(a) Linear model: Y = M B + E, E N U(0, In), (standard) n×1 n×p p×1 n×1, M full rænk (n≥p) [(M^tM)⁴];;=1 ∀; OLS $\hat{\beta} = (\Pi^{t} M)^{2} M^{t} Y \sim W(\beta_{1} (\Pi^{t} M)^{2})$ = X = Tfor $Z \sim U((\infty, (\Pi^{t} M)^{2}), distribution of max { <math>Z_{j}$ } can be approached by Monte-Carlo algorithm 2.2 unknown dependence: the rondomization trick [Westfall and Young (1993)] [Romano and Welf (2005)] Consider the two-group model and Student statistics $T_j(X) = \frac{1}{\sqrt[4]{n_0 + 4/n_1}} \frac{1}{\widehat{T_j}} - \frac{\widehat{T_{n_j}}}{\widehat{T_j}}$ although we do not assume that Q is Caussian nor known $\sqrt[4]{n_0 + 4/n_1} = \frac{1}{\widehat{T_j}}$ An escential property here is colled the randomization reporty $(T_j(X))_{j\in \mathcal{H}_0} \mathcal{N}(T_j(X^{\sigma}))_{j\in \mathcal{H}_0}$ for any $\sigma \in \mathcal{L}_n$ true here! Generate J... JB iid uniform on Gr Senerole $T_{4} \dots T_{B}$ is duriform on S_{R} Cohsider the thrushold $S_{d}(X) = \min \left\{ x \in IR : \frac{1}{2} \left(1 + \sum_{b=a}^{B} 1 \right) \max T_{i}(X^{T}) \le \infty \right\}$ (also called max T' procedure) _____ minimics the distribution of the max under the null Proposition: In the two-group setting $\forall P \in S$, $FWER(S_{4}(X), P) \leq \mathcal{A}$ Proof: first, let us consider the ideal threshold $S_{\lambda}^{\circ}(X) = \min \left\{ x \in \mathbb{R} : \frac{1}{B+1} \left(1 + \sum_{b=1}^{B} \frac{1}{b} \right) \max T_{j}(X^{T_{b}}) \leq \infty \right\}$ Obviously $S_{x}^{*}(X) \leq S_{x}(X)$

First,
$$\forall t > S_{4}(X), t > S_{4}(X), and thus by def of the quantile $S_{4}(X), \frac{4}{6t+1} \left(1 + \sum_{b=a}^{b} 1 \right) \operatorname{max} T_{1}(X^{(b)}) > t_{b} \right) \leqslant \frac{4}{6t+1} \left(1 + \sum_{b=a}^{b} 1 \right) \operatorname{max} T_{1}(X^{(b)}) > S_{4}(X) \right) \leqslant d$
Hence,
 $f(t) = \mathbb{P}\left(\max_{a \in X} \left[T_{1}(X)\right] > T_{1}(X) \right) > S_{4}(X) \right) = \mathbb{P}\left(\frac{4}{6t+1} \sum_{b=a}^{b} 1 \right) X_{b} > X_{b} \right) \leqslant d$
Where $X_{b} = \max_{a \in X} \left[T_{1}(X)\right] > S_{4}(X) = \max_{a \in X} \left[T_{1}(X^{(b)})\right]$
New, by the tradomization hypo, we can show that $(Y_{b}, ..., Y_{b})$ is exchangeable.
We can conclude the priority by the same argument as in that $T \oplus$
 $\mathbb{P}\left[\operatorname{Max} \left[\operatorname{Pterf}(P_{1}, P) \right] \leqslant d \max_{a \in X} \operatorname{Max}(P_{1}, P_{2}) \right]$
Remember: $\operatorname{FWER}(P_{1}^{tot}, P) \leqslant d \max_{m} \operatorname{may} be not close to d
 $\operatorname{In} \int \operatorname{det} : \operatorname{same} \operatorname{phenomenon} with the previous $S_{4}(T) \text{ or } S_{4}(X)$
because the max is taken under the full and $f(P_{1}, P_{1} \notin S_{1}, ..., m)$
 $\operatorname{In} \int A_{b}$ is the set accepted nulls, apply the same method in rutation to A_{b}
this gives a new set of rejection. Therefore until consequese.
Formally consider Rg nyieted set and $\operatorname{Ag} = \{1, ..., m\}$ Rg for some arbitrary $\xi \in \{2, ..., m\}$
 $X = \sum_{a \in X} \sum_{i=1}^{b} i \ge 1 \le T_{i} = A_{i} = A_{i} \in T_{i} \in T_{i} = \operatorname{step} i > 1$
 $\operatorname{Max}(i) \forall P(\mathcal{F}), f_{i} \notin \mathcal{F} \in \mathcal{F}_{i} \oplus \mathcal{F} \in \mathcal{F}_{i} \otimes \operatorname{det} \mathcal{F} = X_{i} \cap \mathcal{F} = X_{i} \cap$$$$$

Find the annult will probe
$$= 1 - \alpha$$
 we have $M_{o}(r) \subset A_{RE}(r)$ by (i)
On this event, we can show that $M_{o}(r) \subset A_{R}$ by the following eigenment:
for all jo, $M_{o}(r) \subset G_{j}$ implies $A_{M(r)} \subset A_{k} = G_{re}$ by (ii) and then $M(r) \subset G_{jre}$
since $M_{o}(r) \subset G_{o} = 4r$ we have $M_{o}(r) \subset A_{k} = G_{re}$ by (ii) and then $M(r) \subset G_{jre}$
since $M_{o}(r) \subset G_{o} = 4r$ we have $M_{o}(r) \subset A_{k} = G_{re}$ by (ii) and then $M(r) \subset G_{jre}$
into $M_{o}(r) \subset G_{o} = 4r$ we have $M_{o}(r) \subset A_{k} = G_{re}$ by (ii) and then $M(r) \subset G_{jre}$
since $M_{o}(r) \subset G_{o} = 4r$ we have $M_{o}(r) \subset G_{k} = G_{re}$ by (ii) and (ii) this provides the Holm procedure (= 5D version of Boulphonn)
Application 2: Granssian model with known covariance T
(i) and (ii) satisfied with the Ray-type $R_{k} = \frac{1}{2}A_{k}j \le m : T_{k}(x) > S_{k}(r)$ }
where $S_{k}(r) = \min \frac{1}{2} \propto C R : R(-\max \{T_{j}(2)\} \le \infty) \ge 1 - \alpha \frac{1}{2}$
This provides a step down procedure that incorporates the knowledge of T
This improves the 'single step' procedure of vertice \mathbb{C}^{2}
for the steps null field formulation.
Let us define the step town procedure with explicit values T_{c} , $A \le C \le m$
as rejectively knowled $C \le M_{o} \le M_{o} \le \dots \le P(r)$
for the steps null \mathbb{C}^{2} move active corresponds to the step down procedure
with an type of \mathbb{C}^{2} $M = M(r) < M_{o} = \mathbb{C}^{2}$ $M = M(r) < M(r) <$

Aplication 3 Two-group case with unknown dependence (i) and (ii) satisfied with the RW-type $R_{p} = \frac{1}{3} s_{j} s_{m} = T_{j}(x) > S_{y}(x)$ $S(X) = \min \left\{ x \in \mathbb{R} : \frac{1}{B+1} \left(1 + \sum_{b=1}^{B} 1 \right) \max_{j \in \mathcal{C}} T_j(X^{T}) \leq \infty \right\} > 1 - \alpha \right\}$

This improves the 'single-step' nocedure found in 2.2 especially when many signal