Constrained in law BSDE and associated particle system

Moreau Rémi

Mean Field Models - Rennes

June 2023

Rappel du plan

- BSDEs and Toy model
 - Backward Stochastic Differential Equations
 - Propagation of Chaos
- Constrained in Law BSDE
 - Setting of the problem
 - Uniqueness
 - Existence of the solution
- Associated particle system
 - Well-posedness
 - Propagation of Chaos

Backward Stochastic Differential Equations

$$Y_t = \xi + \int_t^T f(s, Y_s, Z_s) \, \mathrm{d}s - \int_t^T Z_s \, \mathrm{d}W_s, \quad t \in [0, T], \tag{1}$$

$$Y_t = \xi + \int_t^T f(s, Y_s, Z_s) \, \mathrm{d}s - \int_t^T Z_s \, \mathrm{d}W_s, \quad t \in [0, T], \tag{1}$$

where $(Y_t, Z_t) \in \mathbb{R}^m \times \mathbb{R}^{m \times d}$, W is a d-dimensional Brownian motion, and ξ and f are parameters.

$$Y_t = \xi + \int_t^T f(s, Y_s, Z_s) ds - \int_t^T Z_s dW_s, \quad t \in [0, T],$$
 (1)

where $(Y_t, Z_t) \in \mathbb{R}^m \times \mathbb{R}^{m \times d}$, W is a d-dimensional Brownian motion, and ξ and f are parameters.

Assumptions

The terminal condition ξ belongs to L^2 and the generator f is uniformly in time Lipschitz in the space variables (y,z) and satisfies

$$\mathbb{E}\left[\int_0^T |f(s,0,0)|^2 \,\mathrm{d}s\right] < +\infty.$$

$$Y_t = \xi + \int_t^T f(s, Y_s, Z_s) ds - \int_t^T Z_s dW_s, \quad t \in [0, T],$$
 (1)

where $(Y_t, Z_t) \in \mathbb{R}^m \times \mathbb{R}^{m \times d}$, W is a d-dimensional Brownian motion, and ξ and f are parameters.

Theorem (Pardoux, Peng (1990))

There exists a unique solution (Y, Z) in $S^2 \times \mathcal{H}^2$ to equation (1),

$$\mathbb{E}\left[\sup_{0\leq t\leq T}|Y_t|^2\right]<+\infty,\quad \|Z\|_{\mathcal{H}^2}^2=\mathbb{E}\left[\int_0^T|Z_t|^2\,\mathrm{d}t\right]<+\infty.$$

Backward Stochastic Differential Equations

$$Y_{t} = \xi + \int_{t}^{T} f(s, Y_{s}, Z_{s}, Z_{s}^{0}) ds - \int_{t}^{T} Z_{s} dW_{s} - \int_{t}^{T} Z_{s}^{0} dW_{s}^{0}$$
 (2)

$$Y_{t} = \xi + \int_{t}^{T} f(s, Y_{s}, Z_{s}, Z_{s}^{0}, \mu_{s}) ds - \int_{t}^{T} Z_{s} dW_{s} - \int_{t}^{T} Z_{s}^{0} dW_{s}^{0}$$
 (2)

where
$$\mu_s = \mathcal{L}^1(Y_s)$$
.

$$Y_t = \xi + \int_t^T f(s, Y_s, Z_s, Z_s^0, \mu_s) ds - \int_t^T Z_s dW_s - \int_t^T Z_s^0 dW_s^0$$
 (2)

where $\mu_s = \mathcal{L}^1(Y_s)$.

On $\Omega^0 \times \Omega^1$, take W^0 , W Brownian motions on Ω^0 and Ω^1 respectively.

$$\mathcal{L}^{1}(X):\omega^{0}\in\Omega^{0}\mapsto\mathcal{L}\left(X(\omega^{0},\cdot)
ight)$$

$$Y_{t} = \xi + \int_{t}^{T} f(s, Y_{s}, Z_{s}, Z_{s}^{0}, \mu_{s}) ds - \int_{t}^{T} Z_{s} dW_{s} - \int_{t}^{T} Z_{s}^{0} dW_{s}^{0}$$
 (2)

where $\mu_s = \mathcal{L}^1(Y_s)$.

Assumptions

The terminal condition ξ belongs to L^2 and the generator f is uniformly in time Lipschitz in the space variables (y,z) and satisfies

$$\mathbb{E}\left[\int_0^{\mathcal{T}}|f(s,0,0,0,\delta_0)|^2\,\mathrm{d}s
ight]<+\infty.$$

$$Y_{t} = \xi + \int_{t}^{T} f(s, Y_{s}, Z_{s}, Z_{s}^{0}, \mu_{s}) ds - \int_{t}^{T} Z_{s} dW_{s} - \int_{t}^{T} Z_{s}^{0} dW_{s}^{0}$$
 (2)

where $\mu_s = \mathcal{L}^1(Y_s)$.

Theorem

There exists a unique solution (Y, Z, Z^0) in $S^2 \times \mathcal{H}^2 \times \mathcal{H}^2$ to (2),

$$\mathbb{E}\left[\sup_{0 \leq t \leq T} |Y_t|^2\right] < +\infty, \quad \|Z\|_{\mathcal{H}^2}^2 = \mathbb{E}\left[\int_0^T |Z_t|^2 dt\right] < +\infty.$$

Proposition

For $p \ge 2$, assume furthermore that

$$\xi \in \mathit{L}^p \; \; \mathsf{and} \; \; \mathbb{E}\left[\int_0^T |f(s,0,0,0,\delta_0)|^p \, \mathrm{d}s
ight] < +\infty.$$

Then, the solution Y belongs to S^p , that is

$$\mathbb{E}\left[\sup_{t\leq T}|Y_t|^p\right]<+\infty.$$

Rappel du plan

- BSDEs and Toy model
 - Backward Stochastic Differential Equations
 - Propagation of Chaos
- Constrained in Law BSDE
 - Setting of the problem
 - Uniqueness
 - Existence of the solution
- Associated particle system
 - Well-posedness
 - Propagation of Chaos

$$dY_t^{i,N} = f(t, Y_t^{i,N}, Z_t^{i,i,N}, Z_t^{0,i,N}, \mu_t^N) ds - \sum_{k=1}^N Z_t^{i,k,N} dW_t^k - Z_t^{0,i,N} dW_t^0,$$

with $Y_T^{i,N} = \xi^i$, conditionally to \mathcal{F}^0 i.i.d.

$$dY_t^{i,N} = f(t, Y_t^{i,N}, Z_t^{i,i,N}, Z_t^{0,i,N}, \mu_t^N) ds - \sum_{k=1}^N Z_t^{i,k,N} dW_t^k - Z_t^{0,i,N} dW_t^0,$$

with $Y_T^{i,N} = \xi^i$, conditionally to \mathcal{F}^0 i.i.d.

Under the same conditions, there exists a unique solution to the above system.

$$dY_t^{i,N} = f(t, Y_t^{i,N}, Z_t^{i,i,N}, Z_t^{0,i,N}, \mu_t^N) ds - \sum_{t=0}^{N} Z_t^{i,k,N} dW_t^k - Z_t^{0,i,N} dW_t^0,$$

with $Y_T^{i,N} = \xi^i$, conditionally to \mathcal{F}^0 i.i.d.

Under the same conditions, there exists a unique solution to the above system.

Lemma

$$\mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N}|Y_{t}^{i,N}|^{2}+\frac{1}{N}\sum_{i,k=1}^{N}\int_{0}^{T}|Z_{s}^{i,k,N}|^{2}\,\mathrm{d}s+\frac{1}{N}\sum_{i=1}^{N}\int_{0}^{T}|Z_{s}^{0,i,N}|^{2}\,\mathrm{d}s\right]\leq C_{T}.$$

Theorem (A first result of conditional propagation of chaos)

For p > 4, assume furthermore that $\xi \in L^p$ and $(f(s, 0, 0, 0, \delta_0)) \in \mathcal{H}^p$. Then there exists a constant C depending only on m, p, T such that

$$\mathbb{E}\left[\sup_{t\leq T}\mathbb{E}^1\left[W_2^2(\mu_t^N,\mu_t)\right]\right]\leq C\,\varepsilon_N=C\times\begin{cases}N^{-1/2} & \text{if } m<4,\\N^{-1/2}\log(N) & \text{if } m=4,\\N^{-2/m} & \text{if } m>4.\end{cases}$$

Theorem (A second result of conditional propagation of chaos)

For p > 4, assume that $\xi \in L^p$, $(f(s, 0, 0, 0, \delta_0)) \in \mathcal{H}^p$ and

$$\mathop{\mathrm{ess\,sup}}_{t \leq T} \mathbb{E}\left[|\tilde{Z}_t|^p + |\tilde{Z}_t^0|^p \right] < +\infty.$$

Then there exists a constant C depending only on m, p, T such that

$$\mathbb{E}\left[\sup_{s \leq T} W_2^2(\mu_s^N, \mu_s)\right] \leq C \times \begin{cases} N^{-1/2 + 2/p} & \text{if } m < 4, \\ N^{-1/2 + 2/p} \log(1 + N)^{1 - 4/p} & \text{if } m = 4, \\ N^{-2(1 - 4/p)/m} & \text{if } m > 4. \end{cases}$$

$$\tilde{Y}_t^i = \xi^i + \int_t^T f\left(s, \tilde{Y}_s^i, \tilde{Z}_s^i, \tilde{Z}_s^{0,i}, \mathcal{L}^1(Y_s)\right) \, \mathrm{d}s - \int_t^T \tilde{Z}_s^i \, \mathrm{d}W_s^i - \int_t^T \tilde{Z}_s^{0,i} \, \mathrm{d}W_s^0$$

$$\tilde{Y}_t^i = \xi^i + \int_t^T f\left(s, \tilde{Y}_s^i, \tilde{Z}_s^i, \tilde{Z}_s^{0,i}, \mathcal{L}^1(Y_s)\right) \, \mathrm{d}s - \int_t^T \tilde{Z}_s^i \, \mathrm{d}W_s^i - \int_t^T \tilde{Z}_s^{0,i} \, \mathrm{d}W_s^0$$

Proposition

$$\begin{split} \mathbb{E}\left[\sup_{t\leq T}\left\{|Y_t^{i,N}-\tilde{Y}_t^i|^2+\int_t^T|Z_s^{0,i,N}-\tilde{Z}_s^{0,i}|^2\,\mathrm{d}s+\int_t^T\sum_{k=1}^N|Z_s^{i,k,N}-\tilde{Z}_s^i\delta_{i,k}|^2\,\mathrm{d}s\right\}\right]\\ &\leq C_T\,\mathbb{E}\left[\sup_{s\leq T}W_2^2(\mu_s^N,\mu_s)\right] \end{split}$$

Rappel du plan

- BSDEs and Toy model
 - Backward Stochastic Differential Equations
 - Propagation of Chaos
- Constrained in Law BSDE
 - Setting of the problem
 - Uniqueness
 - Existence of the solution
- Associated particle system
 - Well-posedness
 - Propagation of Chaos

$$Y_{t} = \xi + \int_{t}^{T} f\left(s, Y_{s}, Z_{s}, Z_{s}^{0}, \mu_{s}\right) ds - \int_{t}^{T} Z_{s} dW_{s} - \int_{t}^{T} Z_{s}^{0} dW_{s}^{0} + \int_{t}^{T} D_{\mu} H(Y_{s})(\mu_{s}) dK_{s},$$

$$H(\mu_{t}) \geq 0, \quad t \leq T \quad \text{and} \quad \int_{0}^{T} H(\mu_{s}) dK_{s} = 0$$
(3)

$$Y_{t} = \xi + \int_{t}^{T} f\left(s, Y_{s}, Z_{s}, Z_{s}^{0}, \mu_{s}\right) ds - \int_{t}^{T} Z_{s} dW_{s} - \int_{t}^{T} Z_{s}^{0} dW_{s}^{0} + \int_{t}^{T} D_{\mu} H(Y_{s})(\mu_{s}) dK_{s},$$

$$H(\mu_{t}) \geq 0, \quad t \leq T \quad \text{and} \quad \int_{0}^{T} H(\mu_{s}) dK_{s} = 0$$
(3)

- $(Y_t, Z_t, Z_t^0) \in \mathbb{R}^m \times \mathbb{R}^{m \times d} \times \mathbb{R}^{m \times d}$
- ullet W and W^0 are independent d-dimensional Brownian motions
- $\mu_t = \mathcal{L}^1(Y_t)$ is the conditional law of Y w.r.t. W^0
- $H: \mathcal{P}(\mathbb{R}^m) \to \mathbb{R}$ is the constraint function
- K is the reflection process, non-decreasing and \mathcal{F}^0 -adapted.

$$Y_{t} = \xi + \int_{t}^{T} f\left(s, Y_{s}, Z_{s}, Z_{s}^{0}, \mu_{s}\right) ds - \int_{t}^{T} Z_{s} dW_{s} - \int_{t}^{T} Z_{s}^{0} dW_{s}^{0}$$
$$+ \int_{t}^{T} D_{\mu} H(Y_{s})(\mu_{s}) dK_{s},$$
$$H(\mu_{t}) \geq 0, \quad t \leq T \quad \text{and} \quad \int_{0}^{T} H(\mu_{s}) dK_{s} = 0 \tag{3}$$

- $(Y_t, Z_t, Z_t^0) \in \mathbb{R}^m \times \mathbb{R}^{m \times d} \times \mathbb{R}^{m \times d}$
- ullet W and W^0 are independent d-dimensional Brownian motions
- $\mu_t = \mathcal{L}^1(Y_t)$ is the conditional law of Y w.r.t. W^0
- $H: \mathcal{P}(\mathbb{R}^m) \to \mathbb{R}$ is the constraint function
- K is the reflection process, non-decreasing and \mathcal{F}^0 -adapted.

A solution to the problem above is a tuple (Y, Z, Z^0, K) .

Assumptions

(i) $f(\cdot, 0, 0, 0, \delta_0)$ belongs to \mathcal{H}^2 , and

$$|f(t, y, z, \tilde{z}, \mu) - f(t, y', z', \tilde{z}', \nu)|$$

$$\leq C_f(|y - y'| + |z - z'| + |\tilde{z} - \tilde{z}'| + W_2(\mu, \nu))$$

- (ii) The terminal value ξ is \mathcal{F}_T -measurable, in L^2 and $H(\mathcal{L}^1(\xi)) \geq 0$.
- (iii) The function H is fully \mathcal{C}^2 and

$$M_2(H) = \sup_{\mu \in \mathcal{P}_2(\mathbb{R}^m)} \int_{\mathbb{R}^m} \left| D_\mu H(\mu)(x) \right|^2 d\mu(x) < +\infty.$$

(iv) $D_{\mu}H$ is Lipschitz: there exists C>0 such that for all X,Y in L^2

$$\mathbb{E}\left[\left|D_{\mu}H(\mu^{X})(X)-D_{\mu}H(\mu^{Y})(Y)\right|^{2}\right]\leq C\,\mathbb{E}\left[\left|X-Y\right|^{2}\right].$$

and there exists $\beta > 0$ satisfying for all μ in $\mathcal{P}_2(\mathbb{R}^m)$,

$$H(\mu) \leq 0 \implies \int_{\mathbb{R}^m} |D_{\mu}H(\mu)(x)|^2 d\mu(x) \geq \beta^2.$$

(v) H is concave: for X, Y in L^2 with respective laws μ^X and μ^Y

$$H(\mu^{Y}) - H(\mu^{X}) - \mathbb{E}\left[D_{\mu}H(\mu^{X})(X)\cdot(X-Y)\right] \leq 0.$$

Furthermore, we require H to be bounded above on $\mathcal{P}_2(\mathbb{R}^m)$.

Rappel du plan

- BSDEs and Toy mode
 - Backward Stochastic Differential Equations
 - Propagation of Chaos
- Constrained in Law BSDE
 - Setting of the problem
 - Uniqueness
 - Existence of the solution
- Associated particle system
 - Well-posedness
 - Propagation of Chaos

Theorem

Under the previous set of assumptions, there exists at most one tuple (Y, Z, Z^0, K) satisfying (3) such that K is continuous, non-decreasing, starting from $K_0 = 0$ and \mathcal{F}^0 -adapted and for all t in [0, T],

$$\mathbb{E}\left[|Y_t|^2 + \int_0^T |Z_s|^2 \,\mathrm{d}s + \int_0^T |Z_s^0|^2 \,\mathrm{d}s\right] < +\infty.$$

Sketch of the proof

Sketch of the proof

$$\begin{split} e^{\alpha t} |\hat{Y}_t|^2 &= \int_t^T \left(-\alpha e^{\alpha s} |\hat{Y}_s|^2 + 2e^{\alpha s} \hat{Y}_s \cdot \left(f(s, Y_s, Z_s, Z_s^0, \mu_s) - f(s, \tilde{Y}_s, \tilde{Z}_s, \tilde{Z}_s^0, \tilde{\mu}_s) \right) \right) \, \mathrm{d}s \\ &- 2 \int_t^T e^{\alpha s} \hat{Y}_s \cdot \hat{Z}_s \, \mathrm{d}W_s - 2 \int_t^T e^{\alpha s} \hat{Y}_s \cdot \hat{Z}_s^0 \, \mathrm{d}W_s^0 \\ &- \int_t^T e^{\alpha s} |\hat{Z}_s|^2 \, \mathrm{d}s - \int_t^T e^{\alpha s} |\hat{Z}_s^0|^2 \, \mathrm{d}s \\ &+ 2 \int_t^T e^{\alpha s} \hat{Y}_s \cdot \left(D_\mu H(\mu_s)(Y_s) \, \mathrm{d}K_s - D_\mu H(\tilde{\mu}_s)(\tilde{Y}_s) \, \mathrm{d}\tilde{K}_s \right). \end{split}$$

$$\mathbb{E}\left[e^{\alpha t}|\hat{Y}_t|^2 + \frac{1}{2}\int_t^T e^{\alpha s}\left(|\hat{Z}_s|^2 + |\hat{Z}_s^0|^2\right)\,\mathrm{d}s\right] \leq 0$$

$$\mathbb{E}\left[e^{\alpha t}|\hat{Y}_t|^2 + \frac{1}{2}\int_t^T e^{\alpha s}\left(|\hat{Z}_s|^2 + |\hat{Z}_s^0|^2\right)\,\mathrm{d}s\right] \leq 0$$

$$\int_s^t \mathbb{E}^1 \left[|D_\mu H(\mu_u)(Y_u)|^2 \right] dK_u = \int_s^t \mathbb{E}^1 \left[|D_\mu H(\mu_u)(Y_u)|^2 \right] d\tilde{K}_u.$$

$$\mathbb{E}\left[e^{\alpha t}|\hat{Y}_t|^2 + \frac{1}{2}\int_t^T e^{\alpha s}\left(|\hat{Z}_s|^2 + |\hat{Z}_s^0|^2\right)\,\mathrm{d}s\right] \leq 0$$

$$\int_{s}^{t} \mathbb{E}^{1}\left[|D_{\mu}H(\mu_{u})(Y_{u})|^{2}\right] dK_{u} = \int_{s}^{t} \mathbb{E}^{1}\left[|D_{\mu}H(\mu_{u})(Y_{u})|^{2}\right] d\tilde{K}_{u}.$$

And for $dK + d\tilde{K}$ -almost every u:

$$\mathbb{E}^{1}\left[|D_{\mu}H(\mu_{u})(Y_{u})|^{2}\right] \geq \beta^{2} > 0, \quad a.s.$$

Rappel du plan

- BSDEs and Toy mode
 - Backward Stochastic Differential Equations
 - Propagation of Chaos
- Constrained in Law BSDE
 - Setting of the problem
 - Uniqueness
 - Existence of the solution
- 3 Associated particle system
 - Well-posedness
 - Propagation of Chaos

Theorem

Under the previous set of assumptions, there exists a unique tuple (Y, Z, Z^0, K) satisfying (3) such that K is continuous, non-decreasing, starting from $K_0 = 0$ and \mathcal{F}^0 -adapted and for all t in [0, T],

$$\mathbb{E}\left[|Y_t|^2 + \int_0^T |Z_s|^2 \,\mathrm{d}s + \int_0^T |Z_s^0|^2 \,\mathrm{d}s\right] < +\infty.$$

$$|f(s,y,z,z^0,\mu)|=|f(s)|\leq \kappa.$$

$$|f(s,y,z,z^0,\mu)|=|f(s)|\leq \kappa.$$

$$Y_t^k = \xi + \int_t^T f(s) ds - \int_t^T Z_s^k dW_s - \int_t^T Z_s^{0,k} dW_s^0 + \int_t^T D_\mu H(\mu_s^k)(Y_s^k) dK_s^k,$$

where $\mu_s^k = \mathcal{L}^1(Y_s^k)$, $dK_s^k = \psi_k(H(\mu_s^k)) ds$ and ψ_k of the form

$$\psi_k(x) = r$$
 if $x \le -1/k$, $\psi_k(x) = -krx$ if $-1/k \le x \le 0$, $\psi_k(x) = 0$ else

ightarrow ($Y^k, Z^k, Z^{0,k}$) defines a Cauchy sequence in $\mathcal{S}^2 imes \mathcal{H}^2 imes \mathcal{H}^2$

$$\mathbb{E}\left[\sup_{0\leq t\leq T}|\hat{Y}_t|^2+\int_0^T\left(|\hat{Z}_s|^2+|\hat{Z}_s^0|^2\right)\,\mathrm{d}s\right]\leq C\left(\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{l}}\right).$$

 \rightarrow Deduce the uniform convergence of (K^k) with the one of (L^k) in \mathcal{S}^2 :

$$L_t^k = \int_0^\tau D_\mu H(\mu_s^k)(Y_s^k) \, \mathrm{d}K_s^k$$

 \rightarrow Check that the limit (Y, Z, Z^0, K) satisfies equation (3).

Step 2: Existence via truncation for a \mathcal{H}^2 space independent generator

$$Y_{t}^{m} = \xi + \int_{t}^{T} f(s) \mathbf{1}_{|f(s)| \leq m} ds - \int_{t}^{T} Z_{s}^{m} dW_{s} - \int_{t}^{T} Z_{s}^{0,m} dW_{s}^{0} + \int_{t}^{T} D_{\mu} H(\mu_{s}^{m}) (Y_{s}^{m}) dK_{s}^{m},$$

$$Y_{t}^{m} = \xi + \int_{t}^{T} f(s) \mathbf{1}_{|f(s)| \leq m} ds - \int_{t}^{T} Z_{s}^{m} dW_{s} - \int_{t}^{T} Z_{s}^{0,m} dW_{s}^{0} + \int_{t}^{T} D_{\mu} H(\mu_{s}^{m})(Y_{s}^{m}) dK_{s}^{m},$$

$$\mathbb{E}\left[\sup_{0 \le t \le T} |Y_t^m - Y_t^l|^2 + \int_0^T (|Z_s^m - Z_s^l|^2 + |Z_s^{0,m} - Z_s^{0,l}|^2) \,\mathrm{d}s\right]$$

$$\le C_T \,\mathbb{E}\left[\int_t^T |f(s)\mathbf{1}_{|f(s)| \le l} - f(s)\mathbf{1}_{|f(s)| \le m}|^2 \,\mathrm{d}s\right]^{1/2}.$$

- ightarrow $(Y^k,Z^k,Z^{0,k})$ defines a Cauchy sequence in $\mathcal{S}^2 imes\mathcal{H}^2 imes\mathcal{H}^2$
- \rightarrow Deduce the uniform convergence of (K^k) with the one of (L^k) in \mathcal{S}^2 :

$$L_t^k = \int_0^t D_\mu H(\mu_s^k)(Y_s^k) \, \mathrm{d}K_s^k$$

now using the fact that $\sup_{m\geq 1}\mathbb{E}\left[\left(K_T^m\right)^2\right]<+\infty.$

 \rightarrow Check that the limit (Y, Z, Z^0, K) satisfies equation (3).

Existence of the solution

Step 3 : Existence via a Picard iteration for a general generator

$$\begin{split} Y_t^m &= \xi + \int_t^T f(s, Y_s^{m-1}, Z_s^{m-1}, Z_s^{0,m-1}, \mu_s^{m-1}) \, \mathrm{d}s - \int_t^T Z_s^m \, \mathrm{d}W_s \\ &- \int_t^T Z_s^{0,m} \, \mathrm{d}W_s^0 + \int_t^T D_\mu H(\mu_s^m)(Y_s^m) \, \mathrm{d}K_s^m \\ H(\mu_t^m) &\geq 0, \quad t \in [0, T], \quad \int_0^T H(\mu_s^m) \, \mathrm{d}K_s^m = 0, \end{split}$$

Step 3: Existence via a Picard iteration for a general generator

$$\begin{split} Y_t^m &= \xi + \int_t^T f(s, Y_s^{m-1}, Z_s^{m-1}, Z_s^{0,m-1}, \mu_s^{m-1}) \, \mathrm{d}s - \int_t^T Z_s^m \, \mathrm{d}W_s \\ &- \int_t^T Z_s^{0,m} \, \mathrm{d}W_s^0 + \int_t^T D_\mu H(\mu_s^m)(Y_s^m) \, \mathrm{d}K_s^m \\ H(\mu_t^m) &\geq 0, \quad t \in [0, T], \quad \int_0^T H(\mu_s^m) \, \mathrm{d}K_s^m = 0, \end{split}$$

We can show that:

$$\mathbb{E}\left[\sup_{t\leq T}\left\{e^{\alpha t}|\hat{Y}_{t}^{m+1}|^{2}+\int_{t}^{T}e^{\alpha s}\left(|\hat{Z}_{s}^{m+1}|^{2}+|\hat{Z}_{s}^{0,m+1}|^{2}\right)\,\mathrm{d}s\right\}\right]$$

$$\leq c_{T}\,\mathbb{E}\left[\int_{0}^{T}e^{\alpha s}\left(|\hat{Y}_{s}^{m}|^{2}+|\hat{Z}_{s}^{m}|^{2}+|\hat{Z}_{s}^{0,m}|^{2}\right)\,\mathrm{d}s\right]^{1/2}.$$

- \to $(Y^k, Z^k, Z^{0,k})$ defines a Cauchy sequence in $\mathcal{S}^2 \times \mathcal{H}^2 \times \mathcal{H}^2$
- \rightarrow Deduce the uniform convergence of (K^k) with the one of (L^k) in S^2 :

$$L_t^k = \int_0^t D_\mu H(\mu_s^k)(Y_s^k) \, \mathrm{d}K_s^k$$

now using the fact that $\sup_{m\geq 1}\mathbb{E}\left[\left(K_T^m\right)^2\right]<+\infty.$

 \rightarrow Check that the limit (Y, Z, Z^0, K) satisfies equation (3).

For $p \geq 2$, assume that $\xi \in L^p$, that $f(\cdot, 0, 0, 0, \delta_0) \in \mathcal{H}^p$ and that

$$\sup_{\mu\in\mathcal{P}^p(\mathbb{R}^m)}\int_{\mathbb{R}^m}|D_{\mu}H(\mu)(x)|^p\,\mathrm{d}\mu(x)<+\infty.$$

Then, the solution Y belongs to S^p , that is

$$\mathbb{E}\left[\sup_{t\leq T}|Y_t|^p\right]<+\infty.$$

Rappel du plan

- BSDEs and Toy mode
 - Backward Stochastic Differential Equations
 - Propagation of Chaos
- 2 Constrained in Law BSDE
 - Setting of the problem
 - Uniqueness
 - Existence of the solution
- Associated particle system
 - Well-posedness
 - Propagation of Chaos

$$Y_{t}^{i} = \xi^{i} + \int_{t}^{T} f\left(s, Y_{s}^{i}, Z_{s}^{i,i}, Z_{s}^{0,i}, \mu_{s}^{N}\right) ds - \int_{t}^{T} \sum_{j=1}^{N} Z_{s}^{i,j} dW_{s}^{j}$$
$$- \int_{t}^{T} Z_{s}^{0,i} dW_{s}^{0} + \int_{t}^{T} D_{\mu} H(\mu_{s}^{N})(Y_{s}^{i}) dK_{s}^{N},$$
(4)
$$H(\mu_{t}^{N}) \geq 0, \quad \forall t \leq T \quad \text{and} \quad \int_{0}^{T} H(\mu_{s}^{N}) dK_{s}^{N} = 0.$$

Lemma

Take N copies (ξ^i) of ξ and denote $\mu_T^N = N^{-1} \sum \delta_{\xi^i}$. If $\xi \in L^{2+\varepsilon}$, there exist a constant C and a family of random variables $\tilde{\xi}^i \in L^{2+\varepsilon}$ such that

$$H\left(\frac{1}{N}\sum_{i=1}^N \delta_{\tilde{\xi}^i}\right) \ge 0$$

and

$$\mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N}\left|\tilde{\xi}^{i}-\xi^{i}\right|^{2}\right]\leq C\mathbb{E}\left[W_{2}^{2}\left(\mu_{T}^{N},\mathcal{L}(\xi)\right)\right]^{\frac{\varepsilon}{2+\varepsilon}}.$$

$$Y_{t}^{i} = \tilde{\xi}^{i} + \int_{t}^{T} f\left(s, Y_{s}^{i}, Z_{s}^{i,i}, Z_{s}^{0,i}, \mu_{s}^{N}\right) ds - \int_{t}^{T} \sum_{j=1}^{N} Z_{s}^{i,j} dW_{s}^{j}$$
$$- \int_{t}^{T} Z_{s}^{0,i} dW_{s}^{0} + \int_{t}^{T} D_{\mu} H(\mu_{s}^{N})(Y_{s}^{i}) dK_{s}^{N},$$
(4)
$$H(\mu_{t}^{N}) \geq 0, \quad \forall t \leq T \quad \text{and} \quad \int_{0}^{T} H(\mu_{s}^{N}) dK_{s}^{N} = 0.$$

The system (4) is a reflected BSDE in \mathbb{R}^{mN} constrained to stay in the following convex space

$$\mathcal{D} = \left\{ x = (x_1, \dots, x_N) \in (\mathbb{R}^m)^N \mid H\left(\frac{1}{N} \sum_{i=1}^N \delta_{x_i}\right) \geq 0 \right\},\,$$

with normal vector proportional to $(D_{\mu}H(\mu_{x}^{N})(x_{1}), \ldots, D_{\mu}H(\mu_{x}^{N})(x_{N}))$ for $x = (x_{1}, \ldots, x_{N}) \in \partial \mathcal{D}$.

Proposition

Under the same assumptions, the system (4) is well-posed: there exists a unique solution $\{(Y^i, Z^i, Z^{0,i})_{1 \leq i \leq N}, K^N\}$ to (4).

Proposition

Under the same assumptions, the system (4) is well-posed: there exists a unique solution $\{(Y^i, Z^i, Z^{0,i})_{1 \le i \le N}, K^N\}$ to (4).

There exists a constant C > 0 such that this solution satisfies

$$\mathbb{E}\left[\frac{1}{N}\sum_{i=1}^N\left(|Y_t^i|^2+\int_0^T\sum_{j=1}^N|Z_s^{i,j}|^2\,\mathrm{d}s+\int_0^T|Z_s^{0,i}|^2\,\mathrm{d}s\right)\right]+\mathbb{E}\left[\left(K_T^N\right)^2\right]\leq C.$$

where the constant C only depends on f and H.

Rappel du plan

- - Backward Stochastic Differential Equations
 - Propagation of Chaos
- - Setting of the problem
 - Uniqueness
 - Existence of the solution
- Associated particle system
 - Well-posedness
 - Propagation of Chaos

Theorem

For p > 4, assume that $\xi \in L^p$, that $f(\cdot, 0, 0, 0, \delta_0) \in \mathcal{H}^p$ and that

$$\sup_{\mu\in\mathcal{P}^p(\mathbb{R}^m)}\int_{\mathbb{R}^m}|D_{\mu}H(\mu)(x)|^p\,\mathrm{d}\mu(x)<+\infty.$$

Then,

$$\mathbb{E}\left[\sup_{s\leq T}\mathbb{E}^1\left[W_2^2(\mu_s^N,\mu_s)\right]\right]\leq C_T\times\begin{cases} N^{-1/2} & \text{if } m<4,\\ N^{-1/2}\log(N) & \text{if } m=4,\\ N^{-2/m} & \text{if } m>4. \end{cases}$$

For p > 4, assume that $\xi \in L^p$, that $f(\cdot, 0, 0, 0, \delta_0) \in \mathcal{H}^p$ and that

$$\sup_{\mu\in\mathcal{P}^p(\mathbb{R}^m)}\int_{\mathbb{R}^m}|D_{\mu}H(\mu)(x)|^p\,\mathrm{d}\mu(x)<+\infty.$$

If we also suppose that $\operatorname{ess\,sup}_t \mathbb{E}[|Z_t|^p + |Z_t^0|^p] < +\infty$, then there exists a constant $C_T > 0$ such that

$$\mathbb{E}\left[\sup_{s\leq T}W_2^2(\mu_s^N,\mu_s)\right] \leq C_T \times \begin{cases} N^{-1/2+2/p} & \text{if } m<4,\\ N^{-1/2+2/p}\log(1+N)^{1-4/p} & \text{if } m=4,\\ N^{-2(1-4/p)/m} & \text{if } m>4. \end{cases}$$

$$\begin{aligned} \mathscr{Y}_t^i &= \xi^i + \int_t^T f\left(s, \mathscr{Y}_s^i, \mathscr{Z}_s^{i,i}, \mathscr{Z}_s^{0,i}, \mu_s\right) \, \mathrm{d}s - \int_t^T \mathscr{Z}_s^i \, \mathrm{d}W_s^i \\ &- \int_t^T \mathscr{Z}_s^{0,i} \, \mathrm{d}W_s^0 + \int_t^T D_\mu H(\mathscr{Y}_s^i)(\mu_s) \, \mathrm{d}K_s \end{aligned}$$

$$H(\mu_t) \geq 0, \quad t \leq T \quad \text{and} \quad \int_0^T H(\mu_s) \, \mathrm{d}K_s = 0.$$

$$\begin{split} \mathscr{Y}_t^i &= \xi^i + \int_t^T f\left(s, \mathscr{Y}_s^i, \mathscr{Z}_s^{i,i}, \mathscr{Z}_s^{0,i}, \mu_s\right) \, \mathrm{d}s - \int_t^T \mathscr{Z}_s^i \, \mathrm{d}W_s^i \\ &- \int_t^T \mathscr{Z}_s^{0,i} \, \mathrm{d}W_s^0 + \int_t^T D_\mu H(\mathscr{Y}_s^i)(\mu_s) \, \mathrm{d}K_s \end{split}$$

$$H(\mu_t) \geq 0, \quad t \leq T \quad \text{and} \quad \int_0^T H(\mu_s) \, \mathrm{d}K_s = 0.$$

Proposition

$$\mathbb{E}\left[\sup_{t\leq T}\frac{1}{N}\sum_{i=1}^{N}\left(|\hat{Y}_{t}^{i}|^{2}+\int_{t}^{T}\sum_{j=1}^{N}|\hat{Z}_{s}^{i,j}|^{2}\,\mathrm{d}s+\int_{t}^{T}|\hat{Z}_{s}^{0,i}|^{2}\,\mathrm{d}s\right)\right]$$

$$\leq C\left(\mathbb{E}\left[\sup_{t\leq T}W_{2}^{2}(\mu_{s}^{N},\mu_{s})\right]^{1/2}+\mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N}\left|\tilde{\xi}^{i}-\xi^{i}\right|^{2}\right]\right).$$

THANK YOU FOR YOUR ATTENTION

Philippe Briand, Pierre Cardaliaguet, Paul-Eric Chaudru de Raynal, and Ying Hu. Forward and Backward Stochastic Differential Equations with normal constraint in law. *Stochastic Processes and their Applications*, 130(12):7021–7097, 2020.

Donald Burkholder, Etienne Pardoux, and Alain-Sol Sznitman.

Ecole d'Eté de Probabilités de Saint-Flour XIX — 1989.

Lecture Notes in Mathematics 1464. Springer-Verlag Berlin Heidelberg, 1st edition, 1991.

René Carmona and François Delarue.

Probabilistic Theory of Mean Field Games with Applications II.

Springer, Probability Theory and Stochastic Modelling 83, 2018.

Anne Gégout-Petit and Etienne Pardoux.

Equations différentielles stochastiques rétrogrades réfléchies dans un convexe.

Stochastics and Stochastic Reports, 57(1-2):111–128, 1996.