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“From the atomistic view to the laws of
motion of continua’. ..
David Hilbert

1. A short historical introduction
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The Stozahlansatz and the early kinetic theory of gas

Clausius Maxwell Boltzmann

The hard-sphere gas

A simple mechanical model? The fundamental assumption

The velocities of two colliding particles
are uncorrelated.
» The Maxwellian is the equilibrium distribution
» The entropy increases (H-theorem).

» The time evolution of the distribution of
velocities is given by the Boltzmann equation.

This cannot be true for at least two reasons:

1. The collisions create correlations.

2. The Boltzmann equation is irreversible. .



Toward a rigorous mathematical kinetic theory

—_ Hilbert 6th problem (1900)

ﬂ Developing mathematically the limiting processes [. .. ] which

——— lead from the atomistic view to the laws of motion of continua.
David Hilbert

N — +oo S5 0

Microscopic scale. Mesoscopic scale when N — +oo.
N identical particles in a space E. f; € P(E) distribution of a typical particle.
Nd-dimensional dynamical system. Compute the evolution of statistical quantities

Goal: extend this framework to other types of particle systems. ..

36:00nhrs
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Collisional and mean-field models

The Conceptual Foundations of the Statistical
Approach in Mechanics (1912)

From the Stofzahlansatz to the molekular Unordnung:
a statistical point of view.

Tatyana and Paul Ehrenfest

— The rigorous formulation of Boltzmann's ideas for the hard-sphere gas remains
extremely difficult: the best available results are only valid in a very dilute regime
[Grad, 1963] and for short times [Lanford, 1975], [Gallagher, Saint-Raymond, Texier, 2014].

An alternative approach: (stochastic) mean-field models. . .
— Point particles in a dense regime with continuous rescaled interactions by 1/N.

ﬁ Foundations of Kinetic Theory (1956)
L)
—

Probabilistic interpretation of the Boltzmann equation and the
mathematical notion of propagation of chaos.

Mark Kac

Propagation of chaos for a class of non-linear parabolic
equations (1967)

- Extension of Kac ideas to diffusion and other stochastic
Henry P. McKean  particle models.
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“From the atomistic view to the laws of
motion of continua’. ..
David Hilbert

2. Mean-field particle systems and propagation of chaos
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Kac theory: stochastic exchangeable particle systems

Definition: N-particle system

Given a state space F, a N-particle system is a £~ -valued Markov process
XN = (X},...,X]N). Its law at time ¢ is denoted by f¥ € P(E™) and is
characterized by the (weak-forward) Kolmogorov equation:

d d
Von € Cb(EN)7 EE[Q"N(‘XtN)] = E<ftN’(pN> = <ftNa£N<PN>a

where Ly : Co(EYN) — Cy(EYN) is the Markov generator.

Assumption: Indistinguishability

The process is symmetric: ¥ € S, (X7,..., X7 ™) ~ (X},..., XP).

The N-particle system can thus be represented by its empirical measure
X
Pay = 25)(} € P(E).
This is a random measure whose law is denoted by F¥ € P(P(E)).

About exchangeability, independence, random measures: [Dawson, St Flour 1991] 7/as



Kac collision processs

Kac model A mean-field stochastic collision process
\ .)' particles with “collision” rate A\(Z}, Z])/N.
el E.g. : Hard-sphere gas A(z,y) = 0,—y|—2r-

@ Collision event at time ¢, post-collisional states:

“Rare stochastic tz+th¥ ~ F(Q)(Ztiv Zg, dz,dz")

collisions”

Consider a stochastic Poisson process on each pair of

Note: T (21, zp,d2}, dzb) = T (29, 2, d2}, d2}).

Two-particle Markov generator: for g5 € Cy(E?),

L@y (21, 20) = )\(21722)/2 {@g(zi,zé) — @2(21,22)}1—‘(2)(21,22,(312/17d2;).
E
N-particle Markov generator: for ¢ € Cy(EY),
1
Lnon =+ Y LP o 0n.
i<j

L® o on (21, 2n) 1= LO[(us, uj) = o (21, Uiy ooy ugy e 28)| (24, 25)-



Kac model: example

The random collision time T' between two particles depends on the distance:
P(T >t)=e" Jo MIX3 X2 ))ds

with 7 +— A(r) non-increasing and new velocities are sampled randomly.

W/ =

Collision!

Collision (likely) No collision (rare but possible)

Other applications: social sciences, games, opinion dynamics, economics. . .
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McKean-Vlasov diffusion model

McKean-Vlasov model

Y A mean-field diffusion process
.‘. " Each particle i feels a small force of size 1/N from each
Te - of the other particles:
é o

dX; =F« N (X])dt + odB;.
“Small deterministic
binary forces plus where F % p(z) == [ F p(dy).
individual noise”

One-particle Markov generator: for ¢ € Cy(E), p € P(E),

1
Lup(@) = Fx p(w) - Voo + 50" Ap

N-particle Markov generator: for o € Cy(EN), 2V = (2!,... 2V),
Lyon(x ZL,L ~ i o (@),
with L, o; on (2, ..., 2N) = L, Ju; — on(at, .. ug, .. 2™)](2f).
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McKean-Vlasov model: example

Self-propulsion and short-range repulsion:

aXy o, dvy iy L —IXI-X{I/R
=V g = =PV N;vxle :
o © ° o
°. ° y %
6o ) o o )
PN & [ J
.. .... ® .. °
La™ b °
§.- = h
°
o P °
.. :.’ . ®e o
o °
. 0. o ° e
o0 ~.0.. e® o o.
%° .o - X
° []

11/45



Propagation of chaos

Definition: Kac chaos at a fixed time ¢

The N-particle distribution f/ is f;-chaotic for a given distribution f; € P(E)
when for any s € N, the s-th marginal " € P(E*) of fN € P(EN) satisfies

N 2 weakly in P(E*
p ijft weakly in P(E?).

— “ When N s large, any group of s particles is close to be independent.”

Definition: Propagation of chaos

It means: fY is fo-chaotic implies £ is fi-chaotic for ¢ > 0.

From now on, | f& = f&N | (the particles are initially i.i.d.).

Lemma
The two following assertions are equivalent to Kac chaos.
(i) Kac chaos for the marginal s = 2, i.e. f2 — f2 weakly in P(E).

(i) The empirical measure process converges in law towards the deterministic
measure f;, i.e. V& € Co(P(E)), E[®(uxn)] = B(f2).
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The two building block theorems of Kac
and McKean.

1. Kac theorem: Markov generator and series expansion
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KaC theorem [Kac, 1956], [Carlen, Degond, Wennberg, Ma. Mo. Me. Ap. Sc. 23, 2013]

Recall: Lyon = & qu <>Zj @n and L) is a two-particle jump operator.
Cut-off assumption

The operator L(?) is bounded in L>. E.g. the collision rate A = 1 is constant.

Consequence: Ly is bounded in L> and for ¢, = ¢, @ 1V=% € Cy(E®) C Cy(EN)

k
N pa) = (f, e o) = Z U )

k= 0
— Take the limit N — 400 of each term uniformly in t.

Main observation for £ = 1

S s N—s, 541,
(f8's L) = 5 4Fo™ Lapa) + —— ("N, Depa),

where the operator D : Cy(E*) — Cy(E*T1) is defined by:

Dy, = Z L® Ci,s4+1 (@s 02y 1)-

Note: hierarchy structure or “recollision tree” [Graham, Méléard, Ann. Prob. 25, 1997]
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KaC theorem [Kac, 1956], [Carlen, Degond, Wennberg, Ma. Mo. Me. Ap. Sc. 23, 2013]

The main lemma
For k > 1, the same structure holds and under the initial chaos assumption
e
N prk Q(s+k) yk
L — D .
(fo s LN ps) Notoo (fo ,D%s)
Moreover the series converges absolutely uniformly in NV on (0, tp).

Consequently, this defines a limit distribution f,"* € P(E®) by:

N +o0 tk +o0 tk ®(stk)

5, N s k . 5

(7 ps) = Zg(fo , L) N T Zg(fo ;D ps) = (f™, ).
k=0 """ k=0 "

It remains to prove that 5™ = f®° where f, = f1>...

This follows from Leibniz formula and the following observation (due to McKean)

D(ps, ® @s,) = Dps, @ s, + @5, @ Do, .

k
) k s1+s2+k —
F o @) =D 5 ) (e>< o Dl @ DF Yy,

[0 e (5 0ss)-
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KaC theorem [Kac, 1956], [Carlen, Degond, Wennberg, Ma. Mo. Me. Ap. Sc. 23, 2013]

. oo tk s oo
Computing 5 (fi,¢) = Y2425 51 (/5" DF D)) = (7, Dy) leads to:
Theorem: The Kac-Boltzmann equation

For any s < N, ff’N — £2% and the limit law f; satisfies for all ¢ € Cy(E),

d

fp) = (77 Dy).
Recall,

(1%, Dy) =/ {p(21) = 0(20) }T®) (21, 29, d21, E) fr(d21) fe(dz).
B3

— The equation is written in weak form, the strong form 9, f; = Q(ft, fi) can
(sometimes) be obtained by computing the dual operator

D*: P(E?) — P(E).

— In the final equation only the marginal T?)(zy, 25, d2}, E) appears which
means that the details of the interaction mechanism is lost in the limit:

different Kac processes can have the same mean-field limit.
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The two building block theorems of Kac
and McKean.

2. McKean theorem: empirical measure, stochastic paths, coupling
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First step: guess the limit

Recall: Lyon(zN) =3V, Ly i on(x™N) where Lu is a one-particle operator.

d

dt<ft1N’ >:/ELMN<p(xl)ftN(d /( ZLM ez ) N(dx™)
- /E (s Ly o) ¥ (dz™) = /p R L)

If pxn — fi then ftl’N =Epxy — fi and f; satisfies the nonlinear equation

@) = U Lpp) e Oufi= L fo

Fokker-Planck equation

Drift b(z, u) = F x u(x) and diffusion matrix o(x, ),

Lyp(x) =b(z,pn) - Vo + = Z 0i;0 ” (@, ) Opi Dy p.

1]1

Oufe = =V (blz, fi) fe) + Z 0y 0z {07 @](~T fe)fe}-

1] 1 18 /45



Wasserstein distance between marginals and coupling

Definition: Wasserstein distance
Let P5(R?) be the set of probability measures with bounded second moment.
Then for 11, v € Po(RY),

W2 (u,v) = XNE“QWE'X -Y?

defines a distance on P, (R%) which metrizes the weak convergence.

In particular let Yﬁ ~ fr,1€{l,...,N} be N i.i.d. random variables, then
s R > PR <12
W30, 120 < ZE‘Xt - X * = sE|X; — X,
i=1
Everything boils down to proving that

E[x! - X,[° 0
— 400

1 1.N .
...for some X}, X, ~ f,""", f; that can be constructed as one wishes.

— Such random variables are called a coupling.

Note: EW3 (pxx, ft) — 0 also implies FN' — 4y, 10/ a5



McKean Theorem in the bounded Lipschitz case

Consider the McKean-Vlasov model with an arbitrary drift b : R? x P(R%) — R9,
AX} = b(X], pan)dt + V2dB;.
Introduce the synchronous coupling with N independent nonlinear processes
dX, = b(X;, f)dt +V2dB], X, = X{.
= LaW(Yi) satisfies the nonlinear Fokker-Planck equation:
Oift = =V - (b(xaft)ft) + Ag fi.

Theorem (well-posedness)

where f;

Let b be bounded and Lipschitz for the W5 distance:
bz, ) = b(y, )| < C(lo =yl + Wa(u, v)).

Then for any T' > 0, the nonlinear Fokker-Planck equation is well-posed in
C(]0,T), P2(R?)) and the associated SDE has a unique strong solution.

Theorem (McKean)

VT >0, lim E[sup{X’ Yiﬂ =
Nodoo  Li<r
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McKean Theorem: proof (1/2) [sznitman, St Flour, 1989]

By construction and the BDG inequality (...or Itc lemma), for i € {1,..., N},

2
dt

. T .
E[sup |X{ - X, < 2T/ E[b(X, ) = b(X), f1)
t<T 0
T , —i 2 —i —i 2
< 4T/ E|b(X 1) — (X ig) | + E[p (X7 i) — (X0 )|
0 t t
where pimn = % sz\; d<i. Then,
t t
. — 2 . —
® ]E‘b(XZ7MXtN) - b<Xt?ﬂjiV)‘ < C(E‘XL% - Xt|2 +EW22(MXtNa/J/j£V))

< O(E|X§ -X)"+ %Z]Ep(g - Yﬁf) <20E|X] - X,[*.
j=1

2

In conclusion,

, T T o
E[sup|Xg;X1|2} gCl/ EW? (1w, 1) dt+02/ E|X] — X2 dt.
t<T 0 t 0
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McKean Theorem: proof (2/2) [sznitman, st Flour, 1989]

By Gronwall lemma,
. T
E[supp(g’ ,yzp] e eCzT/ EWZ (jion, f1) dt.
t<T 0 t
> By the strong Law of Large Numbers, for some constant M > 0,
py = fo as, EWS (ppn, fi) < M and EWS (i, fi) — 0.
[Carmona, Lectures on BSDEs [...], SIAM, 2015]
» If fo has sufficiently high-order moments,
O(N~2/d) ifd >4
EW3 (ppn , f1) = O(N~1/2) ifd<4 .
‘ O(N~2log(1+ N)) ifd=4
[Fournier, Guillin, Prob. Th. Rel. Fi. 162, 2015]
» If b(z, ) = F x u(x) (or a function of F x u(x)) with F' bounded Lipschitz,
—i —i 2 C
E)b(XtaniV) - b(Xtaft)‘ < N

[Sznitman, St Flour, 1989], [McKean, 1967]
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The two building block theorems of Kac
and McKean.

3. Variations and alternative points of view
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Variation 1: McKean by McKean (1967)

Synchronous coupling between a N-particle system and a M > N particle system:

AXPY = Foopyn (XPN)dt + 0 dB], X0V = X3,
AX]M = Fx e (XM dt + 0 dBf, XM = X

1. By the same (slightly simpler) computations: Esup,<s |XPN — xM2 50
when N, M — +oc.
2. For any i, the process (X"V), is Cauchy in L2(Q2, C([0,T],R%)) and thus
there are limit points (Yi)t which are identically distributed.
3. By construction 4
Xy € o(X5, (B, X5, (B, )-

However, by exchangeability and by Hewitt-Savage 0-1 law,
Y’Ii € O-(Xé7 (Bz)t)a

and these processes are thus independent.

4. Check that the process (Yi)t solves the nonlinear SDE.
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Extension: Mean-field jump processes

The generator of mean-field jump processes

Lue(e) = a- Ve(e) + Az, 1) /E {0(w) — 0(@)}Pu(a, dy),

where
e a: E — E deterministic flow X; = a(X,),
e \(x,u) (non-homogeneous) jump frequency,
e P,(z,dy) law of the post-jump state.
Example (Run-and-tumble motion). E = R% x R? with Z} = (X}, V}) and
e a(z,v) = (v,0) (free transport),

e \(x,u) =1 constant,
o P,((z,v),da’,dv") = §,(dz’) @ M), . (v')dv" with the Maxwellian,

B 1 v —ul?
%ﬂ,z(v) - (2 T)d/2 exXp ( 2T )7
where (p,u, T) are defined by (p, pu, plul* 4+ pT) := [a(1, v, [v|*) K % p(z, dv).
— Mean-field limit: 0,f, +v -V, fi. = py, (x) A}, - (v) — fi. (BGK equation)

[Butta, Hauray, Pulvirenti, ARMA 240, 2021], [D., EJP 25, 2020]...
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SDE representation of mean-field jump and Kac processes

Assume that P, (z,dy) is parametrized by fixed parameter probability space
(©,v(dd)) and a given function ¢ : E x P(E) x © — E such that

/ o(y) P, dy) = /@ (6 (, 1, 6))(d6).

Xi = Xp+ //+oo/ X ,uxsg,0)—X;,}1(07A(Xt#ﬂ ﬂ(u)Ni(ds,du,da)

where N(ds,du,df) are N independent Poisson random measures with intensity
ds ® du ® (d0) on [0, +00) x [0, +00) X O.
LY framework: [Graham, Ann. Inst. H. Poincaré 28, 1992], [Graham, Sto. Pr. App. 40, 1992],
[Andreis, Dai Pra, Fischer, Sto. Ana. Appl. 36, 2018]

Boltzmann-Kac equation. .. (with constant collision rate)
New state function 1), collision partner a, collision type o, and non-independent N*

t
z;‘:zg+/// / {wU(Zé_,Zg‘_,Q)—Zg_}Ni(ds,de,da,da).
o Je J{o,1} J{1,...,N}

[Tanaka, Z. Wahr. verw. Geb. 46, 1978], [Murata, Hiroshima Math. J. 7, 1977], [Cortez,
Fontbona, Ann. App. Pro. 26, 2016], [Cortez, Fontbona, Comm. Math. Phys. 357, 2018],
[Fournier, Mischler, Ann. Pro. 44, 2016]
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Pathwise point of view on I = (0,7)

e Pointwise propagation of chaos holds towards a flow of measures
(f)e € C(I,P(E)) when the law fN € P(EN) of X is f;-chaotic for every

timet € 1.

e Pathwise propagation of chaos holds towards a distribution f; € P(D(I, E))
on the space D(I, E) of cadlag functions when the law fN € P(D(I, E)N) of
the process X} seen as a random element in D(I, E)" is f;-chaotic.

Example.

(Pointwise) W2(f&N, f&) < sE| X} — YHQ <s suI;)]E|Xt1 — y:|2
te

(Pathwise) W3(f;™, f£%) < sE||X] = X1 |12, 5, :sE[stgwxg ~X 2]

There are two pathwise empirical measure processes:

e The measure-valued process (), with law FN e p(D(I, P(E))).
e The empirical measure of the processes iy~ with law FYN e P(P(D(1, E))).

[FY — d5,]

Pathwise p.o.c.
P(P(D(I, E)))

=

N
[F77™ = d¢p.]

Functional L.L.N.
P(D(I,P(E)))

=

[FtN - 5ft]

Pointwise p.o.c.
P(P(E))
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Pathwise point of view: Martingale problems

— The N-particle process is defined as the solution of a martingale problem.

Pathwise particle martingale problem

t
Y € Dom(Cy), MY = on (XI) = on(X5) = [ Lgn(XY)ds,
0
is a fN-martingale, where XN (w) = w(t) is the canonical process in D(I, EN).

— Similarly for the limit nonlinear processes. ..

Pathwise nonlinear Boltzmann-Kac martingale problem
¢
Vow € CyE), MF = p(X) = p(X) = [ (fuDip(Xs, ) ds,
0
is a fr-martingale, where X;(w) = w(t) and fs = (Xs)xfr € P(E).
Pathwise nonlinear McKean-Vlasov martingale problem
t
Vion € Co(B), MP = p(X:) — o(Xo) — / D s, 0(Xs)ds,
0

is a fr-martingale, where X;(w) = w(t) and fs = (X;)xfr € P(E).
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Pathwise point of view: Martingale methods

General outline of the proof

1. Show that (F}{¥)y is tight using classical tightness criteria: Aldous,
Rebolledo, Joffe-Métivier. . .

By Prokhorov theorem, there exists a limit point 7 € P(P(D(I, E))).

2. ldentify the w-distributed limit points as solutions of the limit martingale
problem (this provides an existence result).

3. Prove the uniqueness of the limit martingale problem. This implies that 7
is a Dirac mass at this point.

A very general methodology!
For the Boltzmann-equation. ..

[Tanaka, Proc. IFIP-WG 7/1, Bangalore 1982, 1983], [Sznitman, Zeit. Wah. Ver.
Geb. 66, 1984], [Wagner, Sto. An. App. 14, 1996]. ..

For McKean-Vlasov systems and more. ..
[Sznitman, J. Fun. An. 56, 1984], [Oelschldger, An. Prob. 12, 1984], [Gartner,
Math. Nachr. 137, 1988], [Graham, Méléard, Ann. Probab. 25, 1997]. ..

Some drawbacks: no convergence rate, typically much more technical.
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Two important questions and some
applications. . .

1. Long-time behaviour and uniform-in-time propagation of chaos
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Long-time behaviour

(One) motivation. Understand the long-time behaviour of mesoscopic nonlinear

systems via their particle representation.
Example: trend to equilibrium for the granular media equation:
Ofe =V - (HiV(V +Wx fi) + Af.

e V confinement potential (e.g. V(z) = |z]?/2).
e W (symmetric) interaction potential.

[Carrillo, McCann, Villani, Rev. Ma. Iberoa. 19, 2003], [Bolley, Gentil, Guillin, ARMA 208, 2013]

Mean-field particle representation:

N
X ) 1 . ) )
X} = —VV(X})dt — = > VW(X] - X])dt + V2dB;.

j=1
High-dimensional Langevin dynamics with invariant measure:

N

N(dx™) o exp ZV ZW(mi—xj) dzt ... dz?N.

i,jzl
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Long-time behaviour: Malrieu's theorem

Earlier work in 1D: [Benachour, Roynette, Vallois, Sto. Pro. App. 75, 1998]

Theorem (Malrieu, Sto. Pro. App. 95, 2001)

If V' is B-uniformly convex, W is symmetric, convex, VW is locally Lipschitz
with polynomial growth then the synchronous coupling is uniform in time:

S = C
supE| X! — X, |2 < =.
tz%) | t t| =N

It implies the exponential convergence of f; towards a unique invariant measure.

Key idea: With Ito’s formula, ' 4

LIX7P X, < —2(X] - X)) (VV(X)) - VV (X)) +... < 28X} = X, +...
Extensions, and related works. ..

Non uniformly convex V': [Cattiaux, Guillin, Malrieu, Pr. Th. Rel. Fi. 140, 2008]. . .

Kinetic (2nd order) systems: [Bolley, Guillin, Malrieu, ESAIM Ma. Mo. Nu. An. 44, 2010],
[Monmarché, Sto. Pr. App., 127, 2017]. ..

New coup/ing methods: [Durmus, Eberle, Guillin, Zimmer, Proc. Amer. Math. Soc. 148,
2020], [Guillin, Le Bris, Monmarché, EJP 27, 2022]. ..
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Long-time behaviour: Phase transitions

Unlike the particle system, the mean-field limit can have several invariant measures.

The Kuramoto model: synchronization of oscillators § € S! with strength v > 0

N
. j 3 ] 1
a0} = > sin(0] — 07)dt + B, 0:fi(0) = =7V (fulsinxfi)) + 541,

j=1
Stable invariant measure of the mean-field equation: for 6, € R,
I (k)

My 0,(0) < exp(—rcos(0 — b)), k= 2710(@.

Phase transition:
e If v <1, Kk =0 is the unique solution.
e If v > 1, there is another solution x* > 0 and M~ g, is asymptotically stable.

Long-time behaviour: there exists a Brownian noise (W),

1 N
N Z 601“ ~ Mpx, 0o+ Wy # Mﬁ*ﬂo'
i=1
[Bertini, Giacomin, Poquet, Prob. Th. Rel. Fi. 160, 2014]

— The propagation of chaos breaks down at time proportional to V. 22 )as



Long-time behaviour: some research directions

A (not so) recent trend: explore the links between phase transitions, uniform in

time propagation of chaos and log-Sobolev inequalities. . .

[Malrieu, Sto. Pro. App. 95, 2001], [Delgadino, Gvalani, Pavliotis, Ar. Ra. Me. An. 241, 2021],
[Delgadino, Gvalani, Pavliotis, Smith, Comm. Math. Phys., 2023], [Guillin, Monmarché, J. Stat.
Phys. 185, 2021]. ..

A long-standing problem: Trend to equilibrium for Boltzmann models [Kac, 1956],
[Griinbaum, ARMA 42, 1971], [Mischler, Mouhot, Inv. Math. 193, 2013]...

An open problem: phase transitions in the Vicsek model (and other kinetic models)

6tft(177 11) + v - V. fi = [some mean-field operator acting on v with phase transition].

Local alignment + noise
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Two important questions and some
applications. . .

2. Low regularity, singular and abstract interactions
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Low-regularity and singular interactions

e Interaction kernel in collective dynamics models

Flocking in the Cucker—SmaIe model.

iy ‘

dX! = Vidt, AV} = NZ VJ Vtm dt+dB;

’*»\a" a»t\:\—\u’ +|X Xt‘ )’Y
e (Overdamped) Keller-Segel and Coulomb-type interactions
3 1
Op=—V - (pVe) + EAp, —Ac = p.
1 X . _ _ z
X} = Z K(X] — X})dt+dB;, K(r)= SW'

[Glover et al., 2017]

e Unbounded jump rates in Boltzmann-Kac and mean-field jumps models
Spiking neurons rate A(r) = (r/rg)® [Fournier, Lécherbach, Ann. IHP Pr. St. 52, 2015]

+oo

t t
. 4 1 , , .
Xi=Xi— )\/0 (X; -= ng)ds —/0 Xidocaee ) Ni(ds,d2)
j=1

0

Z/ /+°° z<>\X7 )N<d5 dz).
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Coupling-related methods

» Cut-off and mollifiers.
e Define K. — K as € — 0 where K. sufficiently nice to prove propagation of
chaos with convergence speed rn(K.) — 0 for a fixed € > 0.
N—+oo
e Use a sequence ey —— 0 depending on N.
N—+oo

e Try to prove propagation of chaos such that ry (K., ) N—+> 0.
— 400
_ d
Example 1. K.(x) = e x/|x|®.
[Carrillo, Choi, Salem, Comm. Con. Math. 21, 2019]
Example 2 (moderate interaction). K (x) = e~ ¢Kq(x/c) — 0.
[Oelschlager, Ze. Wa. Ve. Ge. 69, 1985]. [Jourdain, Méléard, Ann. IHP Pro. St. 34, 1998]

» Local Lipschitz and exponential moments.
[Bolley, Caiiizo, Carrillo, Ma. Mo. Me. App. Sc. 21, 2011]
e K local Lipschitz with polynomial growth or order p.
e The exponential moments E[e'ﬁle‘p,] and E[e“‘yzlp,} are bounded on (0,T") for
some k > 0 and p’ > p.
o [IK(y—a)|*fi(dz)fe(dy) < +oo.
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Entropy methods

For two probability measures u, v € P(&), the relative entropy is defined by

dv dv
Hv|u) = /g @log (dﬂ> dp.

Lemma: chaos from entropy bounds

Forany k < N, fN ¢ P(EY) and f € P(E),

H(fN]fEN).

z|=

1
SIFN = PPy < (PRI FP) <

[Ben Arous, Zeitouni, Ann. IHP Prob. Sta. 35, 1999]
[Ben Arous, Brunaud, Sto. and Sto. Rep. 31, 1990]

Lemma: bounding the entropy

Let dX{ = b(X{, pyx)dt + 0dB; be a McKean-Vlasov process,

H(fN|fN) = Sk

T
5B | [ BOK ) =B Rt

Key idea: Girsanov theorem
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Entropy methods

» With the global Lipschitz bounded assumption of McKean's theorem, this is a
strengthening result from Wasserstein to Total Variation convergence.
[Malrieu, Sto. Pro. App. 95, 2001]

> No regularity assumption on b (only the well-posedness of the limit system).
For linear interactions b(z, u) = K % p(z) with interaction kernel K:

Bounded forces: K € L*® [Jabin, Wang, J. Fun. An. 271, 2016],

Less than bounded K € W1 : [Jabin, Wang, Inv. Math. 214, 2018]

Singular gradient systems K =-VW: [Bresch, Jabin, Wang, Duke Math. Journal,
2022], [Serfaty, ICM 2018), [Duerinckx, SIAM J. Ma. An. 48, 2016]. ..

Stochastic version: [Jabir, arXiv:1907.09096, 2019]

— Change of measure argument: bound observables for f; instead of f.

» No assumption on the form of b [Lacker, Elec. Com. Pro. 23, 2018].

» Hierarchy of marginal entropies, quantitative chaos with optimal rate O(k/N).
[Lacker, arXiv:2105.02983, 2021]

Entropy methods for jump and Boltzmann-Kac models via Girsanov transform?
[Léonard, Séminaire de Probabilités XLIV, 2012]
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Beyond the classical theory

1. Some extensions
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Some extensions (check the program!)

» Changing the noise. ..
AX] = b(X{, py )dt +dM] +dB,,  Xp = ¢
e Individual noise: M} martingale measure, a-stable Lévy driven noise, terminal
condition &°. ..
e Environmental noise B;: SPDE limit, conditional propagation of chaos.
» Changing the interactions. ..
1 X o . .
dxj = > T b(X], X ey, 0f)dt + dB}.
e Non-exchangeable systeﬁé: (random) graph interactions (I';;)i;, non-metric
interactions (“topological”) with K-nearest neighbors. ..
o Control process o maximizing J'(a', ..., a™).
» Changing the scaling. ..
e Boltzmann-Grad scaling: binary interactions in a dilute regime.
Diffusion scaling: 1/v/N instead of 1/N.
Fluctuation process: ;' = \/N(MXtN - ft).

e Measure-valued limit: e.g. Fleming-Viot process
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Beyond the classical theory

2. Some applications for the numerical analysis of PDE, data science
and optimization

[Bird, DSMC [Totzeck, Active
algorithm, 1970] Particles 3, 2021] EJS 16, 2022]
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Some applications in PDE, data science and optimization

e Particle methods for nonlinear PDEs: construct X}, ..., X} such that
(some functional of) pan ~ fi,

where f; is the solution of a complicated PDE (e.g. Boltzmann, Burgers,
vortex, Landau...).
e Particle swarm optimization: construct X},... X}¥ such that

X xN — 2
t——+oo

where z* is the minimizer of an objective function G.
e MCMC sampling: construct X/, ..., X}V such that as t — +oo0,

(X}, X)) ~ O

where 7 is a probability density known up to a multiplicative constant.
e Neural networks: construct ',...,6" which minimize the risk functional

N
R(OV) = ZLoss (Yé, % ZO’(XZ,HZ')) ,
¢ i=1

where (X* Y*) are some labelled data and ¢ is an activation function.
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Simulating mean-field particle systems, final advertisment. . .

— In all the previous applications, a critical limitation comes from the
high-computational cost O(N?) of discrete convolutions:

N
Compute y; = ZK(a:i,a:j) for ie€{l,...,N}
j=1
Verlet list methods in MD simulations for short-range interactions.
[Leimkuhler, Matthews, Molecular Dynamics, 2015]

Super particles and tree methods for long-range interactions.
[Rokhlin, J. Comp. Phys. 60, 1985]

“Approximate” K using so-called kernel methods.
[Yang et al., NeurlPS 25, 2012]

Randomly subsample the interactions via random batch methods.
[Jin, Li, Liu, J. Comp. Phys. 400, 2020]

Massively parallelized symbolic computations using GPU routines.

KeOps ¢§

[Charlier, Feydy, Glaunes, Collin, Durif, J. Mach. Lea. Res. 22, 2021]
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Thank you for your attention!
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