
INDEPENDENCE PROPERTIES OF WISHART MATRICES

JACEK WESOÃLOWSKI

1. Bartlett’s decomposition

Let Ωn denotes the cone of n × n real positive definite matrices. Let X ∈ Ωn be a Wishart matrix
with the density

(1) f(x) ∝ ∣x∣p−n+1
2 exp

(− tr x
2

)
IΩn

(x)

where p > n−1
2 . Then we write X ∼ Wn(p, I). In general, we say that X is Wishart Wn(p,Σ), where Σ

is a positive definite matrix, if Σ−1/2XΣ−1/2 is Wishart, Wn(p, I).
Let ℒT n and Vn denote, respectively, linear spaces of lower triangular and symmetric n × n real

matrices. By Cholesky decomposition any a ∈ Vn has a unique representation

(2) a = bb∗, b ∈ ℒT n

The following result goes back to Bartlett (1933).

Theorem 1.1. Let X be a Wishart matrix with the density (1). Define the random matrix T ∈ ℒT n by
the Cholesky decomposition of X, that is X = TT∗.

Then the matrix T = [Tij ] has independent components such that

T 2
ii ∼ Â2 (2p− i+ 1) , i = 1, . . . , n, and Tij ∼ N(0, 1), 1 ≤ j < i ≤ n.

1.1. Determinants of certain endomorphisms.

Lemma 1.2. Let a ∈ ℳn (the space of n× n real matrices). Let ℙ(a) : Vn → Vn be an endomorphism
defined by

ℙ(a)x = axa∗.
Then

(3) Detℙ(a) = ±∣a∣n+1.

Proof. Consider first diagonal a = diag(a1, . . . , an). Let e
ij ∈ Vn be a matrix with only non-zero elements,

equal 1, at entries (i, j) and (j, i), i, j ∈ {1, . . . , n}. Then ℙ(a)eij = aiaje
ij . Consequently, aiaj is the

eigenvalue of ℙ(a). Therefore,

Detℙ(a) =
∏

1≤i≤j≤n

aiaj =

n∏

i=1

an+1
i = ∣a∣n+1.

For a general a ∈ ℳn we use polar decomposition: a = udv∗, where u, v ∈ ℳn are orthogonal and
d ∈ ℳn is diagonal with non-negative entries. Consequently,

∣a∣ = ±∣d∣.
Now we note that ℙ(ab) = ℙ(a) ∘ ℙ(b) and thus Detℙ(ab) = Detℙ(a)Detℙ(b).

Therefore, using the SVD for a we get

Detℙ(a) = Detℙ(u)Detℙ(d)Detℙ(v) = ±Detℙ(d) = ±∣d∣n+1 = ±∣a∣n+1.
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□

Lemma 1.3. Let v : ℒT n → Vn be an endomorphism defined by

v(x) = x+ x∗.

Then

(4) Det v = 2n.

Proof. Since Det of a linear operator does not depend on the choice of the basis we identify Vn
∼= ℒT n.

Under this identification

v(x) = x+ diag(x11, . . . , xnn) ∈ ℒT n.

Then we see that

v(eii) = 2eii, i = 1, . . . , n,

so the eigenvalue ¸ = 2 is of multiplicity n.
Moreover, for f ij ∈ ℒT n with only non-zero element equal 1 at the (i, j)th entry, i > j, we have

v(f ij) = f ij ,

so the eigenvalue ¸ = 1 is of multiplicity n(n−1)
2 . □

Lemma 1.4. For a = [aij ] ∈ ℒT n let ma : ℒT n → ℒT n be an endomorphism defined by

max = ax.

Then

(5) Detma =

n∏

i=1

aiii.

Proof. Assume first that aii, i = 1, . . . , n, are distinct numbers. For any pair i ∈ {1, . . . , n} and any j ∈
{1, . . . , i} consider a matrix g(ij) with all entries equal 0 except g

(ij)
ij = 1 and g

(ij)
kj = xkj , k = i+1, . . . , n,

satisfying

(6) ali +

l∑

k=i+1

alkxkj = aiixlj , l = i+ 1, . . . , n.

This system has a unique solution since its determinant is
∏n

l=i+1 (aii−all) ∕= 0. We also note that g(ij),
1 ≤ j ≤ i ≤ n are linearly independent elements of ℒT n. Moreover, equations (6) imply

ma

(
g(ij)

)
= aiig

(ij), j = 1, . . . , i ≤ n.

That is aii is an eigenvalue of ma having multiplicity i, i = 1, . . . , n. Consequently, in this case (5) holds
true.

If aii, i = 1, . . . , n, are not distinct, we can consider for ² > 0 perturbed matrices a² = [aij(²)] such
that aii(²), i = 1, . . . , n, are distinct and aij(²) → aij as ² → 0, 1 ≤ j ≤ i ≤ n. Then

Detma = lim
²→0

Detma² = lim
²→0

n∏

i=1

(aii(²))
i =

n∏

i=1

aiii.

□
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Lemma 1.5. For non-singular a = [aij ] ∈ ℒT n let sa : ℒT n → ℒT n be an endomorphism defined by

sa(x) = ax∗ + xa∗.

Then

Det sa = 2n
n∏

i=1

an−i+1
ii .

Proof. Note that

ax∗ + xa∗ = a
(
x∗(x−1)∗ + a−1x

)
a∗ = a

(
(a−1x)∗ + a−1x

)
a∗

Therefore,
sa = ℙ(a) ∘ v ∘ma−1 .

Consequently,

Det sa = Detℙ(a)Det vDetma−1 = ∣a∣n+1 2n
n∏

i=1

a−i
ii

and the result follows since ∣a∣ = ∏n
i=1 aii. □

1.2. Proof of the Bartlett decomposition theorem. Note that the Cholesky decomposition of a
matrix X ∈ Vn is a bijection between Vn and ℒT n

∼= Vn. Therefore if X is a Wishart random matrix
then the random matrix T satisfying X = TT∗ has a density of the form

(7) fT(t) = JÃ(t) fX(tt∗).

That is we need to find the Jacobian of the transformation Ã : ℒT n → Vn
∼= ℒT n defined by

Ã(t) = tt∗.

Note that its derivative DÃ(t) is an endomorphism of ℒT n of the form

DÃ(t)h = th∗ + ht∗ = st(h), h ∈ ℒT n.

Therefore, by Lemma 1.5,

(8) JÃ(t) = DetDÃ(t) = Det st = 2n
n∏

i=1

tn−i+1
ii .

Inserting the above into (7) we get

fT(t) ∝
n∏

i=1

tn−i+1
ii ∣tt∗∣p−n+1

2 e−
1
2 tt

∗
.

Since

∣tt∗∣ =
n∏

i=1

t2ii

we can write

fT(t) ∝
n∏

i=1

t2p−i
ii e−

t2ii
2

∏

1≤j<i≤n

e−
t2ij
2 .

Consequently, the random variables Tii, Tij , 1 ≤ j ≤ i ≤ n, are independent, Tij ∼ N(0, 1), 1 ≤ j ≤ i ≤ n,
and the density of Tii, 1 ≤ i ≤ j has the form

fTii(x) ∝ x2p−ie−
x2

2 .

Therefore, the density of T 2
ii has the form

fT 2
ii
(y) ∝ (

√
y)2p−i e−

y
2 1√

y = y
2p−i+1

2 −1e−
y
2 .
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1.3. Multivariate gamma function. The multivariate gamma function Γn is defined by

(9) Γn(a) =

∫

Ωn

e−trx ∣x∣a−n+1
2 dx, a > n−1

2 .

Proposition 1.6.

(10) Γn(a) = ¼
n(n−1)

4

n∏

i=1

Γ
(
a− i−1

2

)
.

Proof. In the integral from the definition (9) we make the change of variable by the Cholesky decompo-
sition x = tt∗, where t = [tij ] ∈ ℒT +

n ,where the superscript + denotes that tii > 0, i = 1, . . . , n. Using
the form of the Jacobian as given in (8) we obtain

Γn(a) = 2n
∫

ℒT +
n

Ã
n∏

i=1

tn−i+1
ii

)
e−

∑
1≤j≤i≤n t2ij

n∏

i=1

t2a−n−1
ii dt

=

Ã
n∏

i=1

∫ ∞

0

(
t2ii
)a− i+1

2 e−t2ii 2tiidtii

) ⎛
⎝ ∏

1≤j<i≤n

∫ ∞

−∞
e−t2ij dtij

⎞
⎠ .

The result follows by elementary integrals
∫ ∞

0

(
t2ii
)a− i−1

2 −1
e−t2ii dt2ii = Γ

(
a− i−1

2

)

and ∫ ∞

−∞
e−t2ij dtij =

√
¼.

□

1.4. Applications for asymptotics of Wishart determinants.

Theorem 1.7. Let Xn ∼ Wn(n/2,Σn), n ≥ 1. Then

(11)
(

∣Xn∣
∣Σn∣ (n−1)!

) 1√
2 log n d→ eN ,

where N ∼ N(0, 1).

Proof. Define

Yn = Σ−1/2
n XnΣ

−1/2
n ∼ Wn(n/2, In).

By the Bartlett theorem we conclude that

∣Yn∣ =
n∏

i=1

T 2
n,ii,

where Yn = TnT
∗
n and T 2

n,ii ∼ Â2(n− i+ 1).

Consequently, for row-wise iid double array (Zkj)j=1,...,k, where Z11 ∼ Â2(1) we have

∣Yn∣ =
n∏

k=1

Sk,

where Sk =
∑i

k=1 Zki ∼ Â2(k).
Now we will use the following result on asymptotic distribution of products of independent sums

from RemapaÃla and WesoÃlowski (2005) (important improvements regarding the moments assumption in
Kosiński, 2009).
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Theorem 1.8. Let (Xki)i=1,...,k, k = 1, 2, . . ., be a double array of iid p-integrable, p > 2, random
variables with EXki = ¹ > 0, VarXki = ¾2 > 0 and ° = ¾/¹. Then for Sk = Xk1 + . . .+Xkk, k ≥ 1,

(12)

(
n

°2

2

∏n
k=1 Sk

n!¹n

) 1
°
√
log n d→ eN ,

where N ∼ N(0, 1).

Since EZkj = ¹ = 1 and VarZkj = ¾2 = 2 then °2 = 2 and by Theorem 1.8 we get

(
n ∣Yn∣

n!

) 1
°
√
log n d→ eN .

Now the result follows since ∣Yn∣ = ∣Xn∣
∣Σn∣ .

□

The above asymptotics should be compared to Anderson (1958) result:

Theorem 1.9. If Xn ∼ Wm(n/2, 1
nΣ) then

(
∣Xn∣
∣Σ∣

)√
n
2m d→ eN ,

where N ∼ N(0, 1).

Proof. By the Bartlett theorem

nm ∣Xn∣
∣Σ∣ =

m∏

i=1

T 2
n,ii,

where T 2
n,ii ∼ Â2(n− i+ 1), i = 1, . . . ,m, are independent. Consequently,

log ∣Xn∣
∣Σ∣ =

m∑

i=1

(
T 2
n,ii − log n

)
,

We will prove that

(13)
√

n
2

(
T 2
n,ii − log n

) d→ Ni,

where Ni ∼ N(0, 1), i = 1, . . . ,m, are iid. To prove (13) we first note that
√

n
2

(
T 2
n,ii − log n

)
=

√
n

n−i+1

√
n−i+1

2

(
T 2
n,ii − log(n− i+ 1)

)−
√

n
2 log

(
1− i−1

n

)
.

Since
√

n
n−i+1 → 1 and

√
n log

(
1− i−1

n

)
= 1√

n
log

(
1− i−1

n

)n → 0

it suffices to prove the result for i = 1. Then by the ±-method:
√
n
(
g(X̄n)− g(EX)

) d→ ∣g′(EX)∣
√
VarXN

we have with g = log: √
n log X̄n

d→
√
2N,

since X ∼ Â2(1) and thus EX = 1, VarX = 2.
Consequently √

n
2 log ∣Xn∣

∣Σ∣ ∼
m∑

i=1

Ni ∼ N(0,m).

□
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2. Generalized Bartlett’s decomposition: Independencies of blocks of the Wishart
matrix

Note that for any n× n matrix A with the block decomposition

A =

[
A11 A12

A21 A22

]

according to dimensions r and s, r + s = n and such that A11 is invertible

A =

[
Ir 0rs

A21 (A11)
−1

Is

] [
A11 0rs

0sr A2⋅1

] [
Ir (A11)

−1
A12

0sr Is

]
,

where A2⋅1 = A22 −A21A
−1
11 A12 is called the Schur complement.

This decomposition gives immediately the following decomposition of the determinant

(14) ∣A∣ = ∣A11∣ ∣A2⋅1∣.
For a non-singular matrix A the block decomposition of its inverse has the form

(15) A−1 =

[ (
A−1

)
11

(
A−1

)
12(

A−1
)
21

(
A−1

)
22

]
=

[
(A1⋅2)

−1 − (A11)
−1

A12 (A2⋅1)
−1

− (A22)
−1

A21 (A1⋅2)
−1

(A2⋅1)
−1

]
.

If A is a symmetric matrix, then A−1 is also symmetric and thus (14) gives

(16) (A11)
−1

A12 (A2⋅1)
−1

= (A1⋅2)
−1

A12 (A22)
−1

.

Now we are ready to state the main result, see Muirhead (1994).

Theorem 2.1. Let X be a Wishart matrix Wn(p,Σ), p > n−1
2 , Σ ∈ Ω. Let

X =

[
X11 X12

X21 X22

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]

be block decomposition of X and Σ according to dimensions r and s, r + s = n, respectively.
Then

(17) X22 ∼ Ws(p,Σ22);

(18) X12∣X22 ∼ Nr×s

(
Σ12Σ

−1
22 X22, Σ1⋅2 ⊗X22

)
;

(19) X1⋅2∣ (X12, X22) ∼ Wr

(
p− s

2 ,Σ1⋅2
)
;

Proof. Note that the Jacobian of the transformation (x11,x12,x22) → (x1⋅2, x12, x22) is equal 1. There-
fore the density of (X1⋅2,X12,X22) has the form

(20) f(x1⋅2,x12,x22) ∝ fWn(p,Σ)(x1⋅2 + x12x
−1
22 x21, x12,x22).

Note that

tr(Σ−1x) = tr

[ (
Σ−1

)
11

(
Σ−1

)
12(

Σ−1
)
21

(
Σ−1

)
22

] [
x1⋅2 + x12x

−1
22 x21 x12

x21 x22

]

(21) = tr
{(

Σ−1
)
11

x1⋅2
}
+ tr

{(
Σ−1

)
11

x12x
−1
22 x21

}
+ 2tr

{(
Σ−1

)
12

x21

}
+ tr

{(
Σ−1

)
22

x22

}

Hence

tr(Σ−1x) = tr
{(

Σ−1
)
11

[
x12 +

((
Σ−1

)
11

)−1 (
Σ−1

)
12

x22

]
x−1
22

[
x12 +

((
Σ−1

)
11

)−1 (
Σ−1

)
12

x22

]∗}

+tr
{[(

Σ−1
)
22

− (
Σ−1

)
21

((
Σ−1

)
11

)−1 (
Σ−1

)
12

]
x22

}
+ tr

{(
Σ−1

)
11

x1⋅2
}
.

Since, by (15), (
Σ−1

)
11

= (Σ1⋅2)
−1
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(
Σ−1

)
22

− (
Σ−1

)
21

((
Σ−1

)
11

)−1 (
Σ−1

)
12

= (Σ22)
−1

and ((
Σ−1

)
11

)−1 (
Σ−1

)
12

= −Σ12 (Σ22)
−1

,

we see that

tr(Σ−1x) = tr
{
(Σ1⋅2)

−1
[
x12 −Σ12 (Σ22)

−1
x22

]
x−1
22

[
x12 −Σ12 (Σ22)

−1
x22

]∗}

(22) +tr
{
(Σ22)

−1
x22

}
+ tr

{
(Σ1⋅2)

−1
x1⋅2

}
.

Moreover, (14) gives

(23) ∣x∣ = ∣x1⋅2∣ ∣x22∣ and ∣Σ∣ = ∣Σ1⋅2∣ ∣Σ22∣.
Plugging (22) and (23) into (20) we see that

f(x1⋅2,x12,x22) ∝ ∣x1⋅2∣p−
s
2−

r+1
2 e−

1
2 tr{(Σ1⋅2)−1x1⋅2}⋅

⋅∣x22∣p−
s+1
2 e−

1
2 tr{(Σ22)

−1x22}⋅
⋅ ∣x22∣−

r
2 e−

1
2 tr{(Σ1⋅2)−1[x12−Σ12(Σ22)

−1x22]x−1
22 [x12−Σ12(Σ22)

−1x22]
∗}.

We recall that an r × s matrix Y has the matrix variate normal distribution Nr×s(m, C ⊗ D), where
m ∈ ℳr×s, C ∈ Ωr and D ∈ Ωs if its density is of the form

fY(y) = 1

(2¼)
rs
2 ∣C∣

s
2 ∣D∣

r
2
e−

1
2 tr(C

−1(y−m)B−1(y−m)∗), y ∈ ℳr×s.

Consequently, (17), (19) and (18) follow. □
2.1. Another proof of the Bartlett decomposition. The alternative proof of the Bartlett decompo-
sition is by induction wrt to the dimension n.

First we note that for X ∼ Wn(p, In) Theorem 2.1 yields

X22 ∼ Ws(p, Is),

X1⋅2∣ (X12, X22) ∼ Wr

(
p− s

2 , Ir
)

and

(24) X12∣X22 ∼ Nr×s (0r×s, Ir ⊗X22) .

Lemma 2.2. Let a ∈ Ωq. The determinant of the linear map La : ℳp×q → ℳp×q defined by

La(x) = xa

has the form
Det(La) = ∣a∣p.

Proof. Consider first a which is diagonal. Then we have

LaFij = ajjFij , i = 1, . . . , p, j = 1, . . . , q.

That is ajj is an eigenvalue of multiplicity p, j = 1, . . . , q. Thus the result follows.
For any a ∈ Ωq we can write a = odo∗, where o is orthogonal and d is diagonal. Then La =

Lo ⊗ Ld ⊗ Lo∗ . Consequently

Det(La) = Det(Lo)Det(Ld)Det(Lo∗).

Note that Det(Ld) = ∣d∣p = ∣a∣p. Moreover,

tr(Lo(x) (Lo(x))
∗
) = trxoo∗x = trxx∗.

Consequently, Lo is a unitary transformation and thus DetLo = ±1. □
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The above Lemma, in view of (24) implies

X12 (X22)
− 1

2 ∣X22 ∼ Nr×s (0r×s, Ir ⊗ Is) .

Therefore, by symmetry we also have

X11 ∼ Wr(p, Ir),

X2⋅1∣ (X21, X11) ∼ Ws

(
p− r

2 , Is
)

and

X21 (X11)
− 1

2 ∣X11 ∼ Ns×r (0s×r, Is ⊗ Ir) .

Thus

(25)

(
X11, X21 (X11)

− 1
2 , X2⋅1

)
∼ Wr(p, Ir)⊗Ns×r (0s×r, Is ⊗ Ir)⊗Ws

(
p− r

2 , Is
)
.

For n = 1 we see that W1(p, I1) = Â2(2p) and thus X = T2 ∼ Â2(2p).
For n = 2 we have X ∼ W2(p, I2). Then

T =

[ √
X11 0

X12√
X11

√
X22 − X2

12

X11

]
.

Now, (25) implies that

t211 = X11 = X11 =∼ Â2(2p), t222 = X22−X2
12

X11
= X1⋅2 ∼ Â2(2p−1), t12 = X12√

X11
= X21 (X11)

− 1
2 ∼ N(0, 1)

and that they are independent.
Consider now X ∼ Wn+1(p, In+1, p > n

2 and assume that the Bartlett decomposition holds for any

Wishart matrix with distribution Wn(q, In) with q > n−1
2 . Consider the block decomposition of X

according to dimensions r = 1 and s = n as above. Then X = TT∗, where

T =

[ √
X11 0
X12√
X11

T2⋅1

]
∈ ℒT n+1,

with T2⋅1 ∈ ℒT n defined by X2⋅1 = T2⋅1T∗
2⋅1. By (25)

X11 ∼ W1(p, I1),
X12√
X11

∼ Nn(0, In), X2⋅1 ∼ Wn

(
p− 1

2 , In
)

are independent. Since p− 1
2 > n−1

2 by the induction assumption,

t22⋅1,ii ∼ Â2(2p− i), i = 1, . . . , n, t2⋅1,ij ∼ N(0, 1), 1 ≤ i < j ≤ n,

are independent jointly. Finally, we conclude that

t211 = X11 ∼ Â2(2p),

t2ii = t22⋅1,(i−1)(i−1) ∼ Â2(2p− i+ 1), i = 2, . . . , n+ 1,

t1j =
X1j√
X11

∼ N(0, 1), j = 2, . . . , n+ 1,

tij = t2⋅1,(i−1)(j−1) ∼ N(0, 1), 2 ≤ i < j ≤ n+ 1

are jointly independent.
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3. Matsumoto-Yor property for Wishart matrices

To move deeper in the structure of Wishart matrices we need to introduce the matrix variate generalized
inverse Gaussian distribution GIGn(−q,A,B) with the density

(26) f(x) ∝ ∣x∣q−n+1
2 e−

1
2 (trAx+trBx−1) IΩn(x.

This is a well defined density only in the following cases (Letac, 2003)

∙ A, B ∈ Ωn and q ∈ ℝ;
∙ A ∈ ±(Ωn) with rankA = m ∈ {0, 1, . . . , n− 1}, B ∈ Ωn and q < −n−m−1

2 ;

∙ A ∈ Ωn, B ∈ ±(Ωn) with rankB = m ∈ {0, 1, . . . , n− 1} and q > n−m−1
2 .

The following observation is due to Butler (1998)

Theorem 3.1. Let X be a Wishart matrix Wn(p,Σ), p > n−1
2 , Σ ∈ Ω. Let

X =

[
X11 X12

X21 X22

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]

be block decomposition of X and Σ according to dimensions r and s, r + s = n, respectively.
Then

(27) X22∣X12 ∼ GIGs

(
p− r

2 , Σ2⋅1, X21Σ1⋅2X12

)
.

Proof. Using the decomposition (21) and (23) in the joint density of X we see that it can be written as

f(x1⋅2,x12,x22) ∝ ∣x1⋅2∣p−
s
2−

r+1
2 e−

1
2 tr{(Σ1⋅2)−1x1⋅2} ⋅ e−tr{(Σ−1)

12
x21}

∣x22∣p−
r
2−

s+1
2 e−

1
2 (tr{(Σ−1)

11
x12x

−1
22 x21}+tr{(Σ−1)

22
x22}).

Integrating out x1⋅2 we see that the conditional density

fX22∣X12=x12
(x22) ∝ ∣x22∣p−

r
2−

s+1
2 e−

1
2 (tr{x21Σ1⋅2x12x

−1
22 }+tr{Σ2⋅1x22}).

□
Theorem 3.2. Let X be a Wishart matrix Wn(p,Σ), p > n−1

2 , Σ ∈ Ω. Let

X =

[
X11 X12

X21 X22

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]

be block decomposition of X and Σ according to dimensions r and s, r + s = n, respectively.
Then the density of the conditional distribution of (X11, X22) ∣X12 = x12 has the form

(28) f(X11,X22)∣X12=x12
(x11,x22) ∝ ∣x∣p−n+1

2 e−
1
2 tr(Σ1⋅2x11+Σ2⋅1x22)IK(x12)(x11,x22),

where

K(x12) =

{
x =

[
x11 x12

xT
12 x22

]
: x ∈ Ωn

}
.

Proof. From Theorems 2.1 and 3.1 we conclude that if X ∼ Wn(p,Σ) then

(29) (X1⋅2, X22) ∣X12 ∼ Wr

(
p− s

2 ,Σ1⋅2
)⊗GIGs

(
p− r

2 ,Σ2⋅1,X21Σ1⋅2X12

)

Since the jacobian of the transformation

K(x12) ∋ (x11,x22) 7→ (x11 − x12x
−1
22 x21, x22) = (x1⋅2, x22) ∈ Ωr × Ωs

equals 1 for (x11,x22) ∈ K(x12) we get

f(X11,X22)∣X12=x12
(x11,x22) = fx1⋅2(x11 − x12x

−1
22 x21) fX22∣X12=x12

(x22)

∝ ∣x1⋅2∣p−
s
2−

r+1
2 e−

1
2 tr{Σ1⋅2(x11−x12x

−1
22 x21)} ⋅ ∣x22∣p−

r
2−

s+1
2 e−

1
2 tr{Σ2⋅1x22+x21Σ1⋅2x12x

−1
22 }
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= ∣x∣p−n+1
2 e−

1
2 tr(Σ1⋅2x11+Σ2⋅1x22).

□

Note that by symmetry the dual to (29) also holds,

(30) (X11, X2⋅1) ∣X12 ∼ GIGr

(
p− s

2 ,Σ1⋅2,X12Σ2⋅1X21

)⊗Ws

(
p− r

2 ,Σ2⋅1
)
.

Since
X11 = X1⋅2 +X12X

−1
22 X12

and
X2⋅1 = X22 −X21

(
X1⋅2 +X12X

−1
22 X12

)−1
X12

we conclude that (29) ⇔ (30) (without assumption X ∼ Wn(p,Σ)).
Consider now a special case of r = s = 1 and conditioning on X12 = 1 and denote a = Σ1⋅2, b = Σ2⋅1,

q = p− 1
2 . Then from the equivalence (29) ⇔ (30) we get
(
K1,K2 − 1

K1

)
∼ GIG(q, a, b)⊗G(q, b) ⇔

(
K1 − 1

K2
,K2

)
∼ G(q, a)⊗GIG(q, b, a).

Further let us denote X = 1/K1 and Y = K2 − 1/K1 then from the above we conclude that

(31) (X,Y ) ∼ GIG(−q, b, a)⊗G(q, b) ⇐
(

1
X+Y , 1

X − 1
X+Y

)
∼ GIG(−q, a, b)⊗G(q, a)

which is known as the Matsumoto-Yor property. It was observed in the study of conditional structure
of the exponential Brownian motion in Matsumoto and Yor (2001). Later on, in Matsumoto and Yor
(2003) it was related to hitting times of the Brownian motion:

Let B be a Brownian motion, a, b > 0. Let

¿ab (B) = inf{t > 0 : Bt + at = b} and ¾a
b (B) = sup{t > 0 : Bt + at = b}

Then
(X,Y ) = (¿ab (B), ¾a

b (B)− ¿ab (B)) ∼ GIG(12 , a
2, b2)⊗G( 12 , a

2).

Define B̃t = −tB1/t, t > 0 and B̃0 = 0. Then, by the previous observation

(¿ ba(B̃), ¾b
a(B̃)− ¿ ba(B̃)) ∼ GIG( 12 , b

2, a2)⊗G( 12 , b
2).

But

¿ ba(B̃) = inf{t > 0 : B̃t+bt = a} = inf{t > 0 : −tB1/t+bt = a} = inf{t > 0 : B1/t+a/t = b} = 1
sup{t>0:Bt+at=b} .

Thus
¿ ba(B̃) = 1

¾a
b (B) =

1
X+Y .

Similarly,

¾b
a(B̃)− ¿ ba(B̃) = 1

¿a
b (B) − 1

¾a
b (B) =

1
X − 1

X+Y .

The equivalence (29) ⇔ (30) implies the following simple fact

Proposition 3.3. Let z ∈ ℳr×s, a ∈ Ωr, b ∈ Ωs and p− r−1
2 = q − s−1

2 > 0. For x ∈ Ωr and y ∈ Ωs

define

(32) Ã(x,y) =
(
(z∗xz+ y)

−1
, x−1 − z (z∗xz+ y)

−1
z∗
)

Then

(33) (X,Y) ∼ GIGr (−p, zbz∗,a)⊗Ws(q, b)

if and only if

(34) (U,V) = Ã(X, Y) ∼ GIGs (−q, z∗az,b)⊗Wr(q, a).
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Note that for r = s = 1 and z = 1 Proposition 3.3 is equivalent to (31).
It appears that the independencies of Proposition 3.3 give characterization of GIG and Wishart ma-

trices as given in Massam and JW (2006).

3.1. A characterization through MY property. As a warm up we consider the univariate case.

Theorem 3.4 (Letac, JW, 2000). Let X and Y be real, positive, non-degenerate and independent.
Assume that U = 1

X+Y and V = 1
X − 1

X+Y are also independent. Then there exist a, b, p > 0 such that

X ∼ GIG(p, a, b) and Y ∼ G(p, a).

Proof. Note that Y/X = V/U . From the independencies it follows that for any s, t < 0 and ® > 0
(35)

EY ®esY EX−®esX+tX−1

= E (Y/X)® es(X+Y )+tX−1

= E (V/U)®esU
−1+t(V+U) = EV ®etV EU−®etU+sU−1

.

Take logarithm and derivatives ∂2

∂s ∂ t of both sides above to get

EX1−®esX+tX−1EX−1−®esX+tX−1

(EX−®esX+tX−1)
2 = EU1−®etU+sU−1EU−1−®etU+sU−1

(EU−®etU+sU−1)
2 .

We take ® = 1 in the formula above and compare it with (35) with ® = 0, 1, 2 which gives

EY 2esY E esY

(EY esY )2
= EV 2etY E etY

(EY etY )2
= p+ 1 > 1.

Consequently

L′′
Y (s)LY (s) = (1 + p)(L′

Y (s))
2 and L′′

V (t)LV (t) = (1 + p)(L′
V (t))

2.

Therefore, Y ∼ G(p, a) and V ∼ G(p, b) for some a, b > 0.
To identify the laws of X and U we can now use densities since if Y is absolutely continuous then

X + Y also has a density.
Alternatively, one can apply an identification of GIG distribution through the identity in law

X = 1
V+U

d
= 1

Y ′+ 1
Y+X

,

where Y ∼ G(p, b) and Y ′ ∼ G(p, a) are independent - see Letac and Seshadri (1983). □

Remark 3.1 (A problem by Marc Yor). We know that for X ∼ GIG(−p, a, a) and Y ∼ G(p, a) the
random variable 1

X − 1
X+Y = Y

X(X+Y ) ∼ G(p, a). Alternatively, we can write

(36) ZX2 +X
d
= Z

where Z−1 ∼ G(p, a).
Question: Assume that X and Z in (36) are positive independent and Z−1 ∼ G(p, a). Is it true that

X ∼ GIG(−p, a, a).

Now we present an extension of Theorem 3.6 to the case of matrices of different dimensions, which
will play a crucial role in the characterization of Wishart matrices by its independence structures. Here
we need smooth strictly positive densities. We present a version with differentiable densities, however
continuity should be sufficient - see KoÃlodziejek (2015).

Theorem 3.5. Let X and Y be independent random matrices assuming values in Ωr and Ωs, respectively,
and having strictly positive differentiable densities on Ωr and Ωs. Let (U,V) = Ã(X,Y) with Ã defined
in (32). Assume that U and V are also independent. Then there exist z ∈ ℳr×s, a ∈ Ωr, b ∈ Ωs and
p− r−1

2 = q − s−1
2 > 0 such that (33), and thus (34), holds.
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Proof. (in the case r = s and z = Ir) Then

Ã(x,y) = ((x+ y)−1, x−1 − (x+ y)
−1

).

Note that Ã = Ã−1, that is Ã is an involution. To find its Jacobian we write it as Ã = Á2 ∘ Á1, where

Á1(x,y) = (x,x+ y) and Á2(a,b) = (b−1,a−1 − b−1).

That is

JÃ−1(u,v) = JÁ1
(u,v)JÁ2

(u,u+ v).

Note that JÁ1
≡ 1. Since the derivative of k : Ωr → Ωr defined by k(x) = x−1 has the form

Dk(x)h = −x−1hx−1,

therefore Dk(x) = −ℙ(x−1). Thus by Lemma 1.2 it follows that Det(Dk(x)) = ±∣x∣−r−1. Consequently,

JÃ−1(u,v) = JÁ2
(u,u+ v) = (∣u∣ ∣(u+ v)∣)−r−1

.

Consequently, the independence property and the smoothness assumption yield

fU(u) fV(v) = (∣u∣ ∣(u+ v)∣)−r−1
fX

(
(u+ v)−1

)
fY

(
u−1 − (u+ v)−1

)

for any u,v ∈ Ωr. Upon taking logarithms the above equation can be rewritten as

(37) Á1(u) + Á2(v) = Á3(u+ v) + Á4(u
−1 − (u+ v)−1)

with

Á1(u) = log fU(u) + (r + 1) log ∣u∣, Á2 = log fV,

Á3(u) = log fX(u−1)− (r + 1) log ∣u∣ and Á4 = log fY.

Since the derivative D(x−1 = −ℙ(x−1) then differentiating (37) wrt u and v separately we obtain two
equations

(38) Á′
1(u) = Á′

3(u+ v) +
(
ℙ((u+ v)−1)− ℙ(u−1)

) ∘ Á′
4(u

−1 − (u+ v)−1)

and

(39) Á′
2(v) = Á′

3(u+ v) + ℙ
(
(u+ v)−1

) ∘ Á′
4(u

−1 − (u+ v)−1).

Eliminating Á′
4(u

−1 − (u+ v)−1) from (38) and (39) leads to

(40) ℙ(u) ∘ Á′
1(u)− (ℙ(u)− ℙ(u+ v)) ∘ Á′

2(v) = ℙ(u+ v) ∘ Á′
3(u+ v).

Now we will use the following result

Theorem 3.6 (JW, 2002). Let A,B : Ω → V and C : Ω2 → V and C(x,y) = C(y,x) for any x,y ∈ Ω.
Assume that

A(u) + (ℙ(u+ v)− ℙ(u)) ∘B(v) = C(u,v), u, v ∈ Ω.

Then there exist a, b ∈ V and ¸ ∈ ℝ such that

A(u) = a+ ¸u+ ℙ(u)b, B(u) = b− ¸u−1

and

C(u,v) = a− ¸(u+ v) + ℙ(u+ v)b.
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Applying Theorem 3.6 to equation (40) we see that the form of A implies

Á′
1(u) = ℙ(u−1)a− ¸u−1 − b

for some a,b ∈ V and ¸ ∈ ℝ. Consequently,
Á1(u) = K1 − ¸ log ∣u∣ − tr

(
bu+ au−1

)
,

since D(log ∣u∣) = u−1 and D(tr(au−1)) = −ℙ(u−1)a. We write ¸ = p− r−1
2 and from the definition of

Á1 we see that

log fU(u) = K1 −
(
p− r−1

2

)
log ∣u∣ − tr

(
bu+ au−1

)− (r + 1) log ∣u∣.
Consequently, a,b ∈ Ω and U ∼ GIGr(−p,b,a).

Finally, the form of B from Theorem 3.6 gives

Á′
2(v) = −b+ ¸v−1,

and thus

log fV(v) = Á2(v) = K2 +
(
p− r+1

2

) ∣v∣ − trbv.

Consequently, p > r−1
2 and V ∼ Wr(p,b). □

3.2. Characterization of the Wishart matrix by independencies of blocks. Note that from the
part (19) of Theorem 2.1 it follows that for any block decomposition of the Wishart matrix X it follows
that

(41) X1⋅2 and (X12, X22) are independent.

Geiger and Heckerman (Ann. Statist., 2002) proved the converse result, which is a characterization of
the Wishart matrix by independencies of blocks.

Theorem 3.7 (Geiger and Heckerman, 2002). Let X be a random matrix assuming values in Ωn, n ≥ 3,
having a density f . If (41) is satisfied for any block decomposition of X then X is a Wishart matrix.

Their proof essentially is a solution of a system of functional equations for the density f . This
is based on a very complicated method designed by Jarai (1986) which allows to gradually improve
regularity properties of unknown functions satisfying certain type of functional equations. In particular,
it allows to move from measurability of unknown functions to their continuous differentiability of any
order functions. However, this method assumes that the functional equation is satisfied everywhere on an
open set. But independence property for densities allows to write the respective functional equation only
almost everywhere on Ωn. Therefore, the above characterization can be proved by such method when we
additionally assume that f > 0 and f continuous on Ωn.

We will improve this result by assuming only block independencies for three pairs of block indepen-
dencies and the proof will be based on the Matsumoto-Yor type characterization given in Theorem 3.5.

For x ∈ Ωn and i ∈ {1, . . . , n} consider the block partitioning (x
(i)
11 ,x

(i)
12 ,x

(i)
22 ), where

x
(i)
11 = [xii] ∈ Ω1, x

(i)
12 = [xij ]j ∕=i =

(
x
(i)
21

)∗
∈ ℳ1×n, x

(i)
22 = [xlm]l ∕=i∧m ∕=i ∈ Ωn−1.

For the Schur complements we will use the notation

x
(i)
1⋅2 = x

(i)
11 − x

(i)
12

(
x
(i)
22

)−1

x
(i)
21

and

x
(i)
2⋅1 = x

(i)
22 − x

(i)
21

(
x
(i)
11

)−1

x
(i)
12 .
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Theorem 3.8. Let X ∈ Ωn be a random matrix with strictly positive differentiable density on Ωn. If for
three different values of i ∈ {1, . . . , n}
(42) X

(i)
2⋅1 and

(
X

(i)
11 , X

(i)
12

)
are independent

and

(43) X
(i)
1⋅2 and

(
X

(i)
22 , X

(i)
21

)
are independent

then X is a Wishart matrix.

Proof. Without any loss of generality we assume that the three values of i are i = 1, 2, 3.
Since independence of X and (Y, Z) implies conditional independence of X and Y given Z from (42)

and (43) it follows that

H := X
(i)
2⋅1 and G−1 := X

(i)
11 are conditionally independent given X

(i)
12

and

G−1 − ℙ(X(i)
12 )

(
ℙ(X(i)

21 )G+H
)−1

= X
(i)
1⋅2 and

(
ℙ(X(i)

21 )G+H
)−1

=
(
X

(i)
22

)−1

are conditionally independent given X
(i)
12 .

By Theorem 3.5 the conditional distributions of(
X

(i)
11 ,X

(i)
2⋅1

)
given X

(i)
12

and (
X

(i)
22 ,X

(i)
1⋅2

)
given X

(i)
12

are uniquely determined up to constants a(i), b(i), p(i). Denote now

X−1 = (X23, . . . , X2n, X34, . . . , X3n, . . . , Xn−1,n)

X−2 = (X1,3, . . . , X1n, X34, . . . , X3n, . . . , Xn−1,n)

X−3 = (X12, X14, . . . , X1n, X24, . . . , X2n, X45, . . . , X4n, . . . , Xn−1,n) .

Note that (X
(i)
12 ,X−i) = [Xlm, 1 ≤ l < m] the off-diagonal elements in the upper triangular part of X

and

X
(1)
12 = (X12, X13, . . . , X1n),

X
(2)
12 = (X12, X23, . . . , X2n),

X
(3)
12 = (X13, X23, X34, . . . , X3n).

By ci denote the conditional density of
(
X

(i)
11 ,X

(i)
2⋅1

)
given X

(i)
12 = x

(i)
12 , as function of the whole x,

i = 1, 2, 3.
Writing the joint density of X for each i = 1, 2, 3, as the product of ci times the marginal density fi

of X
(i)
12 we get

(44) c1(x)f1(x
(1)
12 ) = c2(x)f2(x

(2)
12 ) = c3(x)f3(x

(1)
12 ).

In the first equality of (44) we set x
(1)
12 = 0. Then we get

c1(x : x
(1)
12 = 0)f1(0) = c2(x : x

(1)
12 = 0)f2(0, x23, . . . , x2n).

Setting x12 = 0 in the second equality of (44) we get

c2(x : x12 = 0)f2(0, x23, . . . , x2n) = c3(x : x12 = 0)f3(x
(3)
12 ).
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Combining two above equations (using the fact that the density is non-zero everywhere we get

f3(x
(3)
12 ) =

c2(x: x12=0)
c3(x: x12=0)

c1(x:x
(1)
12 =0)

c2(x:x
(1)
12 =0)

f1(0).

That is f3 (i.e. the law of X
(3)
12 ) is uniquely defined by ci, i = 1, 2, 3 and thus by qi >

n−2
2 , ai ∈ Ωn−1,

bi > 0, i = 1, 2, 3. Consequently, the joint distribution of
(
X

(3)
22 ,X

(3)
1⋅2,X

(3)
12

)
is also uniquely defined. It

gives uniqueness of the law of X in terms of the parameters. They can be identified to come from a single
p > n−1

2 and a single matrix Σ ∈ Ωn through three representations of the joint distribution of X as given
in (44). Now the result follows by the fact that Wishart distribution with parameters p and Σ has the
same conditional distributions of blocks. □
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