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Sample covariance matrices

(X:1(1)7 o ’ngl))T’ o (Xl(")7 e ,X,g"))T iid random p-vectors.

N 1 _
£i= SxxT-X x"

where X = (X1,...,X,)T € RP and X = (X1, ... X(M) c RP*",
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But...



Marchenko-Pastur Law and Histogram of empirical eigenvalues
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Fig. 28.3 Normalized histogram of eigenvalues and Mar¢enko-Pastur density (solid line), n = 600,
p = 150, iid Gaussian data, p = 0, £ = Id,,. The population (or true) eigenvalues are all equal to 1.
The ‘overspreading’ of sample eigenvalues is striking.

Figure: from N. El Karoui, in: Handbook of RMT



High dimensional asymptotics: p/n — y >0

If A1,..., Ap(n) € R denote the eigenvalues of XXT (with
multiplicities), define their empirical measure as

1 p(n)

L,(XXT) = o) D 6y,
j=1

(Maréenko/Pastur): E(L,(XXT)) converges weakly to the
Mar&enko-Pastur distribution with parameter y := lim,_

p(n)

n -

n



A physics motivation for symmetries in the data

Toy model for a Dirac operator:

0 X
CII . sXt
M —{<X*O>.X€H }

where the space H**! of quaternionic matrices is embedded into
(C25><2t as

we{( YY) uveen).

(0 X\ _[o if k odd
X: 0 Tl 2Tr((X:X,)!) if k =21 even.



Viewing symmetry as an extreme form of dependence

A flexible framework for incorporating symmetries into the data
matrices: Allowing dependencies of arbitrary type, but subject
to quantitative restrictions.
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A flexible framework for incorporating symmetries into the data
matrices: Allowing dependencies of arbitrary type, but subject
to quantitative restrictions.

Our result: The Maréenko-Pastur theorem remains true in this
framework.

Statistics interpretation: Robustness of the Maréenko-Pastur
approximaton w.r.t. certain manipulations of the data.



Scenario I: Missing data

Suppose that for

I'c{1,....p}, #I <logp, JC{1,...,n}, #J <logn,

observations Xi(j) (i€ l,j € J) are missing.
Replace them with x o) (io & 1,jo ¢ J arbitrary).

o



Scenario Il: The lazy research assistant

I cA{1,...,p}, #I <logp. For i € I, fill the ith row with copies
x(Ln/il)

of the shorter sequence Xi(l), o X



Scenario Il: The lazy research assistant

I c{1,...,p}, #I <logp. For i€ I, fill the ith row with copies
x(Ln/il)

of the shorter sequence Xi(l), o X

Or perhaps more fanciful schemes that also create dependencies
between different rows...
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