2. A dopfive FWER confrak

\nGenusien curve with
$$
Imoun
$$
 of $Imoun$ with $Im(u) = \begin{cases} x_0 & (m = sin4a) \\ |x_0| & (m = sin4a) \end{cases}$

\nConsider the $Imunhol$ $Imunhol$ <

1) Linear model : $Y = M \beta + \epsilon$, $\epsilon \sim M(0, \text{In})$ M full rank $(n > p)$
 $[(\eta^t \eta)^t]_{jj} = 1 \quad \forall j$ OLS $\hat{\beta} = (\Pi^t \Pi)^t \Pi^t \times \Lambda \cup (\beta \Pi^{(t} \Pi)^t)$
 $=\frac{1}{2}$ for $Z \sim \Lambda(\infty, (\Pi^t \Pi)^t)$, distribution of max Z_i and be approached by Monte-Corlo algorithm (2.2) unknown dependence: the rondomization trick [Westfall and Young (1993)] Consider the two-group model and Student statistics $T_i(X) = \frac{1}{\sqrt{m_0 + m_1}} \frac{|\hat{\mu}_{ij} - \hat{\mu}_{ij}|}{\hat{\sigma}_{ij}^2}$ An essential property here is called the rendanization property $(T_j(X))_{j \in \mathcal{H}_0} \sim (T_j(X^{\sigma}))_{j \in \mathcal{H}_0}$ for any $\sigma \in \mathcal{L}_n$ true here! Generate σ ... σ_B ind uniform on ζ_n Semerole σ_a ... σ_B is d uniform on σ_B

Consider the threshold $S_\alpha(x)$ = min $\begin{cases} x \in \mathbb{R} : \frac{1}{8+1} \left(4 + \sum_{b=1}^B 4 \right) \max_{A \in \mathcal{S}^c} \frac{1}{2} (x^{\sigma} - a) \geq 1 - \alpha \end{cases}$

(also called 'max T' procedure) Proposition: In the two-group setting $\forall P \in \mathcal{P}$, FWER (Sx(X), P) $\leq \alpha$ Proof: first, let us consider the ideal threshold $S_{\alpha}^{0}(X)$ = min $\left\{\n\begin{array}{c}\n\alpha \in \mathbb{R} : \frac{1}{2a} \left(1 + \sum_{b=a}^{B} 11 \right) \max_{j \in \mathcal{X}_{\alpha}(p)} J(X^{T_{b}}) \leq \infty\n\end{array}\n\right\}\n\rightarrow 1 - \alpha$ Obviously $s^*(x) \leq s^*(x)$

Ref: On an write with probe 31-d: we have 76(1) C Ag. (a) by (i)

\nOn this event, with probe 31-d: we can show that 76(1) C Ag. by the following argument:

\n
$$
\oint \text{var}(B; C) = \int_{\text{cyc}} \text{var}(B) = \int_{\text{cyc}} \text{var}(
$$

Aplication 3 Two-group case with unknown dependence (i) and (ii) satisfied with the RW-type $R_g = 245 \text{ s m}$: $T_j(x) > S_g(x)$ } $S_{\epsilon}(X) = min \left\{ x \in \mathbb{R} : \frac{1}{8+1} \left\{ 1 + \sum_{b=1}^{B} 11 \right\} max_{j \in \mathcal{C}} T_{j}(X^{T}) \leq x \right\}$ > 1 - α }

This improves the 'single-step' procedure found in (2.2) especially when many signal