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Backward Stochastic Differential Equations

T T
Yt:£+/ f(s, Ys,Zs)ds—/ Z;dWs, tel0,T], (1)
t t

where (Y;, Z;) € R™ x R™%4 W is a d-dimensional Brownian motion,
and ¢ and f are parameters.

Theorem (Pardoux, Peng (1990))

There exists a unique solution (Y, Z) in 8% x H? to equation (1),

.
/ |Z,? dt
0

< +00.

E[ sup mF] <400, ZIfs =E
0<t<T
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where 115 = L1(Y5).

On Q% x Q! take W°, W Brownian motions on Q° and Q! respectively.

L£1(X):w® € Q¥ £(X(w°))
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where 115 = L1(Y5).

The terminal condition ¢ belongs to L? and the generator f is uniformly

in time Lipschitz in the space variables (y, z) and satisfies

E < +o0.
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Backward Stochastic Differential Equations

T T T
Yt:§+/ f(s, YS,ZS,ZSO,MS)ds—/ stWS—/ Zoaw? (2)
t t t

where 115 = L1(Y5).

There exists a unique solution (Y, Z,Z°) in 8? x H? x H? to (2),

;
/ |Z, 2 dt
0

E[ sup |Yt|2] <+4oo, |Z|5.=E < +oo0.

0<t<T




BSDEs and Toy model
[e]e]e] ]

Backward Stochastic Differential Equations

Proposition

For p > 2, assume furthermore that

.
¢elP and El/ I£(s,0,0,0,80)[Pds | < ~+oo.
0

Then, the solution Y belongs to SP, that is

E [sup Yt|P] < 4o0.
t<T
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with Y2V = ¢/, conditionally to F0 i.i.d.

Under the same conditions, there exists a unique solution to the above
system.
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Propagation of Chaos

N
ayiN =, vz Z0N Yy ds = >z N awg - 20N awg,
k=1

with Y2V = ¢/, conditionally to F0 i.i.d.

Under the same conditions, there exists a unique solution to the above
system. J

N N T
2 : i 2 : i 1 z : i
N ‘Y N 2 N / |Zs,/<,N|2 ds + N / |Z£x ,N‘2 ds S CT-
ik=1 i=1 +0
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Theorem (A first result of conditional propagation of chaos)

For p > 4, assume furthermore that £ € LP and (f(s,0,0,0,d0)) € HP.
Then there exists a constant C depending only on m, p, T such that

N—1/2 ifm< 4,

E [sup E! [Wg(ui\’,ut)]} < Cen=Cxq N Y2log(N) ifm=4,
t<T
- N=2/m if m> 4.
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Theorem (A second result of conditional propagation of chaos)
For p > 4, assume that £ € LP, (f(s,0,0,0,0)) € HP and

esssupE [|Z|p + |2t0|p} < 4-00.
t<T
Then there exists a constant C depending only on m, p, T such that

N—1/2+2/p if m <4,
E {sup W2(ul, us)} < Cx{ N-YV2H2/Plog(1 4+ N)1=4/P  if m=4,
=7 N-20-4/p)/m ifm> 4.
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~ . T ~ . ~ . ~ . T ~ . . T ~ .
Y :g'+/ f(s, Y;,z;,zfv',,cl(ys)) ds—/ Zs’dWs’—/ zyawg
t

t t

Proposition

t

. ~ T . ~ . T N . ~
E [sup {IY[‘N - Yip +/ |Z&0N — Z07|2 ds +/ > 1ZiN — Zis; i dSH
t<T t k=1

< CrE |:SUP Wf(u?’,us)]
s<T
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(Ye, Ze, Z0) € R™ x Rmxd 5 Rmxd

W and W? are independent d-dimensional Brownian motions

we = L1(Y;) is the conditional law of Y w.r.t. W°

H : P(R™) — R is the constraint function

K is the reflection process, non-decreasing and F°-adapted.
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T T T
Yt:§+/ f (s, Ye, Zs, 22, is) ds—/ stWs—/ zZ0aw?
t t t

T
+ [ DY) () dKe
t

i
H(ue) >0, t<T and / H(us) dK, = 0 (3)
0

(Ye, Ze, Z0) € R™ x Rmxd 5 Rmxd

W and W? are independent d-dimensional Brownian motions

we = L1(Y;) is the conditional law of Y w.r.t. W°

H : P(R™) — R is the constraint function

K is the reflection process, non-decreasing and F°-adapted.

A solution to the problem above is a tuple (Y, Z, Z°, K).
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Setting of the problem

Assumptions
(i) f(-,0,0,0,8) belongs to H?, and

|f(t,y,z,2,,u)—f(t,y’,z’,2/,l/)|
<G (ly —YI+lz=2[+12 - 2]+ Wa(p,v))

(i) The terminal value ¢ is Fr-measurable, in L? and H(L!(£)) > 0.
(i) The function H is fully C? and

Ma(H) = sup [ DGO due) < +ox.
HEP2(R™) JR™
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Setting of the problem

Assumptions
(iv) D,H is Lipschitz: there exists C > 0 such that for all X, Y in L2
E UDMH(MX)(X) - DMH(MY)(Y)H < CE {|X - Yﬂ :
and there exists 8 > 0 satisfying for all u in P(R™),

Hw <0 = | D H(p)(x)[? du(x) = 6.

(v) H is concave: for X, Y in L2 with respective laws u* and uY
H(LY) = HX) — E [DH() () - (X - ¥)] <0,

Furthermore, we require H to be bounded above on P>(R™).
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Under the previous set of assumptions, there exists at most one tuple
(Y,Z,2° K) satisfying (3) such that K is continuous, non-decreasing,
starting from Ky = 0 and F°-adapted and for all t in [0, T],

E < +00.

T T
|Yt|2+/0 |Zs|2ds+/0 |Z22 ds
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Sketch of the proof

-
2| Yy |2 :/ (7aeo‘s|Ys|2 42675, (f(s, Ye, Ze, 20, i) — £(s, YS,ZS,ZS,ﬁ5)>> ds
t
T T
—2/ eO‘SY5~ZSdW5—2/ e Y, . 29daw?
t t

T N T N
f/ ea5|Zs\2dsf/ e 292 ds
t t

.
+ 2/t Y, - (DMH(MS)(YS)sz - DMH(ﬁS)(VS)d&) .
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Uniqueness

E

N 1 [T A A
eo‘t|Yt\2+§/ e (|Zs|2+|ZS°|2) ds] <0
t

[ B IDuHG)(YP] 0K, = [ B 1D, H(u)(Y)P) dF,

And for dK + dK-almost every u:

E' [|DuH(pa)(Ya)?] > 82 >0, as.
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Existence of the solution

Under the previous set of assumptions, there exists a unique tuple
(Y,Z,2° K) satisfying (3) such that K is continuous, non-decreasing,
starting from Ky = 0 and F°-adapted and for all t in [0, T],

E < +00.

T T
|Yt|2+/0 |Zs|2ds+/0 |Z22 ds
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Step 1 : Existence via a penalization scheme for a bounded and space
independent generator

f(s,y,2,2% )| = |f(s)] < &.
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Existence of the solution

Step 1 : Existence via a penalization scheme for a bounded and space
independent generator

f(s,y,2,2% )| = |f(s)] < &.

T T T T
Yf:g+/ f(s)dsf/ zﬁdst/ zkadWSOJr/ D, H(pd)(YE) dKE,
t t t

t

where pk = £1(YK), dKk = ¢ (H(12¥)) ds and 9, of the form

Yi(x) =r ifx < =1/k, (x) = —krx if =1/k < x <0, 9x(x) =0 else
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Existence of the solution

— (Yk, Zk, Z%k) defines a Cauchy sequence in S? x H? x H?

g v [ (e iz) o] < (G0 7).

— Deduce the uniform convergence of (K*) with the one of (LK) in S2:

E

t
Lk = / D, H(u5)(YE) dKE

— Check that the limit (Y, Z, Z°, K) satisfies equation (3).
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Step 2 : Existence via truncation for a H? space independent generator
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Existence of the solution

Step 2 : Existence via truncation for a H? space independent generator
P P P g

T

T T
Y =¢ +/ f(s)1|f(s)|§m ds — / ZdWs — / Zso’deSO
t t t

.
+ [ DaHGD (YD) aKe,
t

E

T
wp 10 [Tz - 2 v1ze - 2as
0<t<T 0

. 1/2
< CrE V ()Y syt — F)L sy <m]” ds}
t
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Existence of the solution

— (Yk, ZK, Z%k) defines a Cauchy sequence in S? x H? x H?

— Deduce the uniform convergence of (K*) with the one of (L¥) in S2:
t
th= [ DM (v aK
0

now using the fact that sup E {(K’T")q < +o00.
m>1

— Check that the limit (Y, Z, Z°, K) satisfies equation (3).
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Existence of the solution

Step 3 : Existence via a Picard iteration for a general generator
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Existence of the solution

Step 3 : Existence via a Picard iteration for a general generator

T T
Y;":g+/ f(s, Ys"’_l,Zs’"_17Zf’”’_1,u;”_1)ds—/ Z" AW
t t
T T
- [ Zmawd s [ o HG (Y Ky
t t

.
HOM =0, te0T) [ HGE) ke =o,
0

We can show that:

T
sup {eat|f/tm+1|2 +/ R (|2sm+1‘2 + |250~,m+1|2) ds}‘|
t<T t

- 1/2
<crE l / e (19 4120 + 1207 P) ds] -
0

E
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Existence of the solution

— (Yk, ZK, Z%k) defines a Cauchy sequence in S? x H? x H?

— Deduce the uniform convergence of (K*) with the one of (L¥) in S2:
t
th= [ DM (v aK
0

now using the fact that sup E {(K’T")q < +o00.
m>1

— Check that the limit (Y, Z, Z°, K) satisfies equation (3).
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Existence of the solution

For p > 2, assume that £ € LP, that f(-,0,0,0,dp) € HP and that

sup [ |DLH)()P ) < +x.
nEPP(R™) JRM

Then, the solution Y belongs to SP, that is

E [sup Yt|p] < 4o00.
t<T
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;
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t
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;
H(pM)>0, Vt<T and / H(uY)ydkY =o.
0



Associated particle system
Oe00

Well-posedness

Take N copies (¢') of ¢ and denote u¥ = N—1 D 0. IfE € L2*2, there
exist a constant C and a family of random variables £ € L2*¢ such that

1 N
H(N;5£~;> >0

and
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,
Yg:g’+/ f(s, ¥, 20,207, ul) ds—/ ZZ’JdWJ
t

" o - (4)
- / 204 aw? + / D, H(u)( Vi) dKY,

t t

;
H(pM)>0, Vt<T and / H(uY)ydkY =o.
0
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Well-posedness

The system (4) is a reflected BSDE in R™ constrained to stay in the
following convex space

N
D= {x:(xl,...,xN)E(R’")N | H(LZ(&,) >o},

with normal vector proportional to (D, H(uM)(x1), ..., D H(ul)(xn))
for x = (x1,...,xn) € OD.
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Well-posedness

Under the same assumptions, the system (4) is well-posed: there exists a
unique solution {(Y",Z, Z%)1<j<n, KM} to (4).
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Well-posedness

Proposition
Under the same assumptions, the system (4) is well-posed: there exists a
unique solution {(Y",Z, Z%)1<j<n, KM} to (4).

There exists a constant C > 0 such that this solution satisfies

1 & P2 i ij|2 T 0,i |2 N 2

NZ [Y/| +/0 > 1z ds+/0 |Z27* ds +IE[(KT) } < C.
i=1 j=1

where the constant C only depends on f and H.

E
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Propagation of Chaos

For p > 4, assume that £ € LP, that f(-,0,0,0,dp) € HP and that
sup [ 1D, )P du(x) < 4.
nePr(Rm) JR™
Then,
N—1/2 if m< 4,
E [sup E! [Wg(ﬂg,ys)]] < Cr x ¢ N~2log(N) if m=4,
s<T
N N—2/m if m> 4.
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Propagation of Chaos

For p > 4, assume that £ € LP, that f(+,0,0,0,d) € HP and that

sup [ |DLH()()P dul) < +oc.
HEPP(RM) m

If we also suppose that esssup, E[|Z;|P + | Z0|P] < +oo, then there exists
a constant Ct > 0 such that

N-1/2+2/p if m< 4,
E {sup W;(uy,us)} < Cr x ¢ N7Y/2+2/Pjog(1 4 N)I=4/P  if m = 4,
=T N-20-4/p)/m if m> 4

v
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Propagation of Chaos

. . T . .. . T . .
o= [ (sl e ) ds— [ 2w,
t t
T 0,i 0 T i
- 25 dWs + Dy H(#¢ ) (ps) dKs
t t

-
H(u:) >0, t<T and / H(us)dKs = 0.
0

N
2ds)
~ .12
g-¢ D

1 2 Ul Zij2 T 50,i
sup > | IViP+ [ D12 ds+ [ |12
t o1 t
1/2
<C<E [SUPsz(u?',us)] +E
t<T

E

t<T i—1

1
N
i=1

V.
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Propagation of Chaos
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