is a finite positive constant. The Bayes factor favours the model
which contains the data in the relative interior of the face of Ci of smallest
dimension.

The proof is immediate. According to Theorems 2.5 and 2.7, we have

B1,2 =
I(m2, α)

I(m1, α)

I(αm1+t1
α+N

, α +N)

I(αm2+t2
α+N

, α +N)
∼ α|J1|−|J2|α(k1−|J1|)−(k2−|J2|) = αk1−k2 .

Remark 2.9. We note that, if ti
N
∈ Ci, i = 1, 2, since Ci is the face of Ci

of dimension Ji, then ki = |Ji| and Corollary 2.8 yields Corollary that the
Bayes factor chooses the sparsest model, following conventional wisdom. For
the same reason, Corollary 2.8 also deals with the cases where ti

N
∈ Ci for

only one of i = 1 or i = 2.

2.5 Conclusion

We see from the rsults above that the asymptotic behavious of the Bayes
factor depnds not on the two models considered but on the face of the models
considered. In other words, as far as the Bayes factor is concerned, we have to
consider the closed exponential family given by the model and in that family
choose the exponential family for which the data belongs to the interior of
the marginal cone.

3 Approximating the faces of the marginal

polytope

3.1 Condition for the existence of the mle: an algo-
rithm

Recall that the multinomial density can be written under exponential family
form as

exp(〈An, θ〉 −Nk(θ))

where the columns of A are the vectors fi =
∑

j/i ej, i ∈ I.

Definition 3.1. We say that the mle does not exist or is undefined if the
supremum of the loglikelihood function is not attained by a finite vector θ.
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Haberman (1974) was the first to give necessary and sufficient condition
for the existence of the mle.

Theorem 3.2. A necessary and sufficient condition for the existence of the
mle is that there exists a vector z ∈ RI , z ∈ Ker(A) such that z + n > 0.

This can be given a geometric interpretation in terms of the marginal
polytope( see Eriksson, Fienberg, Rinaldo and Sullivant (2006)). Very simply
t = An and since z ∈ Ker(A), A(z + n) = t also. Thus, since all the
components of z+n are strictly positive, z+n belongs to the relative interior
of the marginal polytope and the mle exists.

Corollary 3.3. The mle for the mean vector p exists if and only if the mar-
gins t = An belongs to the relative interior of the marginal polytope PA.

Indeed a vector t belongs to the interior of the marginal polytope if and
only if there exists x > 0, x ∈ RI such that t = Ax. Then Theorem 3.2
states that the mle exists if and only if t belong to the relative interior of
PA: Indeed, t = An = A(n+ z) with n+ z > 0. Thus the mle does not exist
if and only if t lies on one of the facets of PA. Hence, to show t belongs to
a facet, we want to show that there exists g ∈ (R|J |)∗, g ∈ P∗A which attains
its maximum at t but does not attain it in another other point of PA. This
can be decided by determining if the polyhedral cone

{g | gtA ≤ 1t · gtt} (18)

contains only those vectors orthogonal to the span of fi, i ∈ I.
A Linear Programming algorithm to compute facial sets
Denote A as the design matrix, A+ as the sub-matrix with columns in-

dexed by the positive cells and A0 as the sub-matrix indexed by the empty
cells.

Lemma 3.4. Solution g∗ of the non-linear problem

maxg̃ z = ‖Ãtg̃‖0

s.t. Ãt+g̃ = 0

Ãt0g̃ > 0

(19)

is a perpendicular vector to the smallest face containing t. The corresponding
facial set is Ft = I \ supp(Atg∗).
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Proof. Let us first note that f ti g = c for some constant c can be written as
f̃ ti g̃ = 0 where f̃i = (1, f ti )

t and g̃ = (−c, gt)t and thus we can write (18) in a
homogeneous way

{g̃ | g̃tÃ ≥ 1̃t · 0} . (20)

Since Ãtg̃ is the |I|-dimensional vector with component f̃ ti g̃, we see that
‖Ãtg̃‖0 is the number of i ∈ I such that f̃ ti g̃ > 0, i.e. the number of fi that do
not belong to the facet containing t. So, by solving the optimization problem
(19), we find a supporting hyperplane which contains t and identifies all the
fi’s that are not in the smallest face of PA containing t.

The optimization problem (19) is highly non-linear and non-convex: it can
be solved by repeatedly solving the associated `1-norm optimization problem:

max z = ‖Ãt0g̃‖1

s.t. Ãt+g̃ = 0

Ãt0g̃ ≥ 0

Ãt0g̃ ≤ 1

(21)

Problem (21) is a linear programming problem: we can solve it repeatedly
until we get the smallest facial set Ft. The process is as follows:

Algorithm 1 Face computation by linear programming method

Require: Design matrix A and positive cell index I+

INITIALIZE A+ = A(:, I+), A0 = A \ A+

Solve problem 21, get the solution g∗ and the corresponding maximum z∗

while A0 6= ∅ and z∗ 6= 0 do
Let matrix B be the submatrix of A0, by taking columns of A0 which
satisfy 〈fi, g∗〉 > 0, update A0 = A0 \B,
Solve problem 21, get the solution g∗ and the corresponding maximum
z∗

end while
if A0 = ∅ then
Ft = I+

end if
if Z∗ = 0 then
Ft = I+ ∪ {i|i is the index of A0}

end if
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The algorithm will work for problems with up to 16 variables but not
more. The question is what to do when we have more than 16 variables and
we want to have an idea of whether the mle exists and which ˆp(i) are equal
to 0.

3.2 Approximating the smallest face containing t

3.2.1 The basic facts

Here are the basic properties that help us build the inner and outer approx-
imations to Ft.

Fact 1: Ft contains I+. In fact Ft = F∆(I+).

Lemma 3.5. The sufficient statistic t belongs to the face Fg of C governed
by g if and only if fi ∈ Fg for all i ∈ I+.

The proof is obvious if we write that t ∈ Fg ⇔ 〈t, g〉 = 0⇔
∑

i∈I+
n(i)
N
〈fi, g〉 =

0⇔ 〈fi, g〉 = 0 ∀i ∈ I+. The face Fg may contain additional fi’s.
Thus Ft is the smallest face of P∆ containing {fi, i ∈ I+}, and so its

facial set is Ft = F∆(I+). Identifying Ft is therefore equivalent to identifying
F∆(I+).

Fact 2: If ∆′ ⊂ ∆, then for any S ⊂ I, F∆(S) ⊆ F∆′(S)

Lemma 3.6. Let ∆ and ∆′ be simplicial complexes on the same vertex
set with ∆′ ⊆ ∆, and denote by fi, f

′
i (i ∈ I) the columns of the design

matrices of the corresponding hierarchical models. Then there is a linear
map φ : Rh → Rh′ with φ(fi) = f ′i . In fact, φ is a coordinate projection. In
particular, the marginal polytope P∆′ is a coordinate projection of P∆. Thus,
for any S ⊆ I, we have F∆(S) ⊆ F∆′(S)

The lemma clearly follows from Lemma 1.7. This lemma says that we can
find an outer approximation to Ft w.r.t ∆ if ∆′ ⊂ ∆ by looking at F∆′(I+).
In the other direction, we can find an inner approximation to Ft w.r.t ∆′ by
looking at F∆(I+).

Fact 3: If ∆ is reducible into several components, then F∆(I+) can
be obtained from the facial set relative to these components:

F∆(T ) = π−1
V1

(F∆|V1
(T1)) ∩ π−1

V2
(F∆|V2

(T2)).

Let us now explain how this is obtained.
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Definition 3.7. Let V ′ ⊂ V . The restriction or induced sub-complex is
∆|V ′ = {S ∈ ∆ | S ⊆ V ′}. The sub-complex ∆|V ′ is complete, if ∆|V ′
contains V ′ (and thus all subsets of V ′). For brevity, in this case we say that
V ′ is complete in ∆.

Definition 3.8. A subset S ⊂ V is a separator of ∆ if there exist V1, V2 ⊂ V
with V1 ∩ V2 = S, ∆ = ∆|V1 ∪∆|V2 and V1 6= S 6= V2. A simplicial complex
that has a complete separator is called reducible. By extension, we also call
the hierarchical model reducible.

Definition 3.9. A hierarchical model is decomposable if ∆ can be written
as a union ∆ = ∆1∪∆2∪ . . .∆r of induced sub-complexes ∆i = ∆|Vi in such
a way that

1. each ∆i is a complete simplex: ∆i = {S ⊆ Vi}; and

2. (∆1 ∪ · · · ∪∆i) ∩∆i+1 is a complete simplex.

In other words, ∆ arises by iteratively gluing simplices along complete sub-
simplices.

Faces of a reducible hierarchical model are combinations of the faces of
its two parts:

Proposition 3.10. Suppose that ∆ has a complete separator S that separates
V into V1 and V2. Each face of P∆|V1

corresponds to an inequality∑
j∈J∆|V1

g
(1)
j tj ≥ c1.

The same inequality also defines a face of P∆. Similarly, each face of P∆|V2

defines a face of P∆. Each face of P∆ either arises in this way, or it is
the intersection of two such faces, one induced by P∆|V1

and one induced
by P∆|V2

.

Proof. See Eriksson et al. (2006), Lemma 8.

In the sequel, for any V ′ ⊆ V and i ∈ I =
∏

v∈V Iv, it will be convenient
to use the seemingly more complicated notation πV ′(i) = (iv, v ∈ V ′) for the
marginal cell iV ′ ∈ IV ′ :=

∏
v∈V ′ Iv. Similarly, for a set S ⊆ I, the restriction

to V ′ is πV ′(S) :=
{
πV ′(i) : i ∈ S

}
. For T ⊂ IV ′ , the opposite action yields

π−1
V ′ (T ) = {i ∈ I | iV ′ ∈ T}.

We next translate Proposition 3.10 to the language of facial sets:

21



Lemma 3.11. Suppose that ∆ has a complete separator S that separates V
into V1 and V2.

1. If F ⊆ I is facial with respect to ∆, then πV1(F ) and πV2(F ) are facial
with respect to ∆|V1 and ∆|V2.

2. Conversely, if F1 ⊆ IV1 and F2 ⊆ IV2 are facial with respect to ∆|V1

and ∆|V2, then π−1
V1

(F1) ∩ π−1
V2

(F2) is facial with respect to ∆.

Thus, for any T ⊆ I, let T1 = πV1(T ) and T2 = πV2(T ).

F∆(T ) = π−1
V1

(F∆|V1
(T1)) ∩ π−1

V2
(F∆|V2

(T2)).

Proof. Consider an inequality as in Proposition 3.10 that defines a face F of
P∆ as well as a face F1 of P∆1 . Then the corresponding facial sets F and
F1 satisfy F = π−1

V1
(F1); because in order to check whether some fi, i ∈ I,

satisfies the inequality, we only need to look at the components involving V1;
that is, we only need to look at πV1(i).

Lemma 3.11 easily generalizes to more than one separator and thus to
more than two components and it becomes particularly simple when these
components are complete. Indeed, in that case, F∆|V1

(T1) = T1 and taking
the preimage we obtain

π−1
V1

(πV1(T )) = {i ∈ I : ∃i′ ∈ T such that πV1(i) = πV1(i′)} ⊇ T.

The following lemma is an immediate consequence of Lemma 3.11.

Lemma 3.12. Let ∆ be a decomposable model with decomposition ∆ = ∆1∪
∆2 ∪ · · · ∪∆r where ∆i is a complete simplex on Vi, and let πi = πVi be the
corresponding marginalization map. Then, for any T ⊆ I,

F∆(T ) = π−1
1 (π1(T )) ∩ π−1

2 (π2(T )) ∩ · · · ∩ π−1
r (πr(T )).

3.2.2 Finding an inner approximation to Ft

The basic idea is to find a separator S in ∆, complete it and consider the
augmented model ∆S = ∆∪{M : M ⊆ S} in which S is a complete separator.
We can apply Lemma 3.11 to find the facial set F∆S

(I+), and this will be our
inner approximation of F∆(I).
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We refine this inner approximation by considering another separator S ′

and create the following chain of inner approximations:

G′0 := I+,

G1 := F∆S
(G′0), G′1 := F∆S′

(G1),

G2 := F∆S
(G′1), G′2 := F∆S′

(G2),

...

that satisfy
I+ ⊆ G1 ⊆ G′1 ⊆ G2 ⊆ · · · ⊆ Ft,

where all inclusions except the last one are due to the definition of F∆S
(T )

or F∆S′
(T ) as the smallest facial sets containing T in ∆S or ∆S′ . The last

inclusion is a consequence of Lemma 3.6 since both ∆S and ∆S′ contain ∆.
This chain of approximations has to stabilize at a certain point; that is,
after a certain number of iterations, the approximations will not improve
any more. The limit, which we denote by FS,S′(I

+) :=
⋃
iGi =

⋃
iG
′
i, can be

characterized as the smallest subset of I that contains I+ and is facial both
with respect to ∆S and ∆S′ .

3.2.3 Finding an outer approximation to Ft

The basic idea is to choose ∆′ ⊂ ∆ so that according to Lemma 3.6, F∆(I+) ⊂
F∆′(I+). In the smaller simplicial complex ∆′, we can obtain the exact
F∆′(I+). Then we lift this facial set by using the following lemma.

Lemma 3.13. Let V ′ ⊆ V . For K ⊂ I, we have

F∆|V ′ (K) = π−1
V ′ (F

′
∆|V ′ (πV ′(K))).

Here, F ′∆|V ′ denotes the facial set when ∆V ′ is considered as a simplicial

complex on V ′, and F∆|V ′ denotes the facial set when ∆|V ′ is considered as
a simplicial complex on V .

Proof. Given a model ∆ on V . Let V ′ ⊂ V . Consider the model ∆|V ′ . Let
A = {ai, i ∈ I} be the set of columns of the design matrix for the model ∆|V ′
on V . Let B = {ai′ , i′ ∈ πV ′(I)} be the set of columns of the design matrix
for the model ∆|V ′ on V ′. For K ⊂ I, the two sets AK = {ai, i ∈ K} and
BK = {ai′ , i′ ∈ πV ′(K)} are identical and therefore the smallest faces of the
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marginal polytopes for ∆V ′ on V or V ′ containing AK and BK respectively
are the same.

By definition of F ′∆V ′
(πV ′(K)), the smallest face containing BK is de-

fined by {ai′ , i′ ∈ F ′∆V ′
(πV ′(K))}. By definition of F∆V ′

(K), the smallest
face containing AK is {ai, i ∈ F∆V ′

(K)}. Also because, for fi a column of
A and f ′i′ a column of B, fi = f ′i′ ⇔ i ∈ π−1

V ′ (i
′), we have that {ai, i ∈

π−1
V ′ (F

′
∆V ′

(πV ′(K)))} = {bi′ , i′ ∈ F ′∆V ′
(πV ′(K))}. Therefore F∆V ′

(K) =

π−1
V ′ (F

′
∆V ′

(πV ′(K))).

Subsequently, since the outer approximation is not very accurate, one
subset is not enough. So, we typically choose V1, . . . , Vr ⊆ V . Then F∆(I+) ⊆
F∆|Vi (I+) for i = 1, . . . , r, and thus F∆(I+) ⊆

⋂r
i=1 F∆|Vi (I+) =: FV1,...,Vr;∆(I+).

3.2.4 Comparing the two approximations

Suppose that we have computed two approximations F1, F2 of Ft such that
F1 ⊆ Ft ⊆ F2. If we are in the lucky case that F1 = F2, then we know that
Ft = F1 = F2. In general, the cardinality of F2 \ F1 indicates the quality of
our approximations.

F1, F2 and Ft can also be compared by the ranks of the matrices AF1 ,
AF2 and AFt obtained from A by keeping only the columns indexed by F1,
F2 and Ft, respectively. Clearly, rankAF1 ≤ rankAFt ≤ rankAF2 . Note
that rankAF2 equals the dimension of the corresponding face F2 of P, and
rankAFt equals the dimension of Ft. But F1 does not necessarily correspond
to a face of P. Nevertheless, we can bound the codimension of Ft in F2 by

dim F2 − dim Ft ≤ rankAF2 − rankAF1 .

In particular, if rankAF2 = rankAF1 , then we know that Ft = F2. In this
case, our approximations give us a precise answer, even if F1 6= F2 and the
lower approximation F1 is not tight.

4 How to compute the extended mle? An

Example

Consider two binary random variables, and let ∆ = {∅, {1}, {2}, {1, 2}}. The
hierarchical model E∆ is the saturated model ; that is, it contains all possible
probability distributions with full support. Then
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Ã =


f00︷︸︸︷
1

f01︷︸︸︷
1

f10︷︸︸︷
1

f11︷︸︸︷
1

0 1 0 1
0 0 1 1
0 0 0 1


θ00

θ01

θ10

θ11

The marginal polytope is a 3-simplex (a tetrahedron) with facets

F00 : 1− t01 − t10 + t11 ≥ 0, F01 : t01 − t11 ≥ 0,

F10 : t10 − t11 ≥ 0, F11 : t11 ≥ 0.

Each of the corresponding facets contains three columns of Ã. In fact, the
facet Fi in the above list does not contain the column fi of A.

The EMLE of the saturated model is just the empirical distribution; that
is, p∗ = 1

N
n. Suppose that t lies on the facet F00 (i.e. n = (0, n01, n10, n11)

with n(01), n(10), n(11) > 0). If pθ(s) → p∗, then pθ(s)(00) → 0, while all
other probabilities converge to a non-zero value. It follows that

θ
(s)
00 = log pθ(s)(00)→ −∞,

θ
(s)
01 = log

pθ(s)(01)

pθ(s)(00)
→ +∞,

θ
(s)
10 = log

pθ(s)(10)

pθ(s)(00)
→ +∞,

θ
(s)
11 = log

pθ(s)(11)pθ(s)(00)

pθ(s)(01)pθ(s)(10)
→ −∞.

On the other hand, θ
(s)
01 + θ

(s)
00 = log pθ(s)(01) converges to a finite value, as

do θ
(s)
10 + θ

(s)
00 = log pθ(s)(10) and θ

(s)
11 + θ

(s)
01 = log pθ(s)(11)/pθ(s)(10).

Proceeding similarly for the other facets, one can show for the limits
θij := lims→∞ θ

(s)
ij :

θ00 θ01 θ10 θ11 finite parameter combinations:

F00 −∞ +∞ +∞ −∞ θ
(s)
01 + θ

(s)
00 , θ

(s)
10 + θ

(s)
00 , θ

(s)
11 + θ

(s)
01

F01 finite −∞ finite +∞ θ
(s)
00 , θ

(s)
10 , θ

(s)
01 + θ

(s)
11

F10 finite finite −∞ +∞ θ
(s)
00 , θ

(s)
01 , θ

(s)
10 + θ

(s)
11

F11 finite finite finite −∞ θ
(s)
00 , θ

(s)
10 , θ

(s)
01

Each line of the last column contains three combinations of the parameters
θ

(s)
i that converge to a finite value. Any other parameter combination that
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converges is a linear combination of these three. This can be seen by using
the coordinates µi = log p(i)

p(0)
and applying the following lemma.

Lemma 4.1. Suppose that θ(s), s ∈ N, are parameter values such that pθ(s) →
p∗ as s→∞. For any i ∈ Lt, the linear combination

µ
(s)
i = 〈θ(s), fi〉

has a well-defined finite limit as s → ∞. Any linear combination of the
θ

(s)
i that has a well-defined finite limit (that is, a limit that is independent of

the choice of the sequence θ(s)) is itself a linear-combination of the µ
(s)
i with

i ∈ Lt.

For example, on the facet F01, consider the parameters

µ10 = log p(10)/p(00) = θ10, µ11 = log p(11)/p(00) = θ10 + θ01 + θ11,

µ01 = log p(01)/p(00) = θ01.

Then µ10 and µ11 are identifiable parameters on EF01 , and µ01 diverges close
to F01. By Lemma 4.1, the linear combinations that are well-defined are
µ10 = θ10 and µ11 = θ10 + (θ01 + θ11). The above table also lists θ00, which is
not a linear combination of those but that is fine because it is not free.

We obtain similar results for the facets F01 and F11. The results are
summarized in the following table:

facet µ01 µ10 µ11

F01 −∞ finite finite
F10 finite −∞ finite
F11 finite finite −∞

Of course, by definition of the µis, we cannot consider the facet F00 where
n(00) = 0. To study F00, we have to choose another zero cell and redefine
the parameters µi.

The situation is more complicated for faces smaller than facets, because
sending a single parameter to plus or minus infinity can be enough to send
the distribution to a face F of higher codimension, as we will see below. The
remaining parameters then determine the position within E∆,F . Thus, in this
case there are more remaining parameters than the dimension of E∆,F .
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For example, the data vector n = (n00, 0, n10, 0) (with n00, n10 > 0) lies
on the face F = F01 ∩ F11 of codimension two. If pθ(s) → p∗, then

θ
(s)
00 = log pθ(s)(00)→ log

n00

N
,

θ
(s)
01 = log

pθ(s)(01)

pθ(s)(00)
→ −∞,

θ
(s)
10 = log

pθ(s)(10)

pθ(s)(00)
→ log

n10

n00

.

However, the limit of θ
(s)
11 = log

p
θ(s)

(11)p
θ(s)

(00)

p
θ(s)

(01)p
θ(s)

(10)
is not determined. The only

constraint is that θ
(s)
11 cannot go to +∞ faster than θ

(s)
01 goes to −∞, since

p
θ
(s)
11

= exp(θ
(s)
00 + θ

(s)
01 + θ

(s)
10 + θ

(s)
11 ) has to converge to zero.

With the same data vector n = (n00, 0, n10, 0), suppose we use a numerical
algorithm to optimize the likelihood function by optimizing the parameters θj
in turn. To be precise, we order the parameters θj in some way. For simplicity,
say that the parameters are θ1, θ2, . . . , θh. Then we let

θ
(k+1)
j = arg max

y∈R
l(θ

(k+1)
1 , . . . , θ

(k+1)
j−1 , y, θ

(k)
j+1, . . . , θ

(k)
h )

(this is called the non-linear Gauss-Seidel method). Let us choose the order-
ing θ01, θ10, θ11 (note that θ00 = −k(θ) is not a free parameter). We start at

θ
(0)
01 = θ

(0)
10 = θ

(0)
11 = 0. In the first step, we only look at θ01. That is, we want

to solve

0 =
∂

∂θ01

l(θ) = − exp(θ
(1)
01 ) + exp(θ

(1)
01 + θ

(0)
10 + θ

(0)
11 )

1 + exp(θ
(1)
01 ) + exp(θ

(0)
10 ) + exp(θ

(1)
01 + θ

(0)
10 + θ

(0)
11 )

= − 2 exp(θ
(1)
01 )

1 + 2 exp(θ
(1)
01 )

. (22)

Clearly, the derivative is negative for any finite value of θ
(1)
01 , and thus the

critical equation has no finite solution. If we try to solve this equation nu-
merically, we will find that θ

(1)
01 will be a large negative number. Next, we
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look at θ10. We fix the other variables and try to solve

0 =
∂

∂θ10

l(θ) =
n10

N
− exp(θ

(1)
10 ) + exp(θ

(1)
01 + θ

(1)
10 + θ

(0)
11 )

1 + exp(θ
(1)
01 ) + exp(θ

(1)
10 ) + exp(θ

(1)
01 + θ

(1)
10 + θ

(0)
11 )

≈ n10

N
− exp(θ

(1)
10 )

1 + exp(θ
(1)
10 )

,

where we have used that θ
(1)
01 is a large negative number. This equation

always has a unique solution

θ
(1)
10 ≈ log

n10

N − n10

.

Finally, we look at θ11. We have to solve

0 =
∂

∂θ11

l(θ) = − exp(θ
(1)
01 + θ

(1)
10 + θ

(1)
11 )

1 + exp(θ
(1)
01 ) + exp(θ

(1)
10 ) + exp(θ

(1)
01 + θ

(1)
10 + θ

(1)
11 )
≈ 0.

Actually, this equation again has no solution, and the numerical solution for
θ

(1)
11 should be close to numerical minus infinity. However, since θ

(1)
01 is already

close to −∞, the equation is already approximately satisfied. Thus, there
is no need to change θ11. In simulations, we observed that usually θ

(1)
11 will

be negative, but not as negative as θ
(1)
01 . In theory, we would have to iterate

and now optimize θ01 again. But the values will not change much, since the
critical equations are already satisfied to a high numerical precision after one
iteration.

It is not difficult to see that the result is different if we change the order
of the variables. If θ11 is optimized before θ01, then θ1

11 will in any case be a
large negative number.

For general data, the derivative of with respect to θ01 (equation (22))
takes the form

∂

∂θ01

l(θ) =
t01

N
− exp(θ

(1)
01 ) + exp(θ

(1)
01 + θ

(0)
10 + θ

(0)
11 )

1 + exp(θ
(1)
01 ) + exp(θ

(0)
10 ) + exp(θ

(1)
01 + θ

(0)
10 + θ

(0)
11 )

.

Setting this derivative to zero and solving for θ
(1)
01 leads to a linear equation

in θ
(1)
01 with symbolic solution

θ
(1)
01 = log

1 + exp(θ
(0)
10 )

1 + exp(θ
(0)
10 + θ

(0)
11 )

t01

N

1− t01

N

.
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In fact, for any hierarchical model, the likelihood equation is linear in any
single parameter θj, as long as all other parameters are kept fixed (more
generally this is true when the design matrix A is a 0-1-matrix). Instead
of optimizing the likelihood numerically with respect to one parameter, it is
possible to use these symbolic solutions. This leads to the Iterative Propor-
tional Fitting Procedure (IPFP). In our example, the IPFP would lead to
a division by zero right in the first step, indicating that the MLE does not
exist.

A Some proofs

A.1 Proof of Theorem 1.10

Theorem 1.10 goes back to Barndorff:exponential families, (1978), who stud-
ies the closure of much more general exponential families. The case of a
discrete exponential family is much easier.

The theorem follows from the following lemmas:

Lemma A.1. Let p ∈ EA. Then p ∈ EA,supp(p).

Lemma A.2. Let p ∈ EA. Then EA,supp(p) ⊆ EA.

Lemma A.3. Let p ∈ EA. Then supp(p) is facial.

Lemma A.4. If F is facial, then there exists p ∈ EA with supp(p) = F .

Indeed, Lemma A.1 shows that EA ⊆
⋃
F EA,F , where the union is over

all support sets F . Lemma A.2 shows the converse containment, so that
EA =

⋃
F EA,F . It remains to see that a subset F ⊆ I is a support set if and

only if F is facial. This follows from Lemmas A.3 and A.4.
In the proofs of Lemmas A.1 to A.4, we need the following easy lemma

which follows immediately from the fact that p ∈ EA if and only if log p
belongs to the span of the columns of A and therefore if and only if log p is
perpendicular to the ker(A).

Lemma A.5. p ∈ EA if and only if log(p) ⊥ kerA.

Proof of Lemma A.1. Let p = limk→∞ pk, where pk ∈ EA, and let F =
supp(p). Then EA,F is the exponential family EAF , where AF consists of
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the columns of A indexed by F . Any v ∈ kerAF can be extended by zeros
to v′ ∈ kerA. By Lemma A.5,

0 = 〈log(pk), v
′〉 =

∑
i∈F

log(pk(i))v(i)→ 〈log(p), v〉.

Thus, log(p) ⊥ kerAF , which implies p ∈ EA,F .

Proof of Lemma A.2. Let p = limk→∞ pk, where pk ∈ EA, let F = supp(p),
and let q ∈ EA,F . Then there exists parameters θ with log(q(i))− log(p(i)) =
〈θ, fi〉 for all i ∈ F . For any k, there exists a positive constant ck such that
qk := ckpk exp(〈θ, A〉) ∈ EA. Then qk → q as k →∞, and so q ∈ EA.

Proof of Lemma A.3. Let p = limk→∞ pk, where pk ∈ EA, and let F =
FA(supp(p)). Then x = 1

| supp(p)|
∑

i∈supp(p) fi is an interior point of the face
corresponding to F , and thus there exist positive coefficients λi > 0, i ∈ F ,
with x =

∑
i∈F λifi. The vector v = (vi, i ∈ I) defined by

vi =


1

| supp(p)| − λi, i ∈ supp(p),

−λi, i ∈ F \ supp(p),

0, i /∈ F,
satisfies Av = x−x = 0. By Lemma A.5, log(pk) ⊥ v for all k. In particular,∑

i∈F\supp(p)

λi log(pk(i)) =
∑

i∈supp(p)

log(pk(i))vi →
∑

i∈supp(p)

log(p(i))vi.

On the other hand, note that each coefficient λi for i ∈ F \ supp(p) on the
left hand side is positive, while log(pk(i))→ −∞ for i /∈ supp(p). This shows
that F \ supp(p) = ∅.

Proof of Lemma A.4. If F is facial, there exist g ∈ Rh and c ∈ R with
〈g, fi〉 ≥ c for all i ∈ I and 〈g, fi〉 = c if and only if i ∈ F . Let θ(s) = −s · g.
Then

kF (θ(s)) + sc = log
∑
i∈I

exp(−s〈g, fi〉+ sc)→ log |F |,

and so

log pθ(s)(i) = −s〈g, fi〉 − kF (θ(s)) = (sc− s〈g, fi〉)− (kF (θ(s)) + sc)

→

{
− log |F |, if i ∈ F,
−∞, if i /∈ F,

as s→∞. Thus, pθ(s) converges to the uniform distribution on F .
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A.2 Proof of Theorem 1.11

By definition, any EMLE p∗ belongs to the closure of the model. According to
Theorem 1.10, the support of p∗ is facial. If supp(p) does not contain supp(n),
then the log-likelihood goes to minus infinity, l̃(p) = −∞, and so p does not
maximize the likelihood, Therefore, supp(p∗) is a facial set containing I+ =
supp(n). Thus, Ft ⊆ supp(p∗).

By Lemma A.1, p∗ belongs to E∆,supp(p∗), which is parametrized by a
vector θ, see Theorem 1.10. On E∆,supp(p∗), the log-likelihood function in
terms of this parameter θ is

lF (θ) =
∑
j∈J

θjtj −NkF (θ).

lF is strictly concave, and so it has a unique maximum. The critical equations
are

tj = N
∂kF (θ)

∂θj
= Np∗J = NAp∗ and thus Ap∗ =

t

N
,

where p∗J is the vector of J-marginal probabilities, proving the first property.
Note that these equations are independent of the parameters and the support
of p∗. We now show that any solution to these equations is supported on the
same face of P as t

N
.

Let p be a probability distribution on I such that supp(p) does not con-
tain Ft. This means that there is a linear inequality 〈g, t〉 ≥ c that is valid
on P and such that

• 〈g, fi〉 = c for all i ∈ Ft;

• 〈g, fi〉 > c for some i ∈ supp(p).

Then

〈g, Ap〉 =
∑
i

〈g, fi〉p(i) > c =
1

N

∑
i

n(i)〈g, fi〉 = 〈g, t
N
〉,

which implies Ap 6= t
N

. This shows supp(p∗) ⊆ Ft and finishes the proof of
supp(p∗) = Ft.

We have now shown the two properties, and it remains to argue that the
EMLE is unique. But this follows from the fact that supp(p∗) is equal to Ft,
and lF is strictly concave, such that the likelihood has a unique maximizer
on E∆,Ft .
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